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1 Introduction
By adopting the simultaneous multi-beam (SM) working mode and exploiting the 
orthogonal signals, the collocated multi-input multi-output (C-MIMO) radar possesses 
the advantages such as waveform diversity [1], virtual aperture extension [2], and simul-
taneous multi-function [3], and has attracted much attention in recent years [1–4]. In 
practice, the limited resources are often the main factor restricting radar performance 
[5]. Therefore, in order to take full advantages of the C-MIMO radar system, the finite 
system resource should be efficiently managed.

Power allocation (PA) is a crucial theme in  radar resource management for multiple 
target tracking (MTT). In many practical scenarios, the PA problem for MTT is mainly 
focused on: (1) Maximizing the overall tracking accuracy or the worst target tracking 
accuracy in all targets with the finite power budget [6–10]; (2) Minimizing the power 
consumption for given MTT performance requirements [11–14]. However, in practice, 
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when combat missions are urgent, in order to guide more weapons to attack enemy 
objects accurately, the guidance radar system usually adopts in full power mode. In this 
case, the aforesaid PA strategies cannot be directly applied. In addition, for the guidance 
radar, the weapon launching conditions and enough guidance accuracy should be both 
satisfied [15]. Hence, the number of the effective tracking targets (ETTs) and the cor-
responding target tracking accuracy are both important performance indicators. Herein, 
the ETT denotes the target which satisfies the given tracking accuracy. However, to the 
best of our knowledge, the robust power allocation (RPA) strategy considering the above 
two optimization objectives is very limited.

Moreover, most of the existing studies on PA in the MIMO radar system are carried 
out under ideal detection condition, which is not common seen on the modern battle-
fields. Since the posterior Cramer–Rao lower bound (PCRLB) can provide a tight lower 
bound for any unbiased estimator [16–18], the PCRLB is usually used as the optimiza-
tion metric in the resource allocation problems for MTT [5–13]. However, under the 
condition of electromagnetic interference, the process of target parameter estimation 
can be often very complex, which may cause the PCRLB cannot accurately quantify 
tracking accuracy. The MI is an information theoretic criterion, it has been proved that 
the more MI between radar echo and the target impulse response implies better capabil-
ity of radar to estimate the target parameters [19]. In this case, the MI has been used in 
[20–22] for power allocation among the MIMO radars and jammers.

In this paper, the RPA strategy in the C-MIMO radar for multiple target guidance 
(MTG) application is studied under the blanket jamming environment. The MI between 
the reflected target signal and the path gain matrix is adopted to be the performance 
criterion for target parameter estimation. Based on the predicted MI, the RPA model is 
established to consider both the number of ETTs and their corresponding tracking accu-
racy, which formulated as a non-convex problem. In order to solve this problem, a two-
step optimization algorithm based on benefit–cost ratio (BCR) [23] is proposed.

The rest of this paper is organized as follows: The system model of the C-MIMO radar 
along with the target motion model is demonstrated in Sect. 2. Section 3 derives the MI 
in terms of the PA and establishes a cognitive tracking scheme. In Sect. 4, the optimiza-
tion model is formulated and an efficient solving algorithm is proposed. The numerical 
results and analysis are given in Sect. 5. Section 6 concludes this paper.

2  System model
Consider that a narrowband C-MIMO radar is located at (x0, y0). In order to track Q 
point-like enemy objects which carry with active oppressive jammers, a set of orthogo-
nal and coherent pulse train signals are transmitted. In order to simplify the model anal-
ysis, we make the following assuptions:

(1) The number and initial position of the tracked targets are known in advance as pri-
ori knwoledge;

(2) Each target carries a self-defense jammer that continuously transmits jamming sig-
nal to the radar, which is modeled as Gaussian white noise;

(3) The C-MIMO radar works in the SM pattern, and simultaneously transmits multi-
ple orthogonal beams to track targets.
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2.1  Radar signal model

