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1  Introduction
In the mobile industry, more attentions focus toward Fifth Generation (5G) mobile tech-
nology to meet the growing demands for higher throughputs and more data capacity. In 
particular, when 5G is integrated with satellites, it is targeted to address a broad range of 
Internet of Things (IoT) applications to provide broadband access services [1–5]. Wide-
band spectrum sensing (WSS) has been widely recognized as an effective means to deal 
with the increasing demand for broadband access and the scarcity of available spectrum 
[6, 7]. However, the increasing bandwidth brings a great challenge to the implementa-
tion of conventional WSS techniques, thus sub-Nyquist wideband spectrum sensing 
attracts significant attentions [8].

Based on the compressed sensing (CS) theory, several sub-Nyquist sampling systems 
have been introduced, such as an analog to information converter (AIC) [9], a multicoset 
sampling (MCS) [10] and a modulated wideband converter (MWC) [11–14]. AIC-based 
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WSS can handle discrete multitone signals, i.e., sinusoids with sparse frequencies. 
When signals have a certain bandwidth, AIC system is no longer applicable, but MCS 
and MWC still work. These two systems belong to multi-channel structure. MCS is dif-
ficult to implement by hardware, because an accurate time delay is strictly required for 
each channel. By contrast, a prototype of MWC has been implemented. Though its pre-
cision is lower than that of MCS at the same sampling rate, MWC is still an attractive 
alternative.

In terms of signal support set reconstruction, compressed-aware reconstruction algo-
rithms are borrowed, such as orthogonal matching pursuit (OMP), regularized OMP, 
stagewise OMP, subspace pursuit and compressive sampling MP, which are proposed 
to solve the Single Measurement Vector (SMV) problem and cannot be directly used 
to solve the multiband signal reconstruction problem. However, the reconstruction of 
multiband signals can be transformed into the Multiple Measurement Vectors (MMV) 
problem. To solve the reconstruction problem of joint sparse signals, five greedy algo-
rithms designed for SMV sparse estimation can be extended to the MMV problem. 
In addition, many MWC-based signal improvement algorithms are proposed, such as 
the iterative support detection method [15], and the sparse Bayesian algorithm [16]. 
Although the MMV class algorithms require fewer samples than the SMV class algo-
rithms to achieve the same signal reconstruction accuracy, the MMV class algorithms 
[17–19], like the SMV class algorithms, also rely on the a priori information of signal 
sparsity, which is extremely difficult to be acquired in the actual complex electromag-
netic environment.

In this paper, an advanced sampling framework (ADS) is proposed to achieve sub-
Nyquist sampling for multiband signals. Compared to traditional MWC, a prime dif-
ference is that advanced sampling framework adopts single-channel structure. In order 
to collect enough sub-Nyquist samples, a frequency shifting module is added. The pro-
posed structure mainly solves the following two problems. First, it can flexibly take con-
trol of the number of sub-Nyquist samples. The key point of MWC is to recover the 
signal supports by exploiting the CS recovery algorithms. However, the CS theory has 
strict requirements on the observation times, namely the number of sampling channels 
in MWC. As the number of sub-bands increases, sampling channels must be added to 
acquire enough samples. Once MWC is implemented in hardware, the number of sam-
pling channels is fixed. In other words, the ability to process multiband signals is limited. 
In actual scenario, there is no priority knowledge of the number of sub-bands, so it will 
be difficult in putting MWC in practical applications. This has motivated interest in the 
proposed structure to overcome the limitations of traditional MWC. Second, the input 
signal to MWC is mixed with a high-speed pseudorandom chip sequence. This opera-
tion puts the pressure on hardware implementation and advanced structure can greatly 
reduce this operation. Based on single-channel structure, wideband spectrum sensing 
can be realized to monitor high dynamic electromagnetic spectrum and detect non-
cooperative signals.

The reminder of the paper is organized as follows. In Sect.  2, the system model of 
MWC system is first briefly reviewed. Then, the single-channel sub-Nyquist sampling 
structure is proposed in Sect. 3. Finally, simulation results are presented in Sect. 4 for 
demonstrating the performance of the proposed approach.
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2 � System model
MWC allows the RF signal to be sampled using existing ADCs, reducing the limitations 
on hardware. Compared to multi-coset sampling, there is no requirement for strict time 
synchronization. Meanwhile, the appearance of prototypes makes MWC draw more 
attention.

