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1  Introduction
Recently, millimeter wave (mmWave) cellular system is developing rapidly because of 
the large available bandwidth at mmWave frequencies. Large numbers of antennas are 
employed at both the base station (BS) and the user equipment (UE), which is called the 
massive multiple-input multiple-output (MIMO) systems. In order to realize the poten-
tial gains of massive MIMO and obtain the beamforming gains and the spatial multiplex-
ing gains, the channel state information (CSI) matrix needs to be known at transmitter 
including the BS and the UE, and the accuracy of CSI is crucial for the precoding per-
formance of the massive MIMO systems [1]. The CSI feedback overhead is increasing 
with the number of antennas, which makes the transmission of the CSI matrix difficult, 
especially in the frequency division duplex (FDD) system [2, 3].

For the uplink, the UE sends the pilot signal to the BS so that the BS can estimate 
the CSI accurately. In the time division duplex (TDD) systems, the uplink and down-
link use the same frequency to transmit the signal. Therefore, the BS can obtain the 
downlink CSI through the reciprocity between uplink and downlink. As for the FDD 
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systems, the UE needs to estimate the downlink CSI matrix and feeds it back to the 
BS, which is impossible for the UE because of the high dimension of the CSI matrix.

Therefore, many researchers are dedicated to reducing the overhead of CSI feed-
back. Deep learning-based methods have recently made outstanding strides in CSI 
matrix feedback. In [4], a deep neural network (DNN) is proposed to obtain the 
mapping of the downlink CSI matrix and the low-rank matrix. The CSI matrix is 
recovered according to the low-rank matrix at the BS. In [5], an encoder–decoder 
structure-based convolutional neural network (CNN) is proposed to compress and 
recover the CSI matrix at the UE and the BS. In [6], a CNN-based feedback scheme 
called AnalogDeepCMC is proposed to map the downlink channel to uplink CSI and 
to reconstruct the downlink channel.

The above methods all reduce the CSI feedback bits to a certain extent, but the 
number of feedback bits is still not negligible. In order to further reduce the feedback 
overhead, a lot of research has been devoted to design the limited feedback-based 
codebook that is shared between the transmitter and the receiver [7]. The UE only 
needs to select the best codeword from the codebook and feeds back the index of the 
corresponding codeword to the BS. The design of the codebook is extremely impor-
tant because it directly determines the efficiency of precoding. The discrete Fourier 
transform (DFT)-based codebook is proposed in [8], in which the precoding vector 
is actually the column vector of the DFT matrix. In [9], an improved algorithm based 
on the DFT codebook is proposed to ensure the orthogonality between each code-
word, thereby improving the performance of the DFT-based codebook. The DFT-
based codebook is considered as a compact and efficient codebook design, but it is 
only suitable for uniform linear arrays (ULA). In fact, the codebook design should 
be able to accommodate complex wireless channels and different antenna arrays. In 
codebook-based algorithms, transmitter selects the most appropriate codeword to 
transmit the signal according to the current channel, which can be regarded as a clas-
sification matching problem. Clustering algorithm is used for channel classification 
because of its ability to process massive MIMO channel. In [10], the clustering algo-
rithm processed a large amount of channel data and outputs the corresponding cen-
troids for codebook design.

Inspired by the above articles, we propose a novel codebook design method combin-
ing deep learning and clustering algorithm, which can take advantage of both state-of-
the-art technologies. We first train two different CNNs to compress the CSI matrix into 
channel vector and to recover the channel vector back into matrix, called CNN1 and 
CNN2, respectively. We use the well-trained CNN1 to compress a large number of chan-
nel matrices and obtain the channel vectors. Subsequently, the clustering algorithm is 
applied to cluster the channel vectors into K = 2B centroids, where B is the number of 
feedback bits. The sum of the distance between the centroid and the channel vectors in 
the corresponding cluster is minimal. The well-trained CNN2 recovers the K centroids 
into the matrices, and the output of CNN2 is our proposed codebook.

