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1 Introduction
Multi-target tracking (MTT) is one of the most significant and low-level techniques 
in many fields [1–7], such as military, transportation, industry, agriculture, sports, 
and health monitoring. For conventional tracking algorithms [8–10], MTT is usually 
regarded as tracking of multiple single targets. Different from those methods, finite set 
statistics (FISST) [11, 12] develops an unified and statistically top-down framework of 
multi-target filtering and makes an extensive and profound influence. Within the FISST 
framework, the set of targets is described as the random finite set (RFS). So far, FISST 
has inspired a lot of multi-target filters. For example, the probability hypothesis den-
sity (PHD) [13] and cardinalized PHD (CPHD) [14] filters were proposed by propagating 
moment approximations of the multi-target posterior density. The multi-Bernoulli (MB) 
[15] filter was developed by modeling the multi-target posterior density as MB RFSs. 
Examples of FISST-based algorithms also include generalized labeled MB (GLMB) [16], 
labeled MB (LMB) [17], and multi-scan GLMB [18] filters. These methods have been 
widely used in different MTT applications and provided good performances.
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With the development of science and technique, the tracking system with multiple 
sensors has attracted lots of attention in recent years. Compared with the single-sen-
sor system, the multi-sensor system produces much more accurate estimation by using 
the spatial diversity. There are three major multi-sensor system architectures, namely 
centralized [19–21], distributed [22–25], and decentralized [26, 27]. However, the 
multi-sensor MTT problem is challenging. On one hand, multi-sensor fusion is difficult 
because of the data association uncertainty. On the other hand, sensor management is 
usually necessary to collect effective measurements generated by targets and meet the 
communication constraints. In practical multi-target systems, there are false and miss 
detections. In addition, states of targets are unknown and random. These factors further 
increase the difficulty of sensor management.

The multi-target sensor management problem mentioned above can be solved within 
the FISST framework which provides a systematic manner to describe the uncertainty 
using multi-target probability density functions. Sensor management can be modeled 
as a partially observed Markov decision process (POMDP) problem [12, 28–30]. Many 
objective functions have been proposed within the POMDPs, mainly including informa-
tion-driven and task-driven measures. The information-driven objective function quan-
tifies the information gain obtained by the multi-target density after applying a candidate 
sensor management command. For example, Ristic et al. [31] proposed to use the Rényi 
divergence with the Bayesian multi-target filter for controlling a moving range-only sen-
sor. Aiming at the sensor control problem, the Rényi divergence was also used with the 
PHD filter [32] and the MB filter [33]. In these methods, the Rényi divergence has no 
analytic closed-form expression, resulting in heavy computing burden. In [34], Cai et al. 
presented an analytical solution for the Rényi divergence of LMB RFSs by expressing the 
target density as a single Gaussian component. The Cauchy–Schwarz (CS) divergence 
[35] provides another information divergence measure. Gostar et  al. [36] proposed a 
closed-form formula for the CS divergence of LMB RFSs and used it in solving the con-
strained sensor control problem. Beard et al. [37] proposed an analytical formula for the 
CS divergence of GLMB RFSs and demonstrated its performance in planning a sensor 
trajectory. Compared with the information-driven objective function, the task-driven 
objective function has a more direct physical meaning. In [33], Hoang et  al. used the 
cardinality variance to define a cost function enabling an efficient sensor management. 
The cost function in [38] was designed as the quantitative measure of the multi-target 
estimation error metric. Gostar et  al. [39] proposed to minimize the cardinality vari-
ance and the uncertainty within target state estimation though weight aggregation. Our 
recent work [40] developed the objective functions based on the different properties of 
tracks and demonstrated performances of the proposed objective functions using chal-
lenging MTT scenarios.

The main focus of these sensor management methods is the designing of the objec-
tive function. Whatever the objective function is, sensor management based on POMDP 
is in essence a global optimization problem. When it terms to the multi-sensor selec-
tion problem, the exhaustive search method is straightforward. This method first esti-
mates the objective function for each sensor selection command and then searches for 
the optimal solution from all feasible solutions. When the number of candidate sensors 
is large, the exhaustive search method suffers from heavy computation burden (except 



Page 3 of 16Zhu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:62  

only one sensor is selected). To reduce the computation burden, Ma et al. [41] proposed 
a spatial non-maximum suppression method but needs a tuning parameter. Another 
approach was developed in [42] for multi-sensor control but cannot be applied to solve 
the sensor selection problem. Recently, we proposed a decomposed POMDP optimiza-
tion approach based on the CS divergence for efficient multi-sensor selection [43]. The 
approach can effectively reduce the computation burden and achieved satisfactory per-
formance. However, we only consider the optimization of a single-objective function and 
it is unclear how to use it to solve the multi-objective optimization (MOO) problems.