Consider that the transmit signal for the qth target at the kth sample interval is normal-
ized as sk ,q(t) , and the number of transmit pulse trains in one measurement is L , thus the 
lth pulse is [5]

where Tp is the pulse repetition period, and t ′ is the slow time. Moreover, the lth pulse in 
the received baseband signal is given by

where δk ,q denotes the attenuation of signal strength due to the path loss. 
hk ,q,l = hRk ,q,l + hIk ,q,l is the radar cross-section (RCS), modeled as a zero-mean white 
complex noise with variance σ 2

k ,q , denoted as hk ,q,l ∼ CN (0, σ 2
k ,q) . Pk ,q is the transient 

transmit power, the terms of τk ,q and f dk ,q are the time delay and the Doppler frequency, 
respectively. nk ,q,l(t) represents the inherent environmental noise, modeled as 
nk ,q,l(t) ∼ CN (0,α2

k ,q) , and jk ,q,l(t) denotes the oppressive jamming noise imposed by 
the jammer, distributed as jk ,q,l(t) ∼ CN (0,β2

k ,q).
Aim at improving the echo signal–noise ratio (SNR), the coherent pulse accumulation 

technique is applied to the echo signal processing. Thus, the sampled signals of rk ,q,l(t) are

where ŝk ,q,l ∈ C
M×1 denotes the sampling of sk ,q,l(t) , and M indicates the sampling 

length. n̂k ,q,l ∈ C
M×1 represents the sampling of nk ,q,l(t) , ĵk ,q,l ∈ C

M×1 is the sampling of 
jk ,q,l(t) , and gk ,q,l dentoes the path gain coefficient, distributed as gk ,q,l ∼ N (0, γ 2

k ,q) , with 
[7]

where ∝ is the proportional notation, and Rk ,q is the distance from the qth target to the 
radar center at sample interval k.

Suppose that the C-MIMO radar continuously transmits N ≤ L pulses to the qth target 
at the kth sample interval, which means the number of coherent accumulation pulses in a 
detection is N. Then, the relevant echo signal can be denoted as

where

(1)sk ,q,l(t) = sk ,q
[

t ′ + (l − 1)Tp

]

(2)rk ,q,l(t) = δk ,qhk ,q,l

√

Pk ,qsk ,q
[

t − (l − 1)Tp − τk ,q
]

e
−j2π f dk ,qt + nk ,q,l(t)+ jk ,q,l(t)

(3)r̂k ,q,l = ŝk ,q,lgk ,q,l + n̂k ,q,l + ĵk ,q,l

(4)γ 2
k ,q ∝ Pk ,qσ

2
k ,q/R

4
k ,q

(5)
R̂k ,q =

(

r̂k ,q,1, r̂k ,q,2,..., r̂k ,q,N
)

=Ŝk ,qĜk ,q + N̂k ,q + Ĵk ,q



Page 4 of 19Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:48 

In addition, to simplify the signal model, we assume that the transmit pulse waveforms 
are exactly the same. Thus, we have ŝk ,q,1 = ŝk ,q,2 = · · · = ŝk ,q,N = ŝk ,q.

2.2  Target motion model

Without loss of generality, we assume that the target motion model can be described 
by the constant velocity (CV) model [6]. In this case, the qth target state is denoted by 
xk ,q = [xk ,q , ẋk ,q , yk ,q , ẏk ,q]T , where [xk ,q , yk ,q]T and [ẋk ,q , ẏk ,q]T represent the position and 
velocity at the kth sample interval in Cartesian coordinates. The target state transition 
model can be expressed by [7]

where F denotes the state transition matrix of the CV model. The term of wk ,q repre-
sents an uncorrelated process noise sequence and is assumed to be a zero-mean Gauss-
ian noise with the covariance matrix Qk ,q . Herein, F and Qk ,q are given by [8]

and

where Ts is the sample interval, I2 denotes the second-order identity matrix, ⊗ represents 
the Kronecker product operator, and mk ,q is the relevant process noise intensity [8].