The remaining content of this article is structured as follows: Sect. 2 introduces the 
system model and the traditional DFT-based codebook. Section  3 describes the pro-
posed CNN and clustering-based codebook. The simulation results and analysis are 
given in Sect. 4, and Sect. 5 provides the conclusions.
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2 � System model and traditional DFT‑based codebook method
In this paper, we consider a downlink single-cell massive MIMO system with Nt antennas 
at the BS communicating with a single-antenna user. The system is operated in orthogonal 
frequency division multiplexing (OFDM) over Nc subcarriers. The received signal at the nth 
subcarrier can be expressed as:

where n = 1, 2, . . . ,Nc,hn ∈ C
Nt×1 denotes the channel vector, (·)H represents Hermi-

tian transpose, wn ∈ C
Nt×1 is the precoding vector and �wn�2 = 1 , �·�2 represents the 

Frobenius norm, sn ∈ C is the transmitted signal, zn ∈ C is the complex Gaussian noise 
with zero mean and variance σ 2

z .
In massive MIMO systems, the accuracy of channel vector hn is critical for the precoding 

[11]. In FDD systems, the UE needs to feed the estimated hn to the BS directly to calculate 
the precoding vector wn of the downlink [12]. Taking into account all subcarriers, there are 
NtNc elements to feed back in this situation, which is enormous in massive MIMO systems. 
Hence, codebook-based precoding schemes became a more practical method thanks to its 
minimal feedback overhead [1].

DFT-based codebook is considered as an effective design for spatially correlated chan-
nels. In DFT-based precoding schemes, the precoding vector wn is chosen from the code-
book C = [c1, c2, c3, . . . , cK ] , where K = 2B is the number of codewords that the codebook 
contains, B is the number of feedback bits per subcarrier, ci can be expressed as [9]:

where i = 0, 1
K , 2

K , . . . , N−1
K  , and (·)T represents transpose.

DFT-based codebook design is independent of hn , which makes it only applicable to 
highly correlated channels [13]. Besides, there are Nc subcarriers, which means that the 
number of total feedback bits is NcB . To solve the above problem, we propose a novel code-
book design to make the codebook more suitable for different CSI while also greatly reduc-
ing the amount of feedback bits.

3 � Proposed method based on CNN and clustering algorithm
In this section, we introduce the main idea of the proposed codebook design in detail. First, 
we convert the codebook design into an optimization problem. Then, we train the CNNs 
and exploit clustering algorithms to address the optimization problem.

3.1 � Problem formulation

Rewrite (1) in a vector form as:

where y = [y1, y2, . . . , yNc ]T , s = [s1, s2, . . . , sNc ]T , and z = [z1, z2, . . . , zNc ]T 
are all Nc × 1 vectors, H = [h1,h2, . . . ,hNc ]H ∈ C

Nc×Nt is the CSI matrix, and 
W =

[
w1,w2, . . . ,wNc

]
∈ C

Nt×Nc is the precoding matrix.
The achievable rate of the nth subcarrier can be expressed as [14]:

(1)yn = hHn · wn · sn + zn

(2)ci =
1

√
Nt

[
1, e−j2π ·1·i, e−j2π ·2·i, . . . , e−j2π ·(Nt−1)·i ]T

(3)y = HWs+ z
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where γ is signal–noise ratio (SNR). Consequently, the total achievable rate can be 
obtained by summing up the achievable rate of all subcarriers as

where [·]n,n represents the element at nth row and nth column in the matrix.
From (5), it can be seen that the achievable rate is a function of precoding matrix W , i.e.,

The main goal of precoding is to improve the achievable rate R by designing W . To 
reduce the feedback overhead, we design W instead of wn in this paper, i.e., we chose 
W from the codebook C = [C1,C2,C3, . . . ,CK ] , where Ci, i = 1, 2, . . . ,K  is the Nt × Nc 
codeword shared at the UE and the BS. Figure 1 shows the block diagram of the code-
book-based downlink precoding scheme. The UE estimates H and selects the codeword 
from the codebook C that can maximize the sum achievable rate, i.e.,

Then, the UE feeds back the index of corresponding codeword to the BS. Compared with 
using the DFT-based codebook, our proposed scheme can reduce the number of feed-
back bits from NcB to B.

