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1  Introduction
Beyond fifth generation (B5G) is a perfect process to solve some application scenarios 
and technologies of 5th generation mobile communication technology (5G) . Artificial 
intelligence technology is the engine of B5G. In recent years, machine learning algorithms 
have been used in various fields such as healthcare, transportation, energy, and self-driv-
ing cars. These algorithms are also being used in communication technologies to improve 
system performance in terms of spectrum utilization, latency and security. With the rapid 
development of machine learning techniques, especially deep learning techniques, it is 
crucial to consider symbol error ratio (SER) and complexity when applying algorithms 
[1]. Massive multi-input multi-output (MIMO) is a key technology in B5G, where tens, 
hundreds or thousands of antennas are equipped at the base station. This system makes 
the signal detection problem a big challenge, because the computational complexity of 
the detector increases with the number of antennas [2, 3]. Therefore, how to find a bal-
ance between detection accuracy and complexity in massive MIMO signal detection has 
become a hot topic of research for domestic and foreign scholars.
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In conventional signal detection methods, maximum likelihood (ML) is a nonlin-
ear maximum likelihood detector. However, its complexity increases exponentially as 
the number of transmitting antennas increases, hindering its implementation in practi-
cal MIMO systems [2]. The spherical decoding (SD) detector [3] and the k-best detector 
[4] are two variants of ML detectors that balance computational complexity and SER by 
controlling the number of nodes in each search phase. Unfortunately, QR decomposition 
in these nonlinear detectors leads to high computational complexity and low parallelism 
because of the inclusion of unfavorable matrix operations, such as element elimination. In 
contrast, suboptimal linear detectors, such as minimum mean square error (MMSE) [5] 
and zero forcing (ZF) [6], provide a better trade-off between SER and computational com-
plexity, but their complexity still reaches three times the number of transmitting antennas .

In order to reduce the complexity of matrix inversion, in 2013, Wu et  al. proposed 
an approximate inversion-based uplink detection algorithm in [7]. Over the next few 
years, a large number of MIMO detectors designed for specific massive MIMO systems 
continued to appear. The main idea of the proposed method is to use iterative methods 
to approximate the inverse of a matrix or to avoid the computation of exact matrices. 
For example, the neumann series method (NS) [8], the newton iterative method (NI) 
[9], the Gauss-Seidel method (GS) [10], the successive super-relaxation method (SOR) 
[11], the jacobi (JA) method [12], the richardson method (RI) [13], the conjugate gradi-
ent method (CG) [14], the lanczos method ( LA) [15], residual method [16], coordinate 
descent method (CD) [17], belief propagation method (BP) [18], etc., these algorithms 
successfully reduce the complexity to O(M2) , but the SER is only close to MMSE.

In order to improve the performance of detection algorithms, [19–21] introduced 
deep learning into communication. These methods treat the functional blocks of wire-
less communication as black boxes and replace them with deep learning networks. The 
mapping relationship between input and output data is obtained by training a large 
amount of data in an offline training phase. However, deepening the network does not 
significantly improve the performance beyond a certain number of layers, for this rea-
son [22] proposed a parallel detection network (PDN), which consists of several uncon-
nected deep learning detection networks in parallel. By designing specific loss functions 
that reduce the similarity between detection networks, the PDN obtains considerable 
diversity results. These algorithms are pure black boxes and although they improve the 
performance of detection, they require a large amount of training data to learn a large 
number of parameters, the advantage of these algorithms is that they do not require the 
incorporation of communication knowledge. [23, 24] proposed a modern neural net-
work structure suitable for this detection task, detection network(DetNet). The struc-
ture of DetNet is obtained by expanding the iterations of the projected gradient descent 
algorithm into the network. [25, 26] proposed the orthogonal approximate message 
passing (OAMPNet), a model-driven deep learning network for multiple-input multiple-
output (MIMO) detection, and [27, 28] proposed MIMO detection network(MMNet), a 
deep learning MIMO detection scheme. The design of MMNet is based on the theory of 
iterative soft thresholding algorithms, which significantly outperforms existing methods 
on realistic channels of the same or lower computational complexity. These algorithms 
are purely white-box model iterative and have better performance than convolutional 
neural network (CNN), deep neural networks (DNN), but are not as applicable as its 
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wide range. In addition to these, there are BP-Net [29], CG-Net [30], which are networks 
changed based on approximation methods. [31] proposed a data-driven implementa-
tion of an iterative soft interference cancellation (SIC) algorithm, called DeepSIC. This 
method significantly outperforms model-based methods in the presence of channel state 
information (CSI) uncertainty, but the network is more complex and this method is a 
combination of black-box and white-box methods. Therefore, we know that deep learn-
ing methods can improve the performance of detection. However, when the number of 
antennas is large, deep learning not only requires high hardware requirements, but also 
requires training, which in reality, can have a significant delay.