2.1 � MWC architecture

MWC uses a fixed analog sampling front end, which contains m parallel sampling chan-
nels, each consisting of a mixer, low-pass filter and sampler, as shown in Fig. 1.

The RF signal x(t) is an analog multiband signal with a bandwidth range 
F = [−1/2T , 1/2T ) , and fNYQ = 1/T  is the Nyquist rate of x(t) . Its Fourier transform is 
as follows:

Once the multiband signal x(t) enters MWC, m sampling channels simultaneously per-
form the same processing process on the RF signal. First, the RF signal x(t) is modulated 
by the mixing function through the mixer. The mixing function pi(t) is Tp-periodic, con-
taining M code slices in each period. Each code slice varies between ±1 , as shown in 
Fig. 2. The periodic pseudo-random sequence is chosen as the mixing function.

With αik ∈ {+1, −1} and pi
(

t + nTp

)

= pi(t) for any n ∈ Z.
Considering the ith branch, since pi(t) is a periodic signal, its Fourier expansion form 

is

where,

(1)X
(

f
)

=

∫ ∞

−∞

x(t)e−j2π ftdt

(2)pi(t) = αik , k
Tp

M
≤ t ≤ (k + 1)

Tp

M
, 0 ≤ k ≤ M − 1

(3)pi(t) =

∞
∑

l=−∞

cile
j 2πTp lt

Fig. 1  MWC analog sampling front end
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The multiband signal x(t) is multiplied with pi(t) to obtain the modulated signal 
x̃i(t) = x(t)pi(t) , whose Fourier transform is

X
(

f
)

 is the Fourier transform of x(t) and fp = 1/Tp . Through the mixer, the modulated 
signal spectrum X̃i(f ) generates the spectrum aliasing effect, which manifests itself as a 
linear weighting combination of fp-shift copies of X

(

f
)

 and the weighting factor is the 
Fourier coefficient cil . The operation is similar to the spread spectrum, the multiband 
signal spectrum will be extended, so that the spectrum spans full spectrum, at this time 
extended to the low frequency part. Notice that the m parallel channels differ only in 
the pseudo-random sequence chosen for the mixing function, the other operations are 
identical.

Subsequently, the modulated signal is filtered using a low-pass filter to retain some 
information in the signal baseband, and the filtered signal is sampled at low speed to 
obtain the sampling signal yi[n] of each branch. The cutoff frequency of the low-pass 
filter is 1/2Ts , and the sampling rate is 1/Ts . Suppose the low-pass filter frequency 
response be HLPF

(

f
)

 , the sampled value yi[n] contains only the frequency component 
f ∈ Fs =

[

− 1
2Ts

,+ 1
2Ts

]

.

The discrete-time Fourier transform (DTFT) of yi[n] is

(4)cil =
1

Tp

∫ Tp

0

pi(t)e
−j 2πTp ltdt

(5)

X̃i

�

f
�

=

� ∞

−∞

x̃i(t)e
−j2π ftdt

=

� ∞

−∞

x(t)





∞
�

l=−∞

cile
j 2πTp lt



e−j2π ftdt

=

∞
�

l=−∞

cilX
�

f − lfp
�

Fig. 2  The mixing function pi(t)
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Where L0 denotes all possible nonzero terms of X
(

f
)

 in the positive frequency part of 
the signal bandwidth F,

Equation 6 relates the spectrum of the sampled sequence yi[n] to the spectrum of the 
unknown signal X

(

f
)

 in the frequency domain, which constructs a classical reconstruc-
tion formula similar to the compressed sensing. Rewrite it as matrix form.

The ith element of a m× 1 vector Y
(

f
)

 is Yi
(

ej2π f Ts
)

 . z
(

f
)

 is L× 1 with L = 2L0 + 1,

Matrix A is m× L with the elements Ail = ci,−l = c∗il , −L0 ≤ l ≤ L0.
After the mixing function pi(t) , the multiband signal is periodically extended in 

the frequency domain. Each sub-band signal in the baseband part is obtained after 
passing the low-pass filter, and then the sub-band signals are mixed together. The 
data stream y[n] is sampled by low-speed rate. The signal support set information is 
acquired by compressed sensing theory, and separate the mixed sub-band signals.

