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1  Introduction
Sampling a signal heavily depends on the prior information about the signal structure. 
For example, if one knows the signal of interest is band-limited, the Nyquist sampling 
rate is sufficient for exact recovery. Signals with most of their coefficients equal to zero 
are called sparse. It has been observed that sparsity is a powerful assumption that sig-
nificantly reduces the required number of measurements. The process of recovering a 
sparse signal from a small number of measurements is called compressed sensing (CS). 
In CS, the measurement vector is assumed to be a linear combination of the ground-
truth signal, i.e.,

where A ∈ R
m×N is called the measurement matrix, and x ∈ R

N is an unknown s-sparse 
signal, i.e., it has at most s nonzero entries or �x�0 ≤ s . Here, �·�0 is the ℓ0 norm which 

(1)y = Ax,
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counts the number of nonzero elements.1 It has been shown that O(s log(N
s
)) measure-

ments are sufficient to guarantee exact recovery of the signal, by solving the convex 
program:

with high probability (see [1, 2]).
Practical limitations force us to quantize the measurements in (1) as y = Q(A x) where 

Q : Rm → Am is a nonlinear operator that maps the measurements into a finite symbol 
alphabet A . It is an interesting question to ask: What is the result of extreme quantiza-
tion? [3] addressed this question: Signal reconstruction is still feasible using only one-bit 
quantized measurements. In one-bit compressed sensing, samples are taken as the sign 
of a linear transform of the signal y = sign(Ax) . This sampling scheme discards mag-
nitude information. Therefore, we can only recover the direction of the signal. Fortu-
nately, we can keep the amplitude information by using nonzero threshold. Thus, the 
new sampling scheme is y = [sign](Ax − τ ) where τ is the threshold vector. In our work, 
each element of τ is generated via τi ∼ N (0, 1) . While a great part of CS literature dis-
cusses sparse signals, most natural signals are dictionary-sparse, i.e., sparse in a trans-
form domain. For instance, sinusoidal signals and natural image are sparse in Fourier 
and wavelet domains, respectively [4–7]. This means that the signal of interest f ∈ R

n 
can be expressed as f = Dx where D ∈ R

n×N is a redundant dictionary with the con-
strain DDH = I2 and x ∈ R

N is a sparse vector. With this assumption, y = Af = ADx 
gives the measurement vector. A common approach for recovering such signals is to use 
the optimization problem

which is called ℓ1 analysis problem [5, 6].
In this work, we investigate a more practical situation where the signal of interest f  

is effective s-analysis-sparse which means that f  satisfies �DHf �1 ≤
√
s�DHf �2 . In fact, 

perfect dictionary sparsity is rarely satisfied in practice, since real-world signals of inter-
est are only compressible in a domain. Our approach is adaptive which means that we 
incorporate previous signal estimates into the current sampling procedure. More explic-
itly, we solve the optimization problem

where ϕ ∈ R
m is a vector of thresholds chosen adaptively based on previous estimations 

via Algorithm 1. We propose a strategy to find a best effective s-analysis-sparse approxi-
mation to a signal in Rn.

(2)P1 : min
z∈RN

�z�1 s.t. y = Az,

(3)[ P]1,D : min
z∈RN

∥∥∥DHz
∥∥∥
1

s.t. y = Az,

(4)min
z∈RN

∥∥∥DHz
∥∥∥
1
s.t. y := sign(Af − ϕ) = sign(Az − ϕ),

2  (D)H stands for the Hermitian of the matrix D

1  The used notation is introduced in Sect. 1.2.
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1.1 � Contributions

In this section, we state our novelties compared to the previous works. To highlight 
the contributions, we list them as below. 

1	 Proposing a novel algorithm for dictionary-sparse signals: We introduce an adap-
tive thresholding algorithm for reconstructing dictionary-sparse signals in case of 
binary measurements. The proposed algorithm provides accurate signal estimation 
even in case of redundant and coherent dictionaries. The required number of one-bit 
measurements considerably outperforms the non-adaptive approach used in [8].