Therefore, we consider using approximate inversion methods to reduce complex-
ity while using deep learning methods to improve SER. However, most of the above-
mentioned work is directed to a single-antenna user equipment (SAUE) system, and it is 
assumed that the channel matrix is independent, identically distributed (i.i.d) and obeys 
gaussian distribution. Unfortunately, in practice, because a user maybe equipped with 
several antennas, the antennas from the same user equipment (UE) are not sufficiently 
separated [32], so their transmission vectors are usually related. The spatial correla-
tion between antennas is a key factor affecting the performance of the massive MIMO 
(M-MIMO) system. Therefore, this paper also considers the multiple-antenna user 
equipment(MAUE) system while considering the SAUE system.

In this paper, we propose a model-driven deep learning detector network Block Gauss-
Seidel Network (BGS-Net) to solve the high complexity caused by the parallel operation 
of traditional Gauss-Seidel [10], which is based on the Gauss-Seidel iterative method . We 
reduce the complexity by converting large matrix inversions (D+ L)−1 to small matrix 
inversions and converting matrix-by-matrix to matrix-by-vector. This paper considers 
SAUE and MAUE systems [32, 33] under Rayleigh channels. In order to improve SER of 
BGS-Net under MAUE system, we improve the initial solution of BGS-Net by replac-
ing x0 = D−1HTy with x0 = A−1HTy . For A−1 , we use block matrix approximation to 
reduce its complexity. Simulation results show that compared with existing model-driven 
algorithms, BGS-Net has lower complexity and similar SER; good robustness, its perfor-
mance is less affected by changes in the number of antennas; SER is better than tradi-
tional Gauss-Seidel; Improved BGS-Net can improve the SER of BGS-Net.

This paper is organised as follows. Section  2 presents and analyses the channels 
required in this paper. Section  3 analyses the existing OAMPNet/MMNet-iid algo-
rithms. Section 4 proposes the algorithm BGS-Net, and explains why BGS-Net is pro-
posed. Section 5 analyses the problems that BGS-Net may encounter in MAUE systems 
and improve it, and proposes Improved BGS-Net. Section 6 analyses the complexity of 
BGS-Net and Improved BGS-Net in terms of their complexity. Experimental simula-
tions and discussion are performed in Section 7. Section 8 concludes the full paper.

1.1 � Notation

In this paper, lower-case and upper-case boldface letters are used to represent column vec-
tors and matrices, respectively . In denotes a unit matrix of size n. For any matrix A , AT , AH , 
tr(A) , and A+ represent the transpose, conjugate transpose, trace, and pseudo-inverse of 
A . NC(si; ri, τ

2
t ) denotes the univariate Gaussian distribution of a random variable si with 
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mean ri and variance τ 2t  . The operator �·� denotes the vector/matrix parametrization. The 
notation diag(x) creates a matrix with x in the diagonal and diag(X) is the vector of the 
diagonal elements of X.

2 � Background

2.1 � SAUE System

Consider an uplink massive MIMO system that uses Nr antennas at the BS to serve Nt sin-
gle-antenna user terminals simultaneously, where Nr ≫ Nt . The SAUE system can be sim-
ply expressed as:

where ỹ ∈ CNr×1 , H̃S ∈ CNr×Nt , x̃ ∈ CNt×1 , and ñ ∈ CNr×1 are the receive symbol, chan-
nel response, transmit symbol, and system noise respectively. Nr and Nt are the numbers 
of receive and transmit antennas, respectively. ñ is distributed as CN (0, σ 2) . For signal 
detection, the complex-valued system model (1) is converted to the corresponding real-
valued system model as

where y =
[

ℜ(ỹ)T ℑ(ỹ)T
]T

∈ R2Nr×1 , x =
[

ℜ(x̃)T ℑ(x̃)T
]T

∈ R2Nt×1 , all x come 
from the discrete constellation diagram S = {s1, s2, ..., sM},

n =
[

ℜ(ñ)T ℑ(ñ)T
]T

∈ R2Nr×1 , HS =

[

ℜ(H̃S) − ℑ(H̃S)

ℑ(H̃S) ℜ(H̃S)

]

∈ R2Nr×2Nt , N = 2Nr , 

M =2Nt . HS denotes the flat Rayleigh fading channel matrix whose entries are assumed to 
be independently and identically distributed (i.i.d.) with zero mean and variance (1/N)I . 
Since each user is a single antenna, the correlation between them is not considered.