2.3  Measurement model

According to the receive signal model in (2) and (5), the conditional probability density 
function (PDF) p(R̂k ,q|ξk ,q) is given by

where ξk ,q = [Rk ,q , f
d
k ,q , θk ,q]T . Moreover, by adopting the maximum likelihood (ML) esti-

mate method [24], the ML estimate of ξk ,q can be calculated as

(6)















































Ŝk ,q =
�

ŝk ,q,1, ŝk ,q,2, . . . , ŝk ,q,N
�

Ĝk ,q = diag
�

gk ,q,1, gk ,q,2, . . . , gk ,q,N
�

N̂k ,q =
�

n̂k ,q,1, n̂k ,q,2, . . . , n̂k ,q,N
�

Ĵk ,q =

�

ĵk ,q,1, ĵk ,q,2, . . . , ĵk ,q,N

�

(7)xk+1,q = Fxk ,q + wk ,q

(8)F =
[

1 Ts

0 1

]

⊗ I2

(9)

Qk ,q = E

[

wk ,q

(

wk ,q

)T
]

=
(

∫ TS

0

mk ,q

[

Ts − t
1

]

[

Ts − t 1
]

dt

)

⊗ I2

=mk ,q

[

T 3
s /3 T 2

s /2

T 2
s /2 Ts

]

⊗ I2

(10)

p
(

R̂k ,q

∣

∣

∣
ξk ,q

)

∝ exp

{

− 1

δ2k ,q

∫

|rk ,q,l(t)− αk ,qhk ,q,l

√

Pk ,q sk ,q
(

t − τk ,q
)

e
−j2π f dk ,qt − jk ,q,l(t)|dt

}
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Therefore, the target information can be extracted from the receive signal, e.g., the 
time-delay, the Doppler frequency and the bearing angle. The measurement model can be 
expressed as

where h(xk ,q) = [Rk ,q , Ṙk ,q , θk ,q]T , Rk ,q , Ṙk ,q and θk ,q denote the range, radial velocity, and 
bearing angle of the qth target at the kth sample interval, respectively, i.e., given by

The measurement noise νk ,q ∼ N (0,ℜk ,q) , with ℜk ,q = diag(σ 2
Rk ,q

, σ 2
Ṙk ,q

, σ 2
θk ,q

) . In addi-

tion, the elements in ℜk ,q are given by [9]

where βk ,q denotes the effective bandwidth, Tk ,q is the effective time width, and Bw is the 
null-to-null beam width of receive antennas [25]. Moreover, it should be noted that all 
the elements in (14) are inversely linear with Pk ,q [12], and thus, the measurement covar-
iance can be rewritten as ℜk ,q = P−1

k ,qχk ,q . In this case, it is theoretically possible to 
achieve higher tracking accuracy by increasing the transmit power allocation for a cer-
tain target.

3  Cognitive tracking scheme based on MI under blanket jamming
3.1  Multi‑beam target tracking with PSCKF

In the tracking process, the C-MIMO radar works in multi-beam mode and each beam 
operates in the “focused transmit focused receive” (FTFR) manner [13]. Therefore, the 
MTT task can be divided into a series of single target tracking [7]. In view of the nonlinear 
Gaussian state space model given in Sects. 2.2 and 2.3, the parallel square-root cubature 
Kalman filter (PSCKF) is adopted in target state estimation.

From the Bayesian theory perspective, based on recursive method, the PDF for tar-
get tracking is obtained by utilizing the known initial state probability density and system 
measurement value. In this case, after the system state transition model and the measure-
ment model are probabilized, the state estimation of the nonlinear discrete system model 
(7) and (12) in the Gaussian domain can be normalized as

(11)

{

ξ̂k ,q

}

ML
= arg

{

max
ξk ,q

[

ln p
(

R̂k ,q

∣

∣

∣
ξk ,q

)]

}

= arg

{

max
ξk ,q

[

L
∑

l=1

∣

∣

∣

∣

∫

rk ,q,l(t)× s∗k ,q

(

t − τk ,q

)

×e−j2π fk ,qdtdt
∣

∣

∣

2
]}

(12)zk ,q = h
(

xk ,q
)

+ νk ,q

(13)



















Rk ,q =
�

�

xk ,q − x0
�2 +

�

yk ,q − y0
�2

Ṙk ,q =
�

ẋk ,q , ẏk ,q
�

�

xk ,q − x0

yk ,q − y0

�

/Rk ,q

θk ,q = arctan
�

yk ,q − y0
���

xk ,q − x0
�

(14)























σ 2
Rk ,q

∝
�

αk ,qPk ,q
�

�hk ,q
�

�

2
β2
k ,q

�−1

σ 2
Ṙk ,q

∝
�

αk ,qPk ,q
�

�hk ,q
�

�

2
T 2
k ,q

�−1

σ 2
θ
k ,q

∝
�

αk ,qPk ,q
�

�hk ,q
�

�

2
/Bw

�−1
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where Pk+1|k+1,q is the state transition covariance matrix, Pk+1|k ,q is the one-step pre-
dictive covariance matrix, Lk+1,q is the Kalman gain, Pzz

k+1,q is the measurement autocor-
relation covariance matrix, and Pxz

k+1,q is the state-measurement cross-correlation 
covariance matrix. To compute all the parameters in (15), the recursive calculation of 
PSCKF is given below.