2.2 � Discussions

MWC has drawn more attention among many wideband signal sub-Nyquist sampling 
systems. It can process multiband signals at sub-Nyquist rates without the prior of 
the exact location of each sub-band, but has application limitations. The two core 
components of MWC: the front-end sub-Nyquist sampling structure and subsequent 
signal processing algorithms, which both limit the use of MWC.

Front-end sub-Nyquist sampling structure employs multi-channel parallel struc-
ture. When implemented in hardware, the number of sampling channels is then deter-
mined and cannot be changed. The number of sampling channels directly affects the 
accuracy of the subsequent signal support set recovery algorithm. Taking the existing 
signal support set algorithm as an example, two prerequisites are required to recover 
the support set accurately, a priori information on the number of signals required and 
the number of sampling channels to match the number of sub-bands. In a complex 
electromagnetic environment, the number of signals is not known in advance and is 
also constantly changing over time. Such uncertainty directly limits the application of 
MWC. Another perspective is that when the number of sampling channels is fixed, 
the upper limit of the number of signals it can detect will also be determined.

(6)

Yi

(

ej2π f Ts

)

=

∞
∑

n=−∞

yi[n]e
−j2π fnTs

=

+L0
∑

l=−L0

cilX
(

f − lfp
)

, f ∈ Fs

(7)−
fs

2
+ (L0 + 1)fp ≥

fNYQ

2
→ L0 =

⌈

fNYQ + fs

2fp

⌉

− 1

(8)Y
(

f
)

= Az
(

f
)

, f ∈ F

(9)z
(

f
)

= X
(

f + (i − L0 − 1)fp
)

, f ∈ F , 1 ≤ i ≤ L
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As above, the main contributions of this paper are as follows. On the one hand, design 
a single-channel advanced structure, which can flexibly select the number of sampling 
values according to the number of signals changing. At the same time, it can ensure the 
effective operation of the support set recovery algorithm, so that the sampling process 
is channel selection adaptive. On the other hand, the signal support set blind recovery 
algorithm, called adaptive residual energy detection algorithm, is proposed to eliminate 
the priori information about the signal number, which adapts to dynamic electromag-
netic environment.

3 � Single‑channel advanced sampling method
3.1 � Single‑channel Sub‑Nyquist sampling Structure

The aliasing effect of the modulated signal spectrum due to the period extension is the 
basis for the implementation of sub-Nyquist sampling in MWC systems. The spectrum 
of the modulated signal X̃i

(

f
)

 appears as a weighted linear combination of fp-shift cop-
ies of X

(

f
)

 . Assuming that the spectrum range is divided into several intervals by fp 
length, every fp-length interval contains the weighted spectrum information from each 
sub-band, which is considered as the drivers for single-channel sub-Nyquist sampling 
structure.

Using a single-channel equivalent to a conventional MWC system, the core idea is to 
combine the frequency-shifting properties of the Fourier transform. Taking full advan-
tage of the spectral panning feature of single-channel signals, the mixed signals in each 
region of fp length are considered as the signals acquired by one sampling channel. The 
period-weighted expansion of the spectrum of one sampling channel is extracted, and 
the signal in each region is equivalent to the signal obtained from multiple other sam-
pling channels. Therefore, the single channel needs to add a frequency shift module 
between the mixer and the low-pass filter, and the modulated signal will be frequency 
shifted and passed through the low-pass filter in turn. Several linearly weighted signals 
in the fp-length region are reserved according to the actual requirements to equate to 
the road sampling channels of a conventional MWC system.

The processed signal x̂(t)=x̃(t) · e−j2π(a·fp)t produces a frequency shift effect in the 
frequency domain.

Where X̃
(

f
)

 is the spectrum of the modulated signal and a ∈ N+ . Different channels are 
equated by selecting different values of a.

The spectrum of the modulated signal x̃(t) , after different frequency shift operations, 
is used as the input signal x̂(t) for the low-pass filter.