This paper studies the MOO-based multi-sensor selection problem for MTT within 
the POMDP framework. The major contribution of this paper is an efficient MOO 
approach for multi-sensor selection via MB filtering. To simplify the MOO problem, we 
use the Euclidean distance (ED) between the feasible solution vector and the utopian 
solution vector as a measure of the objectives. Instead of implementing the global com-
binatorial optimization, we reduce the computational complexity by sequentially select-
ing sensors from the candidates based on the ED measure. For the selected sensors, they 
send the collected measurements to the fusion center and the iterated-corrector (IC) 
scheme is adopted for centralized fusion. The IC scheme has simple practical implemen-
tation and has been widely used. However, the different order of sensor updates affects 
the result of the IC fusion. If the detection ability of the last sensor is low, the overall 
performance of the filter degrades. To deal with this, we first rank the selected sensors 
based on the obtained ED since it can reflect the detection ability of the sensor. Then, the 
IC update is applied in order of the ranking. Simulation results obtained from challeng-
ing MTT scenarios demonstrate that the proposed method works significantly faster 
than the exhaustive search scheme and provides similar tracking accuracy in terms of 
the optimal sub-pattern assignment (OSPA) error.

The paper is organized as follows. In Sect. 2, we briefly introduce the POMDP frame-
work, the multi-target Bayes filter, and the MB filter. In Sect. 3, the objective functions, 
the efficient MOO, and the detailed implementation of the proposed approach are pre-
sented. Section  4 presents numerical studies. In Sect.  5, we derive conclusions of the 
paper.

2  Background
2.1  Partially observable Markov decision process

For MTT in multi-sensor systems, sensor selection is generally required to collect effec-
tive measurements generated by targets and meet the communication constraints. This 
problem is challenging because the selection commands is made before the current 
multi-target state is observed. The POMDP framework [12] provides a statistically uni-
fied solution to such problems. At time k, the POMDP problem is modeled as

where Xk is the multi-target state, S denotes the set of sensor selection commands, 
fk|k−1(Xk |Xk−1) is the multi-target transition function from Xk−1 to Xk , gk(Zk |Xk) is the 
multi-target likelihood, and ϑ(Ak) is the objective function measuring a cost or reward 
when the sensor selection command Ak is applied.

(1)� = {Xk , S, fk|k−1(Xk |Xk−1), gk(Zk |Xk),ϑ(Ak},
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The objective function is an important criterion to determine the performance of sensor 
selection. Sensor selection can be regarded as a combinatorial optimization problem find-
ing the optimal combination of sensors that minimizes of maximizes the objective function, 
as follows:

Note that the myopic policy with the multi-target state transiting from Xk−1 to Xk is 
considered, whereas the POMDP can solve p-step future decision problems.

2.2  Multi‑target Bayes filter

An RFS is a finite-set-valued random variable that the set cardinality is random and 
each element in the set is also random. At time k, we assume that the target states are 
xk ,1, xk ,2, . . . , xk ,Nk

 and the measurements are zk ,1, zk ,2, . . . , zk ,Mk
 , where Nk and Mk denote 

the number of targets and the number of measurements, respectively. In the RFS approach, 
the finite sets of targets and measurements are denoted as the multi-target state Xk and 
multi-target measurement Zk , respectively

where F(X ) and F(Z) denote the multi-target state space and multi-target measure-
ment space, respectively. Based on the RFS assumptions, recursion of the multi-target 
state is modeled as the following Bayes filtering problem.

At time k, πk(Xk |Z1:k) is used to denote the multi-target density with Z1:k = (Z1, . . . ,Zk) . 
The multi-target Bayes filter propagates πk(Xk |Z1:k) using the following formulas

where the integrals in Eqs. (5), (6) are set integrals. The set integral for a multi-target 
density function f(Y) is defined as

(2)A∗
k = argmin

Ak⊆S

/argmax
Ak⊆S

EZk (Ak )[ϑ(Ak)] .