FOR q = 1, 2, ...,Q.

(1) Time Update

Assume that the state transition covariance matrix Pk|k ,q is known, and the posterior 
density at the kth sample interval satisfies that p(xk ,q|zk ,q) ∼ N (x̂k|k ,q ,Pk|k ,q ) . Then, 
we have.

Step 1.1: Cholesky decomposition.

Step 1.2: Calculate each cubature point and make one-step prediction.

where i = 1, 2, ...,m , m = 2n , and n is the dimension of the state vector. Herein, 
ξi =

√
m/2[1] , where [1] is given by

Step 1.3: Estimate the square-root coefficient of the covariance matrix of state pre-
diction value and state prediction error.

where Tria( · ) and Chol( · ) denote the QR decomposition operator and the Cholesky 
decomposition operator, respectively.

(2) Measurement Update

(15)















xk+1|k+1,q = x̂k+1|k+1,q + Lk+1,q

�

zk+1,q − ẑk+1,q

�

Pk+1|k+1,q = Pk+1|k ,q − Lk+1,qP
zz
k+1,qL

T
k+1,q

Lk+1,q = Pxz
k+1,q

�

Pzz
k+1,q

�−1

(16)Pk|k ,q = Sk|k ,q
(

Sk|k ,q
)T

(17)

{

xi
k|k ,q = x̂

k|k ,q + Sk|k ,q ξi
xi∗
k+1|k ,q = Fxi

k|k ,q

(18)[1] =

















1
0
. . .

0






,







0
1
. . .

0






, . . .







0
0
. . .

1






,







−1
0
. . .

0






,







0
−1
. . .

0






, . . .







0
0
. . .

−1

















(19)























x̂k+1|k ,q = 1
m

m
�

i=1

xi ∗
k+1|k ,q

Sk+1|k ,q = Tria
��

x∗
k+1|k ,q , Chol

�

Qk ,q

�

��

zk+1|k ,q = 1√
m

�

z1
k+1|k ,q − ẑk+1|k ,q , z2k+1|k ,q − ẑk+1|k ,q , . . . , zmk+1|k ,q − ẑk+1|k ,q

�
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Step 2.1: Estimate each cubature point and the square-root coefficient of the new 
covariance.

Step 2.2: Calculate the new information covariance matrix and the cross-covariance 
matrix of state and measurement.

Step 2.3: Update the filter gain and compute the posterior state estimation.

Step 2.4: Recersion. Update the square-root coefficient of state error covariance matrix

Then, let k = k + 1 , and return to step 1.1.

3.1.1  END FOR.

3.2  MI derivation under blanket jamming

Assume that the transmit signal of ŝk ,q is known, thus the pulse matrix Ŝk ,q can be obtained. 
Then, the MI between R̂k ,q and Ĝk ,q can be expressed as [26]

where I(R̂k ,q; Ĝk ,q|Ŝk ,q) denotes the MI for the qth target. The term of H(·) represents 
the differential entropy operator, which satisfies that, i.e., H(x) = −

∫

p(x) log p(x)dx 
and H(x

∣

∣y ) = −
∫ ∫

p(x
∣

∣y ) log p(x
∣

∣y )dxdy . Herein, p(x) and p(x
∣

∣y ) are the PDF of x 
and the conditional PDF of x with respect to y , respectively. In this case, p(R̂k ,q|Ŝk ,q) and 
p(N̂k ,q + Ĵk ,q) are given by