(10)

X̂
(

f
)

=

∫ ∞

−∞

x̂(t) · e−j2π ftdt

=

∫ ∞

−∞

x̃(t) · e−j2π(a·fp)t · e−j2π ftdt

=X̃
(

f+a · fp
)
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Its Fourier expansion takes the form

The filtered signal Y
(

f
)

= X̂
(

f
)

·HLPF

(

f
)

 retains only the spectrum located in the base-
band portion, which is a linear combination of each sub-band with different weighting 
factors. By setting different values of a to obtain sub-Nyquist sampling values sufficient, 
it can satisfy the reconstruction of signal support information. These sample values can 
be equivalently considered as coming from different sample channels. In this paper, the 
relationship between sampling channel number i and parameter a is specified as follows:

Where i and a take the values of i = [1, 2, · · · ,m] and a = [0, 1, · · · ,m− 1] , respectively. 
m is the equivalent number of sampling channels, Sampling channel i = 1 is the sub-
Nyquist sampled value obtained when no frequency shift ( a = 0 ) occurs, while sampling 
channel i ≥ 2 is the modulated signal spectrum obtained by sequentially shifting fp dis-
tances to the left.

3.2 � Sensing matrix design

In the MWC system, the observation matrix A is constructed based on the Fourier 
series cil of the different mixing functions pi(t) . Matrix A is m× L , with the elements 
Ail = ci,−l = c∗il , −L0 ≤ l ≤ L0 , where m denotes the number of sampling channels and 
L denotes the number of regions of fp length divided in the spectrum sensing range. 
The observation matrix A of MWC is composed of m mixing functions pi(t) and the 
form is as follows:

Each column of matrix A corresponds to a region of fp length in the sensed spectrum 
range, and the weighting factor of each sub-band located in the baseband part is related 
to the location of the sub-band. The weighting factor of each sub-band period extension 
is known by Eq. 4.

(11)x̂(t) = x̃(t) · e−j2π(a·fp)t = x(t)p(t) · e−j2π(a·fp)t

(12)

X̂
�

f
�

=

� ∞

−∞

x̂(t)e−j2π ftdt

=

� ∞

−∞

x(t)





∞
�

l=−∞

cle
j 2πTp lt



e−j2π(a·fp)t · e−j2π ftdt

=

∞
�

l=−∞

clX
�

f − (l − a)fp
�

(13)i = a+ 1

(14)A =









c1,−L0 c1,−L0+1 · · · c1,0 · · · c1,L0−1 c1,L0
c2,−L0 c2,−L0+1 · · · c2,0 · · · c2,L0−1 c2,L0

...
...

. . .
...

. . .
...

...

cm,−L0 cm,−L0+1 · · · cm,0 · · · cm,L0−1 cm,L0








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Matrix A has conjugate symmetry. From the amplitude point of view, the leftward 
and rightward periodic extension spectrum in the baseband part has the same ampli-
tude variation.

In the single-channel structure, the frequency-shifted modulated signal spectrum is 
as in Eq. 12. Let l′ = l − a and substitute l = l′ + a into Eq. 12,

Comparing with Eq. 12, the weighting factor of the spectrum is cl+a.
In the single-channel structure, there is only one mixing function, and the observation 

matrix A is constructed using the Fourier series of one mixing function corresponding 
to the frequency shift operation. The weighting factor for each sampling channel cor-
responds to one row of matrix A . Therefore, A can be obtained by a row-by-row transla-
tion in a single channel structure.

where i = a+ 1 . At this point, the elements in matrix A no longer satisfy the conjugate 
symmetry relationship.

The samples Y
(

f
)

 in MWC system are the weighted linear combination of fp-shift cop-
ies of X

(

f
)

 , and the difference between the sampling channels is the weighted coeffi-
cients, due to different mixing functions. The weighted coefficients are several specific 
values from the Fourier coefficients of different mixing functions. In the single-channel 
structure, the equivalent samples are still the weighted linear combination of fp-shift 
copies of X

(

f
)

 and the weighted coefficients are acquired by shifting the only Fourier 
coefficients. As long as the constructed matrix A is consistent with the sampled values 
after the translation operation, it will not affect the subsequent reconstruction of the 
sub-band support information.

In the single-channel structure, the Fourier series cl of the mixing function is used as 
the first row of matrix A , and the remaining rows are generated by shifting the elements 
of the first row according to Eq. 16. After the translation, there are free positions in A 
that need to be filled to complete the construction of A . In this paper, two methods are 
presented to build matrix A as follows,

•	 A1 : The idle position left after the translation is filled by zero. 