2	 Exponential decay of reconstruction error: The reconstruction error of our algo-
rithm reduces exponentially when the number of adaptive stages (i.e., T) increases. 
To be more precise, we obtain a near-optimal relation between the reconstruction 
error and the required number of adaptive batches. Written in mathematical form, 
if one takes the output of our reconstruction algorithm by f T , then we show that 
�f T − f �2 ≈ O( 1

2T
) , where f  is the ground-truth signal and T is the number of 

stages in our adaptive algorithm (see Theorem 1 for more details).
3	 High-dimensional threshold selection: We propose an adaptive high-dimensional 

threshold to extract the most information from each sample, which substantially 
improves performance and reduces the reconstruction error (see Algorithm  1 for 
more explanations).

1.2 � Prior works and key differences

In this section, we review prior works about applying quantized measurements to CS 
framework [3, 8–13]. In what follows, we explain some of them.

The authors of [3] propose a heuristic algorithm to reconstruct the ground-truth 
sparse signal from extreme quantized measurements, i.e., one-bit measurements. 
In [9], it has been shown that conventional CS algorithms also work well when the 
measurements are quantized. In [10], an algorithm with simple implementation is 
proposed. This algorithm has less error in Hamming distance than the existing ones. 
Investigated from a geometric view, the authors of [11] exploit functional analysis 
tools to provide an almost optimal solution to the problem of one-bit CS. They show 
that the number of required one-bit measurements is O(s log2(n

s
)).

The work of [14] presents two algorithms for full (i.e., direction and norm) recon-
struction with provable guarantees. The former approach takes advantage of the ran-
dom thresholds, while the latter predicts the direction and magnitude separately. The 
authors of [12] introduce an adaptive thresholding scheme which utilizes a general-
ized approximate message passing algorithm (GAMP) [12] for recovery and thresh-
olds update throughout sampling. In a different approach, the work [13] proposes an 
adaptive quantization and recovery scenario making an exponential error decay in 
one-bit CS frameworks. The authors of [15] use an adaptive process to take meas-
urements around the estimated signal in each iteration. While [15] only changes the 
bias (mean) of the estimated signal, our algorithm also generates random dithers with 
adaptive variance. The variance value of thresholds initializes from an overestimation 
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of desired signal and is divided by a factor of 2 in each iteration. This adaptive thresh-
olding scheme forces the algorithm estimate to concentrate around the optimal solu-
tion and makes the feasible set smaller in each iteration (random part with reduced 
variance).

Many of the techniques mentioned for adaptive sparse signal recovery do not general-
ize (at least not in an obvious strategy) to dictionary-sparse signal. For example, deter-
mining a surrogate of f  that is supposed to be of lower complexity with respect to DH 
is non-trivial and challenging. We should emphasize that while the proofs and main 
parts in [13] rely on hard thresholding operator, it could not be used for either effec-
tive or exact dictionary-sparse signals. This is due to that given a vector x in the analysis 
domain3 RN , one cannot guarantee the existence of a signal f  in Rn such that DHf = x . 
Recently, the work [8] shows both direction and magnitude of a dictionary-sparse signal 
can be recovered by a convex program with strong guarantees. The work [8] has inspired 
our work for recovering dictionary-sparse signal in an adaptive manner. In contrast to 
the existing method [8] for binary dictionary-sparse signal recovery which takes all of 
the measurements in one step with fixed settings, we solve the problem in an adaptive 
multistage way. In each stage, regarding the estimate from previous stage, our algorithm 
is propelled to the desired signal. In the non-adaptive work [8], the error rate is poorly 
large, while in our work, the error rate exponentially decays with increased number of 
adaptive steps.

Notation. Here, we introduce the notation used in the paper. Vectors and matrices 
are denoted by boldface lowercase and capital letters, respectively. AT and AH stand for 
transposition and Hermitian of A , respectively. C and c denote positive absolute con-
stants which can be different from line to line. We use �v�2 =

√∑
i |vi|2 for the ℓ2-norm 

of a vector v in Rn , �v�1 =
∑

i |vi| for the ℓ1-norm and �v�∞ = maxi |vi| for the ℓ∞-norm. 
We write Sn−1 := {v ∈ R

n : �v�2 = 1} for the unit Euclidean sphere in Rn . For x ∈ R
n , 

we define xS as the sub-vector in R|S| consisting of the entries indexed by the set S.