(3)Xk = {xk ,1, . . . , xk ,Nk
} ∈ F(X ),

(4)Zk = {zk ,1, . . . , zk ,Mk
} ∈ F(Z),

(5)πk|k−1(Xk |Z1:k−1) =

∫
fk|k−1(Xk |X)πk−1(X |Z1:k−1)δX ,

(6)πk(Xk |Z1:k) =
gk(Zk |Xk)πk|k−1(Xk |Z1:k−1)∫
gk(Zk |X)πk|k−1(X |Z1:k−1)δX

,

(7)
∫

f (Y )δY =

∞∑

i=0

1

i!

∫
f ({y1, . . . , yi})dy1...dyi

(8)= f (∅)+

∞∑

i=1

1

i!

∫
f ({y1, . . . , yi})dy1...dyi

(9)
def.
= f (∅)+

∞∑

i=1

∫
fi(y1, . . . , yi)dy1...dyi



Page 5 of 16Zhu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:62  

The set integral has no analytic solution and the multi-target Bayes filter is computa-
tionally expensive. Therefore, several RFS-based filters have been proposed as its 
approximations.

2.3  Multi‑Bernoulli filter

The MB filter is an approximation of the multi-target Bayes filter. For a Bernoulli RFS X 
on X  , it either contains a single element distributed with the probability density p or is an 
empty set. Assuming that the probability of being a singleton is r, the probability density of 
the Bernoulli RFS X is

The MB RFS containing M independent components is defined as X = ∪M
i=1X

(i) . If the 
probability of existence and the probability density for X (i) are r(i) and p(i), respectively, 
the probability density π of the MB RFS is

where π(∅) =
∏M

j=i

(
1− r(j)

)
 denotes the probability that all components are empty. For 

simplicity, the MB RFS is denoted as π =
{(

r(i), p(i)
)}M

i=1
.

If the multi-target density at time k − 1 is described as an MB RFS 
πk−1 =

{(
r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
 , the predicted multi-target density at time k obtained by the 

MB filter is also an MB RFS and is given as

where 
{(

r
(i)
p,k|k−1, p

(i)
p,k|k−1

)}Mk−1

i=1
 and 

{(
r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
 denote the MB RFS for the sur-

viving and birth targets, respectively. Parameters of 
{(

r
(i)
p,k|k−1, p

(i)
p,k|k−1

)}Mk−1

i=1
 are com-

puted as follows

where fk|k−1(x|·) is the single-target transition density, pS,k is the survival probability, 
and 

〈
f , g

〉
�

∫
f (x)g(x)dx is the standard inner product notation.

If the predicted density is an MB RFS πk|k−1 =
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk|k−1

i=1
 , the posterior 

density at time k can also be described as an MB RFS

(10)π(X) =

{
1− r X = ∅,
rp(x) X = {x}

(11)π({x1, . . . , xn}) = π(∅)
∑

1≤i1 �=...�=in≤M

n∏

j=1

r(ij)p(ij)(xj)

1− r(ij)

(12)πk|k−1 =
{(

r
(i)
p,k|k−1, p

(i)
p,k|k−1

)}Mk−1

i=1
∪
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
,

(13)r
(i)
p,k|k−1 = r

(i)
k−1

〈
p
(i)
k−1, pS,k

〉

(14)p
(i)
p,k|k−1(x) =

〈
fk|k−1(x|·), p

(i)
k−1pS,k

〉

〈
p
(i)
k−1, pS,k

〉 ,

(15)πk ≈
{(

r
(i)
L,k , p

(i)
L,k

)}Mk|k−1

i=1
∪
{(

rU ,k(z), pU ,k(·; z)
)}

z ∈ Zk
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where 
{(

r
(i)
L,k , p

(i)
L,k

)}Mk|k−1

i=1
 and {(rU ,k(z), pU ,k(·; z))} are the MB RFSs for the legacy 

tracks and the measurement-updated tracks, respectively. Parameters of the posterior 
density πk are computed as follows

where pD,k(x) is the detection probability, gk(·|x) is the single-target likelihood function, 
and κk(·) is the clutter intensity.