•	 A2 : The idle position left after the translation is filled by a circular shift 

(15)X̂
(

f
)

=

∞
∑

l′=−∞

cl′+aX
(

f − l′fp
)

=

∞
∑

l=−∞

cl+aX
(

f − lfp
)

(16)ci,l = cl+a = cl+(i−1), 1 ≤ l ≤ L0 − (i − 1)

(17)A1 =









c1,−L0 · · · c1,0 c1,1 · · · c1,L0
0 · · · c1,−1 c1,0 · · · c1,L0−1

...
. . .

...
...

. . .
...

0 · · · c1,−m+1 c1,−m+2 · · · c1,L0−m+1








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3.3 � Sampling structure improvement

The frequency shift module is the most central device of the sub-Nyquist sampling 
system based on the single-channel structure, which is not only the key to ensure the 
proper operation of the system, but also can increase the flexibility of sampling value 
acquisition. Two basic structures are given in this section, i.e., parallel structure and 
series structure, as shown in Figs. 3 and 4.

In both structures, a low-pass filter is used to obtain multiple sub-Nyquist sampled 
values through the control of the timing. The difference between the two structures is 
that the parallel structure can acquire the baseband spectrum without frequency shifting 
as the sampled signal, while the sampled signal acquired in the series structure is the fre-
quency shifted signal spectrum. The parallel structure uses different frequency shifters, 
while the series structure can use the same frequency shifters.

Wideband spectrum sensing has high requirements for timeliness. When the above-
mentioned single channel advanced sampling structure is adopted, the efficiency of the 
frequency shift module will directly affect the working time and efficiency of the whole 
system and it becomes the key to system performance improvement. Considering that 
the low-pass filter bandwidth in the system matches the sub-band bandwidth of the 

(18)A2 =









c1,−L0 · · · c1,0 c1,1 · · · c1,L0
c1,L0 · · · c1,−1 c1,0 · · · c1,L0−1

...
. . .

...
...

. . .
...

c1,L0−m+2 · · · c1,−m+1 c1,−m+2 · · · c1,L0−m+1









Fig. 3  Frequency shifting module with parallel structure

Fig. 4  Frequency shifting module with serial structure
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multiband signal, the sampling rate can be appropriately increased in order to shorten 
the signal processing time delay caused by frequency shift. In addition, the sampling 
process is flexibly controlled according to actual needs, making it more adaptable to 
application scenarios where the number of signals is unknown and constantly changing.

The mixing function used in the mixer can be a pseudo-random sequence, which val-
ues switch between 1 and −1 . For better hardware implementation, the mixing function 
can be improved to ensure that the total number of code pieces remains the same during 
the period.

First, the value of each code slice of the modulation function is selected as 0 or 1. The 
mixer can be implemented through the control of the high-frequency switch. The open-
ing of the high-frequency switch corresponds to the code piece whose mixing function 
takes the value of 1 to ensure the normal passage of the signal, while the closing of the 
switch corresponds to the code piece whose mixing function takes the value of 0 to 
achieve the modulation of the input multiband signal. Secondly, in order to reduce the 
opening and closing frequency of the high frequency switch, the mixing function struc-
ture can be changed so that a number of successive adjacent elements take the same 
value, thus reducing the opening and closing frequency of the switch exponentially and 
reducing the difficulty of hardware implementation.

In the improved mixing function, it is required that the number of code pieces remains 
the same M for a cycle Tp . As the number of code slices with the same value increases, it 
makes the mixing function less random and will affect the reconstruction results of the 
signal support set to some extent.

3.4 � The proposed ARED algorithm

In this section, the proposed adaptive residual energy detection algorithm (ARED) is 
similar to other algorithms for support set solution based on the greedy compressed 
sensing algorithm. The processing of the proposed ARED algorithm includes matching 
the residuals with the observation matrix, and then finding the most relevant columns to 
obtain the corresponding support set information, updating the residuals again, and per-
forming circular matching until the complete support set information is obtained. In this 
algorithm, the iteration termination condition is no longer the sparsity of the signal, but 
the difference of two mean square errors is chosen. It can effectively solve the difficult 
problem that the signal sparsity cannot be known in advance, and solve the reconstruc-
tion problem of signal support set with arbitrary sparsity more flexibly. The pseudo-code 
of the proposed algorithm is shown in Algorithm 1.