2 � Method
In this section, we present the general procedure of our adaptive scheme in details. 
Our system model is built upon the optimization problem (4). A major part of this 
problem is to choose an efficient threshold ϕ ∈ R

m . To this end, we propose a closed-
loop feedback system (see Fig.  1) which exploits prior information from previous 
stages. The superscript (i) corresponding to an element represents the i-th stage of 
that element in the adaptive algorithm. Our adaptive approach consists of three algo-
rithms high-dimensional threshold generator ( HDTG ), adaptive sampling ( AS ) and 

x

DHf
f A(i)f sign A(i)f −ϕ(i)

)

ϕ(i)

→ D

DH ←
A + y

−

Fig. 1  Block diagram of adaptive sampling procedure

3  The domain in which the desired signal is being analyzed due to having a particular structure, e.g., sparsity.
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adaptive recovery ( AR ). HDTG specifies the method of choosing the thresholds based 
on previous estimates. AS takes one-bit measurements of the signal by using HDTG 
and returns the one-bit samples and corresponding thresholds. Lastly, AR recovers 
the signal given the one-bit measurements. We provide a mathematical framework to 
guarantee our algorithm results in the following.

Theorem 1  (Main theorem) Let r, cǫ , γ , ǫ > 0 . Consider f ∈ R
n as the desired effective 

s-analysis-sparse signal with �f �2 ≤ r and A ∈ R
m×n is the measurement matrix with 

standard normal entries where m is the total number of measurements divided into T 
stages. Assume that

be the sampling and recovery algorithms introduced later in Algorithms  2 and  3, 
respectively, where ϕ is determined by Algorithm  1. Then, with probability at least 
1− γ exp(−cǫm

T
) over the choice of ϕ and A , the output of Algorithm 3 satisfies

1 � Proof
See Appendix 5.1. �

A remarkable note is that if we only consider one stage, i.e., T = 1 , the exponential 
behavior of our error bound disappears and reaches the state-of-the-art error bound 
[8, Theorem  8]. In fact, the results of [8] are a special case of our work when the 
thresholds are non-adaptive. The term adaptivity is related to the threshold updating, 
and the measurement matrix ( A ) is fixed.

In what follows, we provide rigorous explanations about our proposed algo-
rithms 1, 2 and 3 in three items. 

1.	 High-Dimensional Threshold: Our algorithm for high-dimensional threshold selec-
tion is given in Algorithm 1. The algorithm output consists of two parts: determin-
istic (i.e., Af i ) and random (i.e., τ ∈ R

q ) . The former transfers the origin to the pre-
vious signal estimate ( f i ), while the latter creates measurement dithers from the 
origin. (The variance parameter σ 2 controls the threshold distance from f i. ) 

(5)[y,ϕ] = AS(A, f ,D, r,T ),

(6)f T = AR(A,D, y,ϕ, r,T )

(7)�f − f T�2 ≤ ǫr21−T .
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2.	 Adaptive Sampling: Our adaptive sampling algorithm is given in Algorithm  2. To 
implement this algorithm, we need the dictionary D ∈ R

n×N , the measurement 
matrix A ∈ R

m×n , linear measurement Af  and an over estimation of signal power  
r ( 

∥∥f
∥∥
2
≤ r ). At the first stage, we initialize signal estimation to zero vector. We 

choose T stages for our algorithm. At the i-th stage, the measurement matrix A(i) is 
taken from the i-th row subset (of size q :=

⌊
m
T

⌋
 ) of A . The adaptive sampling pro-

cess consists of four essential parts. First, in step 2 of the pseudocode, we generate 
the high-dimensional thresholds using Algorithm  1 by the parameters σ 2 = 21−ir 
and f i . Second, we compare the linear measurement block A(i)f  with the thresh-
old vector ϕ(i) and obtain the sample vector y(i) (step 3 of Algorithm 2). Third, we 
implement a second-order cone program (steps 4 and 5) to find an approximate for 
f  . However, this strategy does not often lead to an effective dictionary-sparse sig-
nal. So, in step 6, we devise a strategy to find a low-complexity approximation of f  
with respect to operator DH . In other words, we project the resulting signal onto the 
nearest effective s-analysis-sparse signal. We refer to the third part of the adaptive 
sampling algorithm (steps 4–6) as single-step recovery (SSR). The estimated signal 
at each stage ( f i ) builds the deterministic part of our high-dimensional threshold in 
step 2. Finally, Algorithm 2 returns binary vectors {y(i)}Ti=1 and the threshold vectors 
{ϕ(i)}Ti=1 to the output. 