3  Methods
3.1  Objective functions

The posterior multi-target density (15) of the MB filter consists of legacy and measure-
ment-updated tracks which have different theoretical and physical meanings. In our 
work [40], it is proved that considering these two kinds of tracks separately enables an 
effective sensor management strategy. Therefore, the objective functions used in the 
proposed POMDP model are as follows [40],

where Zk(Ak) denotes the set of measurements obtained from Ak , and σ 2
L,k|k(Ak) and 

NU ,k|k(Ak) are the cardinality variance of legacy tracks and the mean cardinality of 
measurement-updated tracks, respectively. When σ 2

L,k|k(Ak) is used as the cost function, 
sensor management aims at reducing the uncertainty for the number of legacy tracks, 

(16)r
(i)
L,k = r

(i)
k|k−1

1−
〈
p
(i)
k|k−1, pD,k

〉

1− r
(i)
k|k−1

〈
p
(i)
k|k−1, pD,k

〉

(17)p
(i)
L,k(x) = p

(i)
k|k−1(x)

1− pD,k(x)

1−
〈
p
(i)
k|k−1, pD,k

〉

(18)rU ,k(z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

(
1−r

(i)
k|k−1

)〈
p
(i)
k|k−1,ψk ,z

〉

(
1−r

(i)
k|k−1

〈
p
(i)
k|k−1,pD,z

〉)2

κk(z)+
∑Mk|k−1

i=1

r
(i)
k|k−1

〈
p
(i)
k|k−1,ψk ,z

〉

1−r
(i)
k|k−1

〈
p
(i)
k|k−1,pD,z

〉

(19)pU ,k(x; z) =

∑Mk|k−1

i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

p
(i)
k|k−1(x)ψk ,z(x)

∑Mk|k−1

i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

〈
p
(i)
k|k−1,ψk ,z

〉

(20)ψk ,z(x) = gk(z|x)pD,k(x)

(21)σ 2
L,k|k(Ak) =

Mk|k−1∑

i=1

r
(i)
L,k(Zk(Ak))

(
1− r

(i)
L,k(Zk(Ak))

)

(22)NU ,k|k(Ak) =
∑

Zk (Ak )∈Zk (s)

rU ,k(Zk(Ak))
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whereas if we use NU ,k|k(Ak) as the reward function, sensor management aims to maxi-
mize the number of detected targets.

3.2  Efficient multi‑objective optimization

Although the objective functions (21) and (22) are considered simultaneously in [40], 
only one sensor is selected at each time step, which makes the problem simple. In this 
paper, we consider a more general problem and study the selection of multiple sensors. 
At time k, the MOO-based sensor management is described mathematically as

where ϑ1(Ak) = −NU ,k|k(Ak) , ϑ2(Ak) = σ 2
L,k|k(Ak) , and F(Ak) is the objective vector. 

Note that computation of the multi-target posterior density and the objective function 
depends on the future measurement set. However, this is unpractical because the true 
measurements kept unknown before applying the sensor management command. In 
theory, it is necessary to use all possible measurement sets to compute objective func-
tions, requiring a large amount of computation. We use the predicted ideal measure-
ment set (PIMS) approach proposed in [44] to reduce the computing load. In (23), we 
negate NU ,k|k(Ak) and translate its maximization into minimization to formulate a gen-
eral optimization. Finding the global optimum of (23) is NP-hard. To reduce the compu-
tation burden, we propose a novel efficient MOO approach for sensor management. At 
each time step, we assume that P sensors are selected from the complete set. Motivated 
by the decomposed POMDP approach proposed in [43], the MOO problem is decom-
posed into a set of simple MOO subproblems for individual sensors to avoid the global 
combinatorial optimization. Instead of searching for the global optimal solution, sensors 
are selected sequentially from candidates. The mathematical description of the decom-
posed MOO problem is described as follows:

and

where A(j)∗
k  is the jth selected sensor, A∗

k is the resulting selection command, and S is the 
set of remaining sensors.