In step 1, at the beginning of each iteration, the correlation between the residuals 
and each column of the observation matrix is solved to find the best matching column, 
whose corresponding column number Zκ is a support set information. Considering that 
the spectrum of the real signal has conjugate symmetry, the signal support set S̃κ is thus 
updated as Zκ and L+ 1− Zκ.

In step 2, the multiband signal after this iteration is obtained through the pseudo-
inverse matrix A†

S̃κ
 , and the residuals are updated.

In step 3, the observation matrix Aκ is updated with the diagonal correction matrix so 
that the energy of each row of the observation matrix is normalized to 1.
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The details of the algorithm are shown in Algorithm 1. 

Algorithm 1 The proposed ARED
Input: measurement matrix A, compressed measurements y = [y0, · · · , yn, · · · yN−1]

Output: Sparse signal support S̃

1: Initialize: signal support S̃0 = ∅, iteration index κ = 1, residual matrix

Y0 =
∑N−1

n=0 yne−j2πkn/N .

2: Repeat:

3: Zκ = argmax
l

∥∥AT
l Yκ−1

∥∥
2

/∥∥AT
l

∥∥
2

4: S̃κ = S̃κ−1 ∪ {Zκ, L+ 1− Zκ}
5: X̃κ = A†

S̃κY
0, A†

S̃κ =
(
AT

S̃κAS̃κ

)−1
AT

S̃κ

6: r̂κ = Y0 −AS̃κX̃κ

7: Mκ = diag Mκ
1 , · · · ,Mκ

g , · · · ,Mκ
G

)
, Bκ

G×L =
(
E−AS̃κA

†
S̃κ

)
A, Mκ

g = 1

/√
∑L

l=1

∣∣∣Bκ
g,l

∣∣∣
2

8: Aκ = Mκ
(
E−AS̃κA

†
S̃κ

)
A

9: Rκ = Mκ × r̂κ

10: Tκ =
∑N

n=1 |Rκ|2
/
N

11: Update the iteration counter: κ ← κ+ 1

12: until stopping criterion Tκ − Tκ−1 < ε is met.

Compared with the traditional MWC system signal support set recovery algorithm, the 
proposed ARED algorithm no longer requires the a priori information of signal sparsity and 
uses the residual energy detection result as the iterative termination condition to achieve 
blind detection of the signal.

4 � Simulation result
In this section, we will verify the above analyses and compare the performance along with 
the original multi-channel MWC system. In our experiment, the QPSK signal is selected as 
the sub-band signal,

Where N is the number of sub-band signal, Tsi = 4 × 10−2µs is symbol duration and 
symbol energy Esi is random selection. The in-phase and quadrature bit streams are 
I[n] , Q[n] and the generated bit streams uniformly at random with n = 150 symbols. 
s(t) = sinc(t/Ts) is the pulse shaping. The carriers fi are chosen uniformly at random 
over a wideband range with fNYQ = 5GHz . The multiband signal is composed of three 
QPSK signals with SNR = 10dB . The mixing function pi(t) alternates sign at most 
M = Ts/T  times. Low-pass sampling signals obtained by different sampling channels 
are shown in Fig. 5. Matrix A is obtained by cyclic shift method and use the proposed 
ARED algorithms to recover the frequency supports. The signal processing results are 
shown in Fig. 6.

A successful reconstruction of the signal support set is defined when the support set of 
the reconstructed signal SR contains the support set of the original signal SO,

(19)x(t) =

N /2
∑

i=1

√

2Esi

Tsi

{
∑

n I[n]s(t − nTs) cos
(

2π fit
)

+
∑

n Q[n]s(t − nTs) sin
(

2π fit
)

}

(20)SR ⊇ SO
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SR=SO means the exact reconstruction of the support set. Due to the influence of noise, 
there will be support set false alarm situation, if completely eliminate the false alarm sit-
uation need to use other signal processing methods, not in the scope of this paper. Con-
sidering that the primary principle of shared spectrum is that the work of its own system 
does not affect the normal work of other systems, the support set reconfiguration suc-
cess with Eq. 20 defined in this paper meets this requirement. Ensuring that all sub-band 
locations are accurately located, the provided spectrum access locations do not interfere 
with the work of other existing systems.