(20)











































xi
k+1|k ,q = x̂

k+1|k ,q + Sk+1|k ,qξi
zi
k+1|k ,q = h

�

xi
k+1|k ,q

�

ẑk+1|k ,q = 1
m

m
�

i=1

zi
k+1|k ,q

zk+1|k ,q = 1√
m

�

z1
k+1|k ,q − ẑk+1|k ,q , z2k+1|k ,q − ẑk+1|k ,q , . . . , zmk+1|k ,q − ẑk+1|k ,q

�

SZZ
k+1|k ,q = Tria

��

z
k+1|k ,q , Chol

�

ℜk ,q

�

��

(21)



















Pzz
k+1|k ,q = Szz

k+1|k ,q
�

Szz
k+1|k ,q

�T

xk+1|k ,q = 1√
m

�

x1
k+1|k ,q − x̂

k+1|k ,q , x
2
k+1|k ,q − x̂k+1|k ,q , . . . , xmk+1|k ,q − x̂k+1|k ,q

�

Pxz
k+1|k ,q = xk+1|k ,q

�

zk+1|k ,q
�T

(22)











Lk+1,q = Pxz
k+1|k ,q

�

Pzz
k+1|k ,q

�−1

x̂k+1,q = x̂
k+1|k ,q + Lk+1,q

�

zk+1,q − ẑ
k+1|k ,q

�

(23)Sk+1|k+1 ,q = Tria
([

x
k+1|k ,q − Lk+1,qzk+1|k ,q ,Lk+1,qChol

(

ℜk ,q

)

])

(24)
I
(

R̂k ,q; Ĝk ,q

∣

∣

∣
Ŝk ,q

)

= H
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

−H
(

R̂k ,q

∣

∣

∣
Ĝk ,q , Ŝk ,q

)

=H
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

−H
(

N̂k ,q + Ĵk ,q

)
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and

Thus, H(R̂k ,q|Ŝk ,q) and H(N̂k ,q + Ĵk ,q) can be calculated as

and

Accordingly, combined with (24), (27) and (28), we have

It can be seen from (4) and (29) that Pk ,q is the only variable of MIk ,q under the condi-
tion that the electromagnetic environment is regular and the pulse number is constant.

3.3  Cognitive tracking scheme based on transmit power

After obtaining the measurement information of all the tracked targets, the power-
limited C-MIMO radar can calculate the power allocation results at the next tracking 
period according to the above steps. Hence, by feeding back the power allocation results 
to the C-MIMO radar transmitter, a close-loop feedback scheme for power allocation is 
established. The established cognitive tracking scheme is shown in Fig. 1.

4  Optimization model establishment and solution
In this section, we formulate the optimization problem of the RPA based on the MI. In 
order to solve the optimization problem, a two-step optimization scheme based on the 
idea of BCR is proposed.

(25)p
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

=
exp

{

−tr

[

(

γ 2
k ,q ŝk ,q ŝ

H
k ,q +

(

α2
k ,q + β2

k ,q

)

IM

)−1
R̂k ,qR̂

H
k ,q

]}

πMN
[

det
(

γ 2
k ,q ŝk ,q ŝ

H
k ,q +

(

α2
k ,q + β2

k ,q

)

IM

)]N

(26)

p
(

N̂k ,q + Ĵk ,q

)

=
exp

{

−tr

[

((

α2
k ,q + β2

k ,q

)

IM

)−1(

N̂k ,q + Ĵk ,q

)(

N̂k ,q + Ĵk ,q

)H
]}

πMN
[

det
((

α2
k ,q + β2

k ,q

)

IM

)]N

(27)

H
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

= −
∫ ∫

p
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

log p
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

dR̂k ,qdŜk ,q

= −
∫

p
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

log p
(

R̂k ,q

∣

∣

∣
Ŝk ,q

)

dR̂k ,q

= MN + N log
[

πM det
(

γ 2
k ,q ŝk ,q ŝ

H
k ,q +

(

α2
k ,q + β2

k ,q

)

IM

)]

(28)

H
(

N̂k ,q + Ĵk ,q

)

= −
∫

p
(

N̂k ,q + Ĵk ,q

)

log p
(

N̂k ,q + Ĵk ,q

)

dN̂k ,q

−
∫

p
(

N̂k ,q + Ĵk ,q

)

log p
(

N̂k ,q + Ĵk ,q

)

dĴk ,q

= MN + N log
[

πM det
((

α2
k ,q + β2

k ,q

)