To solve (24), a conventional approach is to convert the MOO into the single-objective 
optimization by weighting objective functions. This approach has major drawbacks. For 
example, it is required to estimate the importance of each objective function. We take 
a simple strategy and use the ED between the feasible solution vector and the utopian 
solution vector as a measure of the objectives. The utopia solution vector of the multi-
objective problem is defined as

(23)
Minimize F(Ak) = [ϑ1(Ak),ϑ2(Ak)]

T,

subject to Ak ⊆ S,

(24)

Minimize F
(
A
(j)
k

)
=

[
ϑ1

(
A
(j)
k

)
,ϑ2

(
A
(j)
k

)]T
,

subject to;

{
A
(j)
k ∈ S and

∣∣∣A(j)
k

∣∣∣ = 1

j ∈ {1, . . . ,P}
,

(25)A∗
k = ∪P

j=1A
(j)∗
k ,
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where ϑ∗
1 and ϑ∗

2 are the minima of objectives ϑ1
(
A
(j)
k

)
 and ϑ2

(
A
(j)
k

)
 , respectively. The 

ED of a feasible solution vector F
(
A
(j)
k

)
=

[
ϑ1

(
A
(j)
k

)
,ϑ2

(
A
(j)
k

)]T
 from the utopia solu-

tion vector can be determined as follows

If the ED between a feasible solution vector and the utopia solution vector is smaller, 
then the solution is more preferable for a decision maker. Therefore, the solution for the 
MOO problem is given by

Assuming that there are ten candidate sensors in the multi-sensor system and three sen-
sors are selected, an illustrative example of the proposed decomposed MOO approach 
is shown in Fig.  1, where Fj is the objective vector of the candidate sensor j and 
j = 1, 2, . . . , 10 . In this illustration, it is straightforward that sensor 3, sensor 6, and sen-
sor 9 will be selected using (28).

3.3  Implementation

The IC scheme is used for data fusion of the selected sensors. Although the IC 
approach has no rigorous mathematical derivation, it is easy to implement and has 
been widely used. Algorithms 1 shows the pseudo-codes of the multi-sensor MB filter 
with the IC fusion scheme.

(26)F∗ = [ϑ∗
1 ,ϑ

∗
2 ]

T,

(27)dEuc

[
F
(
A
(j)
k

)
, F∗

]
=

√[
ϑ1

(
A
(j)
k

)
− ϑ∗

1

]2
+

[
ϑ2

(
A
(j)
k

)
− ϑ∗

2

]2
.

(28)A
(j)∗
k = argmin

A
(j)
k ∈S

{
dEuc

[
F
(
A
(j)
k

)
, F∗

]}
.

Fig. 1 Illustration of the proposed decomposed MOO approach
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When the detection performances of the sensors are different, the result of the IC scheme 
is influenced by the order of the sensor updates. If the detection ability of the last sensor 
is low, the overall performance of the filter degrades. A solution to this problem is to rank 
the sensors according to their ability to detect the target and then implement the IC fusion 
based on the ranking result [43]. In this paper, sensors are ranked according to ED obtained 
in (27), as follows

where dEuc[Ak , F
∗] =

{
dEuc

[
F
(
A
(j)
k

)
, F∗

]
, . . . , dEuc

[
F
(
A
(j)
k

)
, F∗

]}
 and the operator 

sort{Y , ’descend’} indicates sorting the elements of vector Y from largest to smallest and 
obtaining the sort index. Using this method, the ranking of the selected sensors in Fig. 1 
is: sensor 9, sensor 6, and sensor 3.

An overall schematic diagram of the proposed MB MTT with sensor management is 
illustrated in Fig. 2. To deal with the nonlinear target dynamics and measurement model, 
the MB filter is implemented using the sequential Monte Carlo (SMC) method. At time k, 
the probability density pik for the ith Bernoulli component is approximated as follows

(29)ranked(Ak) = sort{dEuc[Ak , F
∗], ’descend’},

(30)p
(i)
k =

L
(i)
k∑

j=1

w(i,j)δx(i,j) (x)

Multi-Bernoulli 
prediction

Multi-Bernoulli 
iterated-corrector 

Multi-sensor multi-Bernoulli filter 

Sensor management 

Target state 
estimation

PIMS

Pseudo multi-
Bernoulli Update

Objective functions
computation

Euclidean distance 
computation

Sensor selection Measurement 
collection

Fig. 2 Schematic diagram of the proposed MB MTT with sensor management
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where L(i)k  is the number of particles, δa(x) is the Dirac delta function, and w(i,j) is the 
normalized weight corresponding to the jth particle. To improve the computational effi-
ciency, the Bernoulli components whose existence probabilities below the threshold T 
are pruned. Besides, the number of particles for the remaining component is limited to 
the maximum Lmax and minimum Lmin . Refer to [15] for a detailed SMC implementation 
of the MB filter.