Fig. 5  Low pass sampling signal spectrum from sampling channel 1 and sampling channel 2

Fig. 6  Spectrum comparison diagram of signal reconstruction in ADS
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4.1 � Support set detection performance

For MWC and ADS systems, the setting of parameters will directly affect the perfor-
mance of signal support set reconstruction. The three most influential parameters are 
the average signal-to-noise ratio, the number of sampling channels (number of sub-
Nyquist sampled values) and the number of sub-bands (joint sparsity), and the following 
simulations analyze the effects of these three factors. Since the signal and observation 
matrices are random, there are inevitable fluctuations in the probability of success-
ful reconstruction of the signal support set, and the following simulation results are 
obtained by statistics of 1000 Monte Carlo simulations.

The simulation parameters are as follows: the number of sampling channels is taken 
from 10 to 100 with an interval of 10, the average SNR is from −30 dB to 30 dB with an 
interval of 5. The number of sub-bands is N = 6.

As shown in Figs. 7 and 8, the detection rates of both MWC and ADS systems for the 
signal support set are increasing as the average signal-to-noise ratio increases and the 
number of undersamples increases. In contrast, the detection rate of the ADS system for 
the signal support set is higher at low undersampling numbers, while at high undersam-
pling numbers, the detection rates of both systems are similar.

Specifically, the detection performance of the two systems is compared when the 
undersampling numbers are taken as 10, 30, 60 and 100, respectively. When the num-
ber of undersamples is greater than 30, the performance of the two systems does not 
differ much and both improve with the increase in the average signal-to-noise ratio. 
Only when the number of undersamples is above 60, the performance of the system is 
not improved much simply by increasing the number of undersamples. The number 
of undersamples directly determines the hardware complexity of the sampling system, 
especially for MWC systems, the number of undersamples directly affects the number 
of sampling channels. Therefore, MWC systems will be extremely limited in practi-
cal applications. When the number of sampling channels is only 10, the ADS system is 
improved with the increase of the average signal-to-noise ratio of the signal, but the final 
undersampling number is too small to achieve better detection efficiency. MWC at this 

Fig. 7  Support set detection performance in MWC
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time is unable to complete the normal detection, so the ADS system has a certain detec-
tion capacity under the low number of samples, which can be the focus of subsequent 
research in this scenario.

Figure  9 also shows that ADS outperforms MWC at low undersampling numbers. 
While both systems have comparable performance with gradually increasing number of 
samples, as shown in Fig. 10

The effects of different numbers of subbands on the detection results are given in 
Figs. 11 and 12 for undersampling numbers of 30 and 60, respectively. It can be seen that 
the detection performance gradually decreases as the number of subbands increases. 
And the higher the average signal-to-noise ratio and the higher the number of samples, 
the higher the success rate of detection of the signal support set under the same sub-
band number condition.

Fig. 8  Support set detection performance in ADS

Fig. 9  Percentage of correct support recovery, when m = 10, 60, 100
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As shown in Fig. 11, when the number of samples is 30, the detection performance 
of the MWC system and the ADS system differs significantly. And when the number 
of samples is increased to 60, the detection performance of both systems tends to be 
similar, as shown in Fig. 12. Again, it shows that the ADS system has better detection 
capability than MWC at low sample number condition.

Compared to MWC systems, ADS systems also have the ability to detect multi-
band signals, and both have similar performance. In particular, ADS is more advan-
tageous when the number of samples is small. MWC only performs better when the 
number of samples is large enough, and more samples means an increase in the num-
ber of sampling channels, which ultimately leads to a significant increase in hardware 

Fig. 10  Percentage of correct support recovery, when SNR=−15 dB, 0 dB, 10 dB and 20 dB

Fig. 11  Percentage of correct support recovery, when SNR=−5 dB, 0 dB, 10 dB, 25 dB and m = 30
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complexity. In contrast, ADS is more flexible for acquiring sample values and can 
obtain more samples without increasing hardware complexity.

Another issue of concern is that in a complex electromagnetic environment, the 
number of signals that exists simultaneously at a given moment is unpredictable. For 
MWC systems, once the analog front-end is implemented in hardware, the number of 
sampling channels will also be determined, and its ability to handle multi-band sig-
nals is basically fixed, i.e., the upper limit of the number of sub-bands that can be 
handled is known. When the number of changing RF signals exceeds the limit, the 
system will not work. While an increase in the number of sub-bands means that the 
number of samples must be increased to ensure the effectiveness of signal support set 
detection, the analog sampling front-end of the ADS system can flexibly cope with 
different numbers of sub-bands. Therefore, in the complex electromagnetic environ-
ment where the signal cannot be known in advance, the ADS system is more valuable 
for application.