IM

)]

(29)MIk ,q = N log
det

(

γ 2
k ,q ŝk ,q ŝ

H
k ,q +

(

α2
k ,q + β2

k ,q

)

IM

)

(

α2
k ,q + β2

k ,q

)M
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4.1  Problem formulation

Since the MI between the echo signals and path gain matrix is closely related to the 
accuracy of parameter estimation [27, 28] and has an inverse relationship with mean 
square error (MSE) [29], we adopt the MI as the criterion of target tracking accuracy. 
Moreover, in order to establish a closed-loop tracking recursive cycle, the predicted MI 
should be calculated to guide PA. To be specific, by adopting the PSCKF, the target state 
estimation x̃k−1,q can be obtained. Then, the predicted MI is obtained by combining 
with the predicted target state x̃ k|k−1,q = Fx̃k−1,q . We consider finding the suboptimal 
RPA which combines with the effective tracking quantity and target tracking accuracy. 
Hence, the problem is formulated as

where MI0 is the predetermined threshold of MI when each target is effectively tracked, 
Ptotal denotes the predefined total power budget, and the transient power bound of 
[Pmin,Pmax] is set to keep the transmitter stay in an endurable interval.

4.2  Two‑step optimization algorithm based on BCR

Since the existence of the binary variable uk ,q , (30) is a non-convex optimization prob-
lem. In order to solve (20), we propose a two-step optimization algorithm based on BCR.

Step 1: Determine the targets in order of BCR when meet the ETT condition. Firstly, 
calculating the threshold power Pmin

k ,q  , which satisfies that MIk ,q(P
min
k ,q ) = MI0 . Then, by 

introducing the idea of BCR [23], the ratio of virtual power and the relative MI of each 
target is sorted in descending order. Thus, we have

where IXk is the permutation vector of the BCR in terms of power from all the moving 
targets. Herein, Ek ,q denotes the BCR in power, which is expressed as

(30)

max







Q
�

q=1

�

uk ,qMIk ,q
�

Pk ,q
��

�

x̃ k|k−1,q

�







s.t.

�

uk ,q = 1, MIk ,q
�

Pk ,q
��

�

x̃ k|k−1,q
≥ MI0

uk ,q = 0, MIk ,q
�

Pk ,q
��

�

x̃ k|k−1,q
< MI0

Q
�

q=1

Pk ,q = Ptotal , Pmin ≤ Pk ,q ≤ Pmax

(31)IXk = sort
(

Ek ,1,Ek ,2, . . . ,Ek ,Q
)

Fig. 1 Illustration of the proposed cognitive tracking scheme for RPA strategy
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where Pset is a preset constant. Finally, calculating the maximum Nk , which satisfies that

where celk records the indices of the targets in IXk.
Step 2: Maximize the MI for the given ETT information. After obtaining the quantity 

Nk and the indices of all the effective tracking targets celk , combining with the threshold 
power Pmin

k ,q  , (30) can be converted into

where Preset
k ,q  denotes the allocation of the remaining transmit power to the qth target at 

sample interval k. Technically, (34) can be easily solved by the particle swarm optimiza-
tion (PSO) [30], and the final solution set is the suboptimal power set that can satisfy the 
robust tracking of each target.

5  Experiments and analysis
5.1  Parameter settings

In this section, numerous results are presented to demonstrate the effectiveness of the 
proposed RPA strategy. Consider that a C-MIMO radar is located at the origin point, 
and Q = 8 targets follow the CV model and are widely separated, whose initial motion 
parameters are shown in Table  1. Moreover, the joint configuration of the C-MIMO 
radar and the tracked targets is demonstrated in Fig. 2. The number of coherent accu-
mulation pulses in one illumination is set as L = 200 , and the pulse repetition period is 
Tp = 1ms . The lower and upper bounds of power constraints for the tracked targets are 
Pmin = 0.05Ptotal and Pmax = 0.8Ptotal , respectively. In addition, the targets not assigned 
for tracking are monitored by radar, with allocated power Pmon = 0.01Ptotal . The preset 
power compensation is Pmin = 0.1Ptotal , and the threshold of MI is set as MI0 = 0.6 nats . 
It is assumed that the RCS of all targets is the Swerling I model [31] with mean being 1, 
and remains constant over the measurement interval. Suppose that all targets carry with 