4  Results and discussion
In this section, the performance of the proposed efficient MOO with improved IC (EMO-
IIC) method is demonstrated using two challenging multi-sensor MTT scenarios. There is 
one transmitter and ten receivers located in the surveillance area, and the structure of the 
multi-sensor system is the same as that in [40, 43, 45]. The sampling interval is fixed to 
Ts = 10 s. The detection probability of a receiver j located at rj for a target with position p is 
modeled as follows:

where 
∥∥rj − p

∥∥ denotes the distance between receiver j and the target, h = 1e − 4 , and 
R0 = 5000 m. The detection probability decreases rapidly as 

∥∥rj − p
∥∥ increases.

For targets being tracked, a nearly constant turn model is considered. The target state is 
xk = [x̃Tk ,ωk ]

T in which x̃k = [px,k , ṗx,k , py,k , ṗy,k ]
T and ωk is the turn rate. The transition 

of the target state is modeled as

where

wk−1 ∼ N (0; 0, σ 2
ωI2) with σw = 0.01 m/s2 , and uk−1 ∼ N (0; 0, σ 2

u I2) with σu = 0.0001 
rad/s . If a target is detected by a receiver at time k, then the receiver will report a bearing 
and bistatic range measurement vector as follows:

(31)pD(r
j , p) =

{
1 if

∥∥rj − p
∥∥ ≤ R0,

max{0, 1− h(
∥∥rj − p

∥∥− R0)} otherwise,

(32)x̃k = F(ω)x̃k−1 + Gwk−1,

(33)wk = wk−1 +△uk−1,

(34)F(ω) =




1 sinωTs
ω

0 − 1−cosωTs
ω

0 cosωTs 0 − sinωTs

0 1−cosωTs
ω

1 sinωTs
ω

0 sinωTs 0 cosωTs


,

(35)G =




T 2
s
2 0
Ts 0

0
T 2
s
2

0 Ts


,

(36)z
j
k =

�
ϕj

ρ j

�
=


 arctan

�
py,k−r

j
y

px,k−r
j
x

�

��pk − rj
��+ �pk − t�


+ ε

j
k ,
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where ε
j
k ∼ N

(
0; 0,R

j
k

)
 with R

j
k = diag([σ 2

ϕ , σ
2
ρ ]) , σϕ = π/180 rad, σρ = 5 m, 

t = [tx, ty]
T is the transmitter location, and pk = [px,k , py,k ]

T denotes the target position. 
With the moving of targets, P receivers are adaptively selected at each time step. The 
OSPA error distance [46] is used to measure the tracking accuracy, which is widely used 
by the RFS-based methods. The average results are obtained over 50 independent Monte 
Carlo (MC) simulations.

4.1  Experiment 1

In the first scenario, a total of three targets appear in the surveillance area. The birth 
process of the MB filter is modeled as 

{(
r
(i)
Ŵ , p

(i)
Ŵ

)}3

i=1
 where r(1)Γ = r

(2)
Γ = r

(3)
Γ = 0.02 , 

p
(i)
Γ = N

(
x;m

(i)
Γ ,P

(i)
Γ

)
 , m

(1)
Γ = [1500, 0,−8250, 0, 0]T , m

(2)
Γ = [0, 0,−6000, 0, 0]T , 

m
(3)
Γ = [1500, 0,−5000, 0, 0]T , and P(1)

Γ = P
(2)
Γ = P

(3)
Γ = diag

(
[10, 2, 10, 2, (π/18000)]T

)2 . 
The units are meters for x and y and meters per second for ẋ and ẏ . For each hypothe-
sized track, we use Lmin = 300 and Lmax = 1000 particles. The hypothesized tracks with 
the existence probabilities below T = 1e − 3 are pruned. The probability of survival is 
pS = 0.99 . When P = 3 receivers are selected at each time step, the position estimates of 
the proposed EMO-IIC approach for a single MC run are shown in Fig.  3. It can be 
observed that the EMO-IIC approach is able to detect the births of targets and can well 
estimate the target positions.