4.2 � Sub‑Nyquist sampling structure performance

The core device of the MWC system is the mixer, which is used to extend all sub-
bands undifferentiated to the baseband by the action of the mixing function, which is 
filtered by a low-pass filter and then the signal is sampled. Therefore, the mixer is the 
basis for the MWC to achieve sub-Nyquist sampling and is also the key for the MWC 
to be able to perform blind processing of RF signals appearing anywhere in the sens-
ing band.

The frequency of each code piece of the mixing function is equal to the Nyquist fre-
quency. Therefore, in order to achieve the modulation effect, the clock frequency con-
trolling the mixing function needs to reach the Nyquist rate, which is a challenge for 
the hardware implementation process of the sub-Nyquist sampling system. In order 

Fig. 12  Percentage of correct support recovery, when SNR=−5 dB, 0 dB, 10 dB, 25 dB and m = 60



Page 17 of 20Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:41 	

to reduce the clock frequency, the mixing functions are designed to be improved, and 
the performance of the improved four mixing functions in MWC systems and ADS 
systems is given in this section. The four mixing functions are independent of each 
other, two consecutive code pieces, four consecutive code pieces, eight consecutive 
code pieces.

The performance curves of the four modulation functions with different average sig-
nal-to-noise ratios for the number of sampling channels of 60 in the MWC system and 
the ADS system are given in Figs. 13 and 14. It can be seen that reducing the clock fre-
quency and extending the duration of the mixing function code slice makes the system 
performance degraded, especially for MWC systems, and in contrast, the ADS system 

Fig. 13  Percentage of correct support recovery in MWC, when m = 60

Fig. 14  Percentage of correct support recovery in ADS, when m = 60



Page 18 of 20Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:41 

proposed in this paper has better adaptability. The reason is that the MWC system 
requires randomness among the mixing functions, and when the clock frequency is dou-
bled, the randomness among the mixing functions decreases significantly, and the cor-
relation among the column vectors in the corresponding observation matrix increases, 
which directly affects the reconstruction of the subsequent signal support set. For the 
ADS system, the observation matrix is obtained by translation between the rows, and 
the column vectors are guaranteed to be somewhat uncorrelated, so the effect of clock 
frequency reduction is not as pronounced as MWC.

Figures 15 and 16 show the performance curves of the four mixing functions in the 
MWC system and the ADS system for an average signal-to-noise ratio of 0 dB and 

Fig. 15  Percentage of correct support recovery in MWC, when SNR=0 dB

Fig. 16  Percentage of correct support recovery in ADS, when SNR=0 dB
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for different numbers of sampling channels. The same conclusion can be drawn that 
decreasing the clock frequency leads to a decrease in system performance, which has 
a much greater impact on the MWC system than on the ADS system.

After reducing the clock frequency, the success rate of signal support set recon-
struction keeps increasing with the increase in the number of sampling channels in 
ADS system, while the increase in the number of sampling channels in MWC system 
has little effect on the system performance improvement. Therefore, the system per-
formance can be improved by increasing the sampling value in the ADS system, and 
the flexibility in obtaining the sampling value is the structural advantage of the ADS 
system.

5 � Conclusion
Face to the issue of spectrum scarcity, wideband spectrum sensing with sub-Nyquist 
sampling is considered as one of the effective means. In this paper, an advanced sub-
Nyquist sampling framework is proposed to simplify the multi-channel MWC system 
structure. Combined with the frequency shifting properties of the Fourier transform, 
the equivalent sub-Nyquist sampling values of multiple sampling channels are obtained 
by adding a frequency shifting module. The proposed structure can greatly reduce the 
number of hardware components, providing theoretical support for the sampling equip-
ment toward miniaturized and intelligent. The single-channel structure employs only 
one mixing function, getting rid of the design of the mixing function. Moreover, the 
proposed ARED algorithm no longer requires the a priori information of signal sparsity, 
which can better meet the requirements of the actual complex electromagnetic environ-
ment. Simulation results show that the ADS system can achieve the similar performance 
as MWC with more simplified system structure, and even higher than MWC in some 
cases.
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