3.	 Adaptive Recovery: In the recovery procedure (Algorithm 3), we need the diction-
ary D , the measurement matrix A , binary measurements vector y , high-dimensional 



Page 7 of 13Beheshti et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:49 	

threshold vector ϕ and an upper norm estimation of signal r. In the adaptive recovery 
algorithm, we first divide the inputs ( y and A ) into T blocks (i.e., y(i) and A(i) ). Then, 
we simply implement SSR on each block. The output of SSR in the last stage is the 
final recovered signal (i.e., f T).

2.1 � Intuitive description of our algorithms

We provide here an example to clarify how our algorithm works. In this example, we 
consider a 2D point denoted by point DS (Fig. 2a) as the desired signal and depict the 
algorithm procedure for two consecutive iterations. At the first iteration of the algo-
rithm, we do not have any estimation of the desired signal. Therefore, we set the first 
estimate to zero (equivalently [0, 0, 1]T in the 3D domain or point P in Fig. 2a). We gen-
erate high-dimensional thresholds and take four measurements (step 2 of AS ). These 
measurements are equivalently four hyperplane crossing the center of the hemisphere 
(Fig. 2b, step 3 of AS ). In the next step, we implement the augmented random hyper-
plane tessellation on the hemisphere and compute the first estimate of the desired sig-
nal and project it to the signal domain (steps 3–6 of AS ). In this example, we consider 
the point B as the first estimate ( f 1 in first iteration of AS ). In the next iteration, we 
transfer the hemisphere to the adjacent point B and reduce the radius by a factor of two 
(Fig. 2c). The point B is the high-dimensional threshold of the second iteration of the 
algorithm. We perform our algorithm with four measurements. The main advantage of 
the reduction in the radius of the hemisphere (equivalently the variance argument of the 
threshold generator) is to get more precise measurements in the neighborhood of the 
desired signal. In the second stage of the algorithm, we take measurements (or equiva-
lently hyperplanes) around the threshold, leading to locate measurements more concen-
trated around the desired signal. The intersection of hyperplanes and signal space in this 

Fig. 2  3D illustration of random hyperplane tessellation for the first example of intuitive description
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example creates a new feasible set border which is depicted by the red line in Fig. 2d. In 
this intuitive description, we tried to clarify the random hyperplane tessellation usage in 
our proof sketch.4.

In the second example, we follow our algorithm steps in a 2D example and compare it 
with the non-adaptive algorithm. In Fig. 3a, we perform the non-adaptive algorithm for 
eight measurements. It is obvious that the solid lines ( L5 − L8 ) or equivalently measure-
ments do not have any impact on the final result. However, if we get these measurements 
in two iterations (i.e., stages) of the adaptive algorithm, the second bunch of samples 
( L5 − L8 in Fig. 3(b)) is more concentrated toward the desired signal ( f ).

3 � Experimental results and discussion
In this section, we investigate the performance of our algorithm and compare it with 
the two previous one-bit dictionary-sparse recovery given by [8]. The first algorithm 
solves linear programming optimization (LP) [8, Subsection   4.1], and the second 
algorithm solves a second-order cone programming (CP) optimization [8, Subsec-
tion   4.2]. First, we construct a matrix where its columns are drawn randomly and 
independently from Sn−1 . Then, the dictionary D ∈ R

n×N  ( N = 1000, n = 50 ) is 
defined as an orthonormal basis of this matrix. Then, the signal f  is generated as 
f = Bc where B is a basis of null(D

S
) and c is drawn from standard normal distribu-

tion. Here, S  is used to denote the complement of the support of DHf  . The elements 
of A are chosen from i.i.d. standard normal distribution. We set r = 2�f �2 , σ = r and 
the number of stages to T = 10 . Define the normalized reconstruction error as �f−f̂ �2