(32)Ek ,q =
MIk ,q

(

Pmin
k ,q + Pset

)

Pmin
k ,q + Pset

(33)
celk (Nk )
∑

n=celk (1)

Pmin
k ,n ≤ Ptotal,

celk (Nk+1)
∑

n=celk (1)

Pmin
k ,n > Ptotal

(34)

max







celk (Nk )
�

q=celk (1)

�

MIk ,q
�

Pk ,q
��

�

x̃ k|k−1,q

�







s.t.Pk ,q = Pmin
k ,q + Preset

k ,q

celk (Nk )
�

q=celk (1)

Pk ,q = Ptotal , Pmin ≤ Pk ,q ≤ Pmax

celk (Nk )
�

celk (1)

Preset
k ,q = Ptotal −

celk (Nk )
�

celk (1)

Pmin
k ,q

0 ≤ Preset
k ,q ≤ Ptotal −

celk (Nk )
�

celk (1)

Pmin
k ,q
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self-defense jammers and transmit oppressive signals to the C-MIMO radar. The particle 
population is set as Npop = 100 , the number of iterations is Tmax = 200 , and the upper 
and lower bounds of the inertial weights are wmax = 0.9 and wmin = 0.2 , respectively. 
A sequence of 20 frames with sample interval Ts = 1 s are utilized in each Monte Carlo 
trial, while the number of trials is set as Nsim = 100 . To evaluate the tracking perfor-
mance, we define the sum of RMSEs of the tracked targets as

where x̂jk ,q denotes the results of target parameters estimation in the jth trail. The matrix 
� = I2 ⊗ diag(1, 0).

5.2  Results and discussions

1) Scenario 1: Effect of Distance

(35)RMSE,k =
celk (Nk )
∑

q=celk (1)

√

√

√

√

√

1

Nsim

Nsim
∑

j=1

tr

[

�

(

xk ,q − x̂
j
k ,q

)(

xk ,q − x̂
j
k ,q

)T
�

]

Table 1 Target moving parameters

Target index Initial position (km) Initial velocity (m/s)

1 (− 110, 22) (0, − 300)

2 (− 80, 22) (0, − 300)

3 (− 50, 22) (0, − 300)

4 (− 20, 22) (0, − 300)

5 (10, 22) (0, − 300)

6 (40, 22) (0, − 300)

7 (70, 22) (0, − 300)

8 (100, 22) (0, − 300)

Fig. 2 Joint configuration of the C-MIMO radar and the tracked targets



Page 12 of 19Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:48 

In this scenario, the interference signal intensity of each jammer is assumed to be 
constant and the corresponding jam-signal ratio (JSR) is set as 12  dB. Hence, since 
the targets SNRs are only related to the radar-target distances and the transmit power 
results [32, 33], the distance factor becomes the major contributor in the PA problem.

In order to demonstrate the effectiveness of the proposed algorithm, two bench-
marks are used as comparison: 1) Uniform allocation; 2) Sum-max optimize alloca-
tion. In the uniform allocation scheme, all power resources are evenly distributed 
to Q = 8 targets. As for the sum-max optimize allocation scheme, the optimization 
objective is to maximize the sum of MIs of all targets, thus its optimization model can 
be expressed as

Moreover, (36) is solved by the PSO algorithm. Figure  3 demonstrates the effec-
tive tracking quantity comparison among the three resource allocation strategy. In 
general, the proposed RPA strategy performs best among all the adopted methods 
obviously. In addition, although the effective tracking quantity obtained by the sum-
max optimize allocation scheme is less than that obtained by the average allocation 
method in the initial period of time, this situation changes with the improvement of 
the overall target tracking accuracy.

Figure  4 further demonstrates the average PA results obtained by the proposed 
RPA strategy in scenario 1. Herein, the grid colors denote the ratio of allocated power 
towards different moving targets, which is given by

(36)

max







Q
�

q=1

MIk ,q
�

Pk ,q
��

�

x̃ k|k−1,q







s.t.