In order to analyze the performance EMO-IIC approach, the heuristic random 
selection approach, the exhaustive search scheme, and the EMO-IC approach are 
used as the comparative algorithms. In the heuristic random selection approach, the 
probability for each candidate sensor to be selected is equal. In the exhaustive search 
scheme, the ED in (27) is estimated for every possible combination of sensors and 
then search for the optimal solution. The EMO-IC approach is the one that uses the 
proposed efficient MOO sensor management and uses the standard IC fusion scheme 
without ranking of sensors. The average OSPA distance errors (with p = 1 , c = 300 

Fig. 3 True and estimated positions in Experiment 1. The black solid line indicates the real trajectory of the 
target, and the green dot denotes the estimated target positions
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m) for different sensor management approaches with P = 3 are given in Fig. 4. Com-
pared with other approaches, the performance of the random selection approach is 
worse because it does not use any technical sensor management strategy. In the con-
sidered challenging scenario, the detection abilities of different receivers vary greatly 
with the moving of targets. In this case, different rankings of receivers result in differ-
ent tracking results. As can be observed from Fig. 4, the performance of the EMO-IIC 
approach is better than that of the EMO-IC approach and even comparable with the 
exhaustive search scheme.

In terms of the computational efficiency, the average computing time for a com-
plete MC run of the random selection approach, the EMO-IIC approach, and the 
exhaustive search scheme is 2.05 s, 9.87 s, and 1932.92 s, respectively. Without using 
any technical sensor management strategy, the random selection approach costs less 
computation time than other approaches. The EMO-IIC approach achieves a satis-
factory computational efficiency and is about 195.84 times faster than the exhaustive 
search method.

4.2  Experiment 2

In this scenario, the number of targets being tracked is increased into five. The birth 
process of the MB filter is modeled as 

{(
r
(i)
Ŵ , p

(i)
Ŵ

)}3

i=1
 where r(1)Γ = r

(2)
Γ = r

(3)
Γ = 0.02 , 

p
(i)
Γ = N

(
x;m

(i)
Γ ,P

(i)
Γ

)
 , m

(1)
Γ = [1500, 0, 1000, 0, 0]T  , m

(2)
Γ = [0, 0,−7000, 0, 0]T  , 

m
(3)
Γ = [1500, 0,−5000, 0, 0]T  , and P(1)

Γ = P
(2)
Γ = P

(3)
Γ = diag

(
[10, 2, 10, 2, (π/18000)]T

)2 . 
The hypothesized tracks with the existence probabilities below T = 1e − 5 are pruned. 
Other parameters used in the MB filter are the same with those in Experiment 1. 
When P = 3 receivers are selected at each time step, the position estimates of the 
proposed EMO-IIC approach for a single MC run are shown in Fig.  5. It can be 
observed that the position estimates of the EMO-IIC approach are close to the true 
target trajectories.

The average OSPA distance errors (with p = 1 , c = 300 m) are shown in Fig.  6. 
The exhaustive search scheme is not considered in this scenario since its computing 

Fig. 4 Average OSPA distances in Experiment 1
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burden is overload. It can be observed that the EMO-IIC approach achieves the mini-
mum tracking error in Fig. 6, indicating that the proposed improved IC method also 
works well in this scenario. The average computing time for a complete MC run of the 
random selection approach and the EMO-IIC approach is 3.49 s and 20.830 s, respec-
tively. The proposed method still has a satisfactory computational efficiency.

5  Conclusion
An MOO-based sensor management approach for MTT in the multi-sensor system has 
been proposed in this paper. To avoid the global combinatorial optimization, the com-
plex MOO problem is decomposed into a set of simple MOO subproblems for indi-
vidual sensors. For the selected sensors, an improved IC scheme is used to improve 
performances of the multi-sensor fusion. Simulation results obtained from two chal-
lenging MTT with sensor management scenarios showed the superior tracking accuracy 
of the proposed approach. It is also demonstrated that the proposed approach works 

Fig. 5 True and estimated positions in Experiment 2. The black solid line indicates the real trajectory of the 
target, and the green dot denotes the estimated target positions

Fig. 6 Average OSPA distances in Experiment 2
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much more efficiently than the exhaustive search scheme. Future work will investigate 
the efficient sensor management solutions for distributed and decentralized fusion 
architectures.
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