�f �2  
( f̂  denotes the estimated signal in each algorithm, and it is represented by f T  ) espe-
cially in our algorithm. The results in Fig.  4a are obtained by implementing Algo-
rithms 2 and  3 100 times and taking the average of the normalized reconstruction 
error. As it is clear from Fig. 4a, LP algorithm outperforms CP by 2 dB on average. 
Our algorithm with few measurements behaves slightly weaker than others. The pro-
posed approach requires a minimum number of measurements to act perfectly. The 
main reason for this behavior is our thresholding scheme. The variance of dithers is 

Fig. 3  This figure compares the sampling procedure of the non-adaptive algorithm (a) with our adaptive 
algorithm (b)

4  We prepare figures by means of GeoGebra tools, and the 3D model is available by clicking here
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reduced in each iteration (i.e., stage). We also take the measurements around the pre-
vious estimate of the desired signal. On the contrary, the CP and LP algorithms only 
reduce the signal space uniformly. When the number of measurements is below the 
required bound, our first estimate gets away from the desired signal, so the adaptive 
algorithm tries to find it around a false estimate. However, it seems that there is a 
phase transition behavior in our algorithm when the number of measurements 
increases. In fact, after a certain number of measurements, our proposed algorithm 
substantially outperforms both LP and CP. Table 1 shows the average execution time 
(CPU time) of the three algorithms per the specified number of measurements.

In the second experiment, we examine the performance of our algorithm for multiple 
degrees of sparsity. Figure 4b shows the result for s = 20, 30, 40. (Other parameters are 
assumed similar to the first experiment.) As it is clear from the figure, by increasing the 
sparsity level, the accuracy is decreased.

In the third experiment, we consider the Shepp–Logan phantom image as the ground-
truth signal. Since the required number of measurements in one-bit CS is significantly 
larger than that of the conventional CS (see, e.g., [13, Section 5]), we split the picture into 
multiple blocks of size 32× 32 and process each block separately, merely due to compu-
tational complexity reasons. This block processing allows us to implement the algorithm 
in multiple threads and reduce the execution time. We use a redundant wavelet diction-
ary and 105 Gaussian measurements to recover each block. We evaluate the reconstruc-
tion quality of final result in terms of the peak signal-to-noise ratio (PSNR) given by

Table 1  Average execution time (millisecond)

Sparsity (s) 20

Number of measurements (m) 4500 20500 29500

LP 13.113 71.320 75.165

CP 4.088 17.325 10.370

Out algorithm 21.841 29.999 16.011
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Fig. 4  Reconstruction of a dictionary-sparse signal x ∈ R
50 in the dictionary D ∈ R

50×1000 . Both figures 
show the reconstruction error averaged over 100 Monte Carlo simulations. Image a compares the 
performance of the algorithms in s = 20 . Image b examines the performance of our algorithm over different 
sparsity levels
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where X and X̂ are the true and estimated images. As shown in Fig. 5, LP (Fig. 5b) and 
CP (Fig. 5c) algorithms clearly fail with poor performances, but as it is evident in Fig. 5d, 
the output of our algorithm is almost similar to the desired picture.

4 � Conclusion
This paper proposed a one-bit compressed sensing algorithm that recovers dictionary-
sparse signals from binary measurements by adaptively exploiting the inherent infor-
mation in the sampling procedure. This scheme helps to reduce the number of needed 
measurements substantially. In addition, our algorithm exhibits an exponential decaying 
behavior in the reconstruction error. The proof approach is based on geometric theories 
in the high-dimensional estimation. In this work, we used geometric intuition to explain 
our result, which also can be used in other areas of signal processing. We believe our 
analysis can be extended to the multi-bit setting. We used a fixed reduction pattern in 
the thresholds dithers throughout this work. We believe that this reduction can be cho-
sen smartly by extracting the geometric features in each algorithm step.