Now the problem remaining is how to design the codebook C . In this paper, we design C 
to maximize the average achievable rate, i.e.,

where E[·] means the mathematical expectation.
Define the distance between H and Ci as

(4)Rn = log2

(
1+ γ |hHn wn|2

)

(5)

R =
Nc∑

n=1

log2

(
1+ γ

∣∣hHn wn

∣∣2
)

=
Nc∑

n=1

log2

(
1+ γ

∣∣[HW]n,n
∣∣2
)

(6)R = f (W)

(7)W = arg max
Ci∈C

(
Nc∑

n=1

log2

(
1+ γ

∣∣(HCi)n,n
∣∣2
))

(8)max
C

E[R]

Fig. 1  Overview of the proposed limited feedback massive MIMO systems
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where ci,n is the nth column of Ci . Through simulations, we observe that the smaller the 
d(H,Ci) is, the higher the E[R] is. Therefore, we transfer the optimization problem (8) to 
minimize the average distance, i.e.,

In the next subsection, we will introduce our proposed codebook design based on the 
above optimization criteria.

3.2 � Codebook design

In our proposed codebook design, two different CNNs, i.e., CNN1 and CNN2, are used 
to compress the CSI matrices and reconstruct the channel matrices. In the offline phase, 
we created the channel dataset under the COST 2100 channel model [15] as the input 
of CNN1, which is applied to extract the characteristics of numerous channel matrices 
and outputs the channel vectors. The purpose of CNN2 is to restore the channel vector 
to channel matrix which has the smallest distance from the CSI matrix. After the train-
ing procedure, we exploit the clustering algorithms to cluster the output of CNN1 and 
obtain several channel vectors, i.e., centroids, whose sum distance is minimum to the 
real channel vectors. As mentioned before, in order to maximize the total rate, we need 
to minimize the distance between the codeword and the real channel. Therefore, we use 
CNN2 to reconstruct the centroids and the output of CNN2 is the final codebook. The 
offline training and clustering is shown in Fig. 2a. The offline process is done at BS. The 
powerful processing capability of BS ensures the efficiency of the offline process.

In the actual online estimation, CNN1 at the UE first compresses the CSI matrix into a 
channel vector, which matches the nearest centroid. The UE feeds back the index of the 
centroid to the BS for selecting the corresponding codeword. Figure 2b shows the online 
codeword selection and feedback process.

In Sect. 3.2.1, we will introduce the structure and the training of CNN1 and CNN2. 
Section 3.2.2 introduces the clustering algorithm used in this paper.

3.2.1 � CNNs’ structure and training

Considering the sparsity of massive MIMO channels in the angular–delay domain, 
we first use 2D-DFT to convert the spatial frequency domain into the angular–delay 
domain, aiming to reduce the complexity and difficulty of feature extraction [16, 17]. 
Specifically, we obtain H as

where [A][1:Ns],: denotes the first Ns rows of the matrix A ( Ns < Nt),

(9)d(H,Ci) =
E
[∑Nc

n=1 ||hn − ci,n||2
]

E
[∑Nc

n=1 ||hn||2
]

(10)max
Ci

E[R] ⇐⇒ min
Ci∈C

E[d(H,Ci)]

(11)H = [H̃][1:Ns],:

(12)H̃ = DtHDa
H
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Dt and Da are Nc × Nc and Nt × Nt DFT matrices, respectively. It can be found that 
most elements of H̃ are almost zero and only the first Ns rows have large components 
[5]. By choosing the first Ns rows of H̃ , we can reduce the dimension of datasets and the 
training time.

We applied the encoder and decoder of CsiNet [16, 17] to build CNN1 and CNN2, 
respectively. The architectures are shown in Fig. 3a, in which the values A1 × A2 × A3 
represent the length, width, and the number of feature maps.

Since CNN can not handle complex number, the real and imaginary parts of H 
are processed separately in the input layer. After the input layer, the convolution 
layer with batch normalization (BN) is used to extract channel feature and get the 
feature maps, where the size of convolution kernel is 3× 3 and the activation func-
tion is LeakyReLU. Then, the output feature maps are reshaped into a 2048× 1 

Fig. 2  a Offline codebook design. b Online codeword selection

Fig. 3  a Illustration of CNN1 and CNN2. b Architecture of RefineNet
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vector x , which is a real-valued channel vector. It should be pointed out that x is 
inputted to the full connection (FC) layer in CsiNet, whose dimension is further 
compressed to L under different compress rate rc ( rc = L/2ÑcNt ). Here, different 
from CsiNet, we retain all the elements of x to ensure that the subsequent recon-
structing can get more accurate results. The most important component of CNN1 
is a convolution layer with a convolution kernel size of 3× 3 . The time complex-
ity is O

(
322 × 32 × 2× 2

)
= O(36864) ≈ O(3.7× 104) , and the space complexity is 

O
(
38+ 128+ 322 × 2

)
= O(2138).