Q
�

q=1

Pk ,q = Ptotal

Pmin ≤ Pk ,q ≤ Pmax

Fig. 3 Performance comparison in terms of the effective tracking quantity in scenario 1
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where Pj
k ,q denotes the PA results in the jth trail. Moreover, the pinky white color rep-

resents that the ratio is zero, which means the corresponding target will not be tracked 
at this tracking interval. It should be noted that the target far from the radar is easily 
unable to meet the requirements of effective tracking under the given power resource 
budget due to the larger tracking error, so that the corresponding allocated power is less. 
Moreover, when the tracking error meets the effective tracking condition, the farther 
target from the radar is tend to allocated more power resource.

Figure 5 shows the targets that meet the effective tracking condition at each frame for 
the three PA schemes. Obviously, target 4 and target 5 can be tracked more easily by 
radar due to their closer proximity. In addition, the proposed RPA strategy shows good 
robustness as the tracking time increases.

2) Scenario 2: Effect of Interference Intensity

In this senario, we will further study the influence of interference intensity on PA 
results. Therefore, we consider a time-varying JSR model. In the model, the JSR levels 
of target target q (q = 2, 3, 4, 5) are remain at 12  dB, which is consistent with that of 
scenario 1. In addition, it is assumed that the JSR levels of the rest of moving targets are 
time-varying, as shown in Fig. 6. As such, in addition to the distance factor, the interfer-
ence intensity factor is also added to affect PA results.

The effective tracking quantity performances among the three PA schemes in scenario 
2 are compared and demonstrated in Fig. 7. Obviously, it can be seen from Fig. 7 that 
the proposed RPA strategy still performs best among the three algorithms. Due to the 
stronger inteference intensity, the effective tracking quantity is smaller in scenario 2 
than in scenario 1. Moreover, in the long run, the sum-max optimize allocation strategy 

(37)r
power
ave k ,q = 1

Nsim

Nsim
∑

j=1

P
j
k ,q

Ptotal

Fig. 4 Average PA results obtained by the proposed RPA strategy in scenario 1



Page 14 of 19Li et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:48 

Fig. 5 Indices of the effective tracking targets. a Uniform allocation. b Sum-max optimize allocation. c 
Proposed RPA strategy
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performs better than the uniform allocation method in increasing tracking performance 
in scenario 2.

Figures 8 and 9 show the average PA results obtained by the proposed RPA strategy 
and the indices of effective tracking target for the three PA strategies, respectively. Com-
pared with scenario 1, it can be noted that less power resources are allocated to targets 
(target 1 and target 8) with stronger interference intensity. In addition, due to the dual 
influence of longer radial distance and higher interference intensity, target 1 is aban-
doned due to the limitation of system power budget among the tracking process.

Fig. 6 Time-varying interference intensity model

Fig. 7 Performance comparison in terms of the effective tracking quantity in scenario 2
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6  Conclusions
In this paper, we proposed an RPA strategy in the C-MIMO radar system for MTG 
application under blanket jamming environment. Based on deriving and calculating 
the predicted MI and then setting the predetermined threshold of the MI, we for-
mulated the RPA strategy as a non-convex optimization problem. In order to tackle 
the difficulty in solving this problem, a two-step optimization algorithm based on the 
BCR is utilized in the solving process. Numerical results showed that the distance 
from target to radar and the interference intensity have impact on the PA results. 
Additionally, in the proposed RPA strategy, those targets with low tracking accuracy 
are tend to be abandoned in exchange for higher tracking accuracy of other targets.

Fig. 8 Average PA results obtained by the proposed RPA strategy in scenario 2
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Fig. 9 Indices of the effective tracking targets. a Uniform allocation. b Sum-max optimize allocation. c 
Proposed RPA strategy
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Abbreviations
C-MIMO  Collocated multiple-input and multiple-output
RPA  Robust power allocation
MTG  Multiple target guidance
ETT  Effective tracking target
MI  Mutual information
BCR  Benefit–cost ratio
SM  Simultaneous multi-beam
PA  Power allocation
MTT  Multiple target tracking
PCRLB  Posterior Cramer–Rao lower bound
RCS  Radar cross-section
SNR  Signal–noise ratio
CV  Constant velocity
PDF  Probability density function
ML  Maximum likelihood
FTFR  Focused transmit focused receive
PSCKF  Parallel square-root cubature Kalman filter
PSO  Particle swarm optimization
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