5 � Proofs
5.1 � Proof of Theorem 1

1 � Proof

By induction law, we show that

(8)PSNR
(
X , X̂

)
= 20 log10

(
�X�∞256

�X−X̂�F

)
,

(9)�f − f i�2 ≤ ǫr21−i

(a) Ground truth image (b) LP: PSNR = 12.02 dB

(c) CP: PSNR = 11.98 dB (d) Our algorithm: PSNR =

118.25 dB

Fig. 5  Simulation results for reconstruction of the Shepp–Logan phantom image (phantom(256) in MATLAB) 
in which the picture split to 32× 32 blocks and each algorithm get m = 10

5 measurements per block
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holds with high probability for any i ∈ {1, . . . ,T } . Consider the first step, i.e., i = 1 in 
Algorithm 2. At this step, our initial estimate f 0 is equal to 0 . Thus, the output of Algo-
rithm 1 only contains the random part of high-dimensional thresholds (step 2 of Algo-
rithm 2). Then, we obtain f 1 by using steps 4–9 of Algorithm 2 (except that we assume 
σ = r in Algorithm 2 and q =

⌊
m
T

⌋
 ). As a result, to verify �f − f 1�2 ≤ ǫr , we use [8, The-

orem 8] to prove our result: � �

Theorem 2  [8, Theorem 8] Let ǫ, r, σ > 0 , let

and let A ∈ R
m×n be populated by independent standard normal random variables. Fur-

thermore, let τ1, . . . , τm be independent normal random variables with mean zero and 
variance σ 2 that are also independent from A . Then, with failure probability at most 
γ exp(−c′mǫ2r2σ 2

(r2+σ 2)2
) , any signal f ∈ R with �f �2 ≤ r , �DHf �1 ≤

√
sr and observed via 

y = sign(Af − τ ) is approximated by

with error

Now, suppose that the result (9) holds in the (i − 1)-th step, i.e.,

Consider i-th stage of Algorithm  2 where the high-dimensional thresholds and the 
measurements are obtained as

By substituting (12) in (13), we reach:

Since f  is effective s-analysis-sparse with �f �2 ≤ 1 , we have that 
�DH f �1 ≤

√
s�f �2 . Further, the output of Algorithm  2 at the (i − 1)-th stage sat-

isfies, i.e., �DH f i−1�1 ≤
√
sr , and it then holds that the signal f − f i−1 satisfies 

�DH (f − f i−1)�1 ≤ �DH f �1 + �DH f i−1�1 ≤ 2
√
sr =

√
22i−2ǫ−2sǫ2−ir :=

√
s′r′ . Now, 

by leveraging the assumption in (11), we can directly apply Theorem 2 to this signal. In 
simple words, we set

m ≥ C
(
r
σ
+ σ

r

)−6
(

r2

σ 2 + 1
)
ǫ−6s ln( eN

s
),

f CP = arg min
z∈Rn

∥∥∥DHz
∥∥∥
1
s.t. y = sign(Az − τ ), �z�2 ≤ r,

(10)�f − f CP�2 ≤ ǫr.

(11)�f − f i−1�2 ≤ ǫr22−i.

(12)ϕ
(i) ← HDTG(A(i), q, 21−ir, f i−1),

(13)y(i) = sign
(
A(i)f − ϕ

(i)
)
.

(14)y(i) = sign
(
A(i)(f − f i−1)− τ

(i)
)
.
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in Theorem 2. As a result, by exploiting this theorem and some simplifications, we shall 
have that

with probability at least 1− γ exp(−c′ǫq) where in the latter expression we used ǫ1 = 1
4 

and �i is the output vector of the optimization problem in step 4 of Algorithm 2. c′ǫ is a 
certain constant dependent on ǫ . Now, suppose that (16) occurs. Consider

After applying step 6 of Algorithm 2, we obtain f i that has the property

Then, we have

Finally, by using (16), (17), and the fact that �f i − f tmp�2 ≤ �f − f tmp�2 (step 6), the lat-
ter equation becomes

Since we consider T stage in Algorithms 2 and 3, we reach the error bound:
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(15)

f ← f − f i−1,

r ← ǫ22−ir,

σ ← ǫ22−ir,

s ← s′.

(16)
∥∥f − f i−1 −�i

∥∥
2
≤ ǫ1r

′ := ǫr2−i,

(17)f tmp = f i−1 +�i.

�DHf i�1 ≤
√
sr.

(18)�f − f i�2 ≤ �f − f tmp�2 + �f tmp − f i�2.

(19)�f − f i�2 ≤ ǫ21−ir

(20)
∥∥f − f T

∥∥
2
≤ ǫr21−T .
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