Once the channel vector is obtained, CNN2 is applied to map it back into the chan-
nel matrix H . First, we input the x to a FC layer that reshapes it into the original size 
of H . After that, two RefineNet blocks are applied to reconstruct the channel matrix, 
whose architecture is shown in Fig. 3b. The first two layers of the RefineNet block are 
convolutional layers with the convolution kernel size of 3*3, which generate 8 and 
16 feature maps, respectively. The final layer of the RefineNet block is a convolution 
layer, where the convolution kernel is 3*3 and the activation function is Sigmoid. As 
the last layer of the decoder, a convolution layer with a convolution kernel of 3*3 is 
applied to obtain the final refining output Ĥ.

The training procedure of CNN1 and CNN2 is the same as CsiNet, which is the 
end-to-end learning. The loss function of the ith patch is mean square error (MSE), 
which is calculated as follows:

where T is the number of training samples in the ith patch.

3.2.2 � Feature extraction and K‑means++‑based clustering algorithm

Clustering algorithm is a classic unsupervised machine learning algorithm. The purpose 
of clustering algorithm is to separate the sample points of each category and output a 
centroid for each category. For the codebook design, it is impossible to design the code-
word for every CSI matrix. Therefore, we use the clustering algorithm to aggregate chan-
nel vectors with similar channel characteristic and design codeword for each category. 
We create another channel dataset for the codebook design under the same channel 
model, and we use CNN1 to extract the feature of dataset and obtain the channel vec-
tors X = {x1, x2, x3, . . . , xP} (where P is the number of CSI matrices used for codebook 
design) as the input of the clustering algorithms. In other words, we cluster the channel 
vectors X  into K clusters and obtain centroids M to design the codebook.

K-means is one of the most commonly used algorithms, and K-means++ is opti-
mized on the basis of K-means. Different from K-means algorithm, where the initial 
centroids are randomly obtained, K-means++ algorithm has a more complex initiali-
zation. K-means++ algorithm can be divided into two stages: the determination of 
the initial centroids and the update of the centroids.

The determination of the initial centroids M̃ = {m̃1, m̃2, m̃3, . . . , m̃K ]} requires 
three steps:

(13)MSE =
1

T

T∑

j=1

||Ĥj −Hj||
2
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Step 1 We choose the first initial centroid m̃1 from X  randomly.
Step 2 For each xi(i = 1, 2, . . . ,P) in X  , calculate the sum distance between them from 

the existing initial centroids:

where t < K  is the number of initial centroids we already gained, and 
d(xi, m̃j) = ||xi − m̃j||2 . Then, we calculate the probability that xi is chosen as the next 
initial centroid according to:

choose xi with the highest probability as the next initial centroid m̃t+1.
Step 3 Repeat Step 1 and Step 2 until we obtain K initial centroids.
Through the above three steps, we obtain the initial centroids and the distance 

between them is as far as possible. It can solve the problem that the random selection of 
the initial centroids affects K-means heavily.

After getting the initial centroids, both K-means and K-means++ use the fol-
lowing steps to update the initial centroids and obtain the final centroids 
M = {m1,m2,m3, ...,mK } . According to the nearest neighbor rule, xi will be associated 
into qth centroid, while the distance from mq(q = 1, 2, . . . ,K ) to xi is smallest. It can be 
formulated as

(14)D(xi) =
t∑

j=1

d(xi, m̃j)

(15)P(xi) =
D(xi)∑P
i=1 D(xi)

(16)q = arg min
q=1,2,...,K

d(xi,mq)
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After each xi in X  is attributable to the corresponding centroid, the channels vectors X  
can be divided into K clusters. We update the centroids of K clusters according to the 
following formula:

where Clusterq is the qth cluster, xq,i is the channel vector assigned to Clusterq , 
l = 1, 2, . . . ,K  is the number of channel vectors that Clusterq contains. Repeat until the 
centroids and the channel vectors in each cluster keep unchanged. Finally, we get the 
output of clustering algorithms, the centroids M which are reconstructed into the code-
book by CNN2.

The whole procedure is summarized in Algorithm 1.

4 � Simulation results and discussion
In this section, we discuss the difference of clustering algorithms and the influence of K 
value selection on our proposed codebook design. Besides, we compare the proposed 
codebook design with the traditional DFT codebook on the sum available rates and feed-
back bits. We also compare the sum available rate and feedback bits between our pro-
posed codebook-based method and the CSI feedback-based method, taking CsiNet as an 
example.

In OFDM system, there are Nc = 1024 subcarriers. We take Ñc = 32, and the size of 
the CNNs input layer is 32*32. There are Nt = 32 antennas at the BS, and the antennas 
adopt uniform linear array (ULA) arrangement.

Figure  4 shows the achievable rates of the proposed codebook design with different 
clustering algorithms: K-means and K-means++. It is noticeable that the achievable 
rates increase as the SNR increases from -10dB to 20 dB. As we mentioned above, the 
difference between the two clustering algorithms lies in the different selection method of 
the initial centroids. Compared with the former random selection, K-means++ adopts 
a more reasonable selection method to avoid falling into the local optimal solution. The 
simulation results also show that the K-means++ algorithm can achieve higher reach-
able rates when the number of centroid is the same at higher SNR. Since clustering is 
carried out at the BS end of the offline training stage, there will be no additional increase 
in computational complexity. In addition, we can see that the achievable rates increase 
as the number of K regardless of whether the aggregation algorithm is K-means or 
K-means++. It means that in our proposed algorithm, the number of codewords plays 
a more important role, affecting the total rate more than the choice of clustering algo-
rithm. In other words, if we want to increase the total achievable rate, increasing the 
number of codewords would be our first choice in practice.

Figure 5 shows the comparison between our proposed codebook with the traditional 
DFT codebook. Here, we choose the K-means++ algorithm and select K=2048 code-
words to improve the system performance to the highest. We also compare the sum 
achievable rates when the BS knows the current CSI matrix. It can be seen that with the 
increase in SNR, our proposed codebook has a greater advantage over the traditional 
DFT codebook. At the same time, the performance of our method is comparable to the 

(17)mq = arg min
mq∈Clusterq

l∑

i=1

d(mq , xq,i)
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perfect CSI when the SNR is as low as -20dB to -5dB. In application, we can change the 
value of K to meet different requirements, such as fewer feedback bits or higher trans-
mission rates.

In Fig. 6, we compared our proposed codebook with CsiNet under different rc and the 
traditional DFT codebook. It is obvious that the performance of CsiNet and the pro-
posed codebook is much better than that of the traditional DFT codebook. Meanwhile, 
the achievable rates of CsiNet decrease as rc getting bigger on account of the feedback 
bits decrease. Our method sacrifices a small part of the available rates, which greatly 
reduces the number of feedback bits. Therefore, CsiNet still performs better than our 
proposed method even when the compression rate is pretty high.
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The feedback bits of different algorithms are summarized in Table 1, where D is the 
quantization bits. Although CsiNet reduces the feedback bits under different compact 
ratio, the feedback overhead is still huge compared to the codebook-based algorithm 
we proposed. When rc = 1/16 , D = 3 , andK = 1024 , the feedback bits of CsiNet is 
384 and the feedback bits of our proposed codebook is 10.

5 � Conclusions
In this paper, we proposed a CNN and clustering-based codebook design for massive 
MIMO system, which significantly reduces the feedback overhead compared with the 
CSI feedback-based method. The proposed codebook design uses the clustering algo-
rithm to classify the channels and obtain the centroids, whose sum distance is mini-
mized from the real channel. The CNNs are applied to compress the CSI matrices and 
recover the centroids into the codewords, respectively. The simulation results show 
that the achievable rate of our codebook is much higher than that of traditional DFT-
based codebook. While reducing the feedback bits, our proposed codebook does not 
sacrifice too much transmission rate compared with the CSI feedback-based method.
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Table 1  Feedback bits of proposed codebook and CsiNet

K-means/K-means++ CsiNet

K Feedback Compact ratio Feedback

16 4 1/64 64*D

64 6 1/16 128*D

2048 11 1/4 512*D
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