2.2 � MAUE System

Consider an uplink massive MIMO with a multi-antenna user equipment (MAUE) system. 
A BS with Nr antennas communicates with m UEs, and each UE is equipped with mUE 
antennas, as shown in Figure  1. The total number of antennas on the user side is 
Nt = m ×mUE . The transmission vector is expressed as x = [x1, · · ·, xi, · · ·, xm]

T , where 
xi =

[

xi1, · · ·, xij , · · ·, ximUE

]

∈ R1×mUE , E
{∣

∣

∣
x2ij

∣

∣

∣

}

= 1 . N = 2Nr , M = 2Nt , the vector 

y ∈ RN×1 received by the BS:

where HM = [HM1, · · ·,HMi, · · ·,HMm] ∈ RN×M , HMi = HMi1, · · ··,HMimUE
 . 

HMij ∈ RN×1 , represents the uplink from the jth antenna of the ith UE to the BS, 
n ∈ RN×1 is an additive white gaussian noise (AWGN) vector with a mean value of zero 
and a variance of σ 2/2 . The Kronecker channel model [34] is: HM = R1/2HST

1/2 . Spatial 
correlation matrix R ∈ RN×N and T ∈ RM×M.

(1)ỹ = H̃Sx̃ + ñ

(2)y = HSx + n

(3)y = HMx + n
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where ξr and ξt are correlation coefficients, Rpq is the value of the receive antenna cor-
relation matrix R , Tpq is the value of the transmit antenna correlation matrix T for 
each user. It can be seen that the transmitting antennas from the same terminal usually 
have correlation. However, most of the current papers do not consider the correlation 
between antennas from the same terminal, which is impractical and inaccurate. There-
fore, according to the actual situation of propagation, ξr and ξt are respectively defined 
as the correlation factors of the receiving antenna and the transmitting antenna from the 
same terminal. Note that the correlation between different terminal antennas is ignored 
[32, 33].

2.3 � Channel characteristics

In this section, SAUE and MAUE system characteristics are analyzed. Nt = 4 , Nr = 32 
are used here. It can be seen from Figure 2 that when the SAUE system has a large-scale 
antenna and α = Nr/Nt is large, the channel appears channel hardening, and HT

SHS is diag-
onally dominant, so the approximate inversion method is very suitable for this environment. 
Figure  3 shows that in the MAUE system environment with ξr = 0, ξt = 0.2,mUE = 2 , 
although HT

MHM is still dominant diagonally and exhibits blockiness, it can be seen from 
the color depth that the non-diagonal elements on both sides of the diagonal elements have 
begun to have an impact on the diagonal elements and cannot be ignored. Figure 4 shows 
that in the MAUE system environment with ξr = 0, ξt = 0.4,mUE = 4 , the two sides of the 
diagonal element have had a great impact on the diagonal element, and it is difficult to get a 

(4)Rpq =

{

(

ξre
jθ
)2(q−p)

if p ≤ q
R∗
qp if p > q

(5)Tpq =

{

(

ξt e
jθ
)2(q−p)

if p ≤ q
T ∗
qp if p > q

Fig. 1  An uplink M-MIMO system
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Fig. 2  HT

S
HS in single-antenna user equipment (SAUE) system

Fig. 3  HT

M
HM in multi-antenna user equipment (MAUE) with ξr = 0, ξt = 0.2,mUE = 2

Fig. 4  HT

M
HM in multi-antenna user equipment (MAUE) with ξr = 0, ξt = 0.4,mUE = 4
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good approximation by the approximation method. Figure 5 shows that in the MAUE sys-
tem environment with ξr = 0.2, ξt = 0.4,mUE = 4 , the non-diagonal elements around the 
diagonal elements have a serious impact on the diagonal elements, and the approximation 
effect is very poor.

The Marchenko-Pasture theorem of random matrix theory shows that when each ele-
ment of the matrix channel H is independently and identically distributed at zero mean 
and the variance is 1/N, the number of rows N and the number of columns M tend to 
Infinity, that is, M,N → ∞ , and the ratio of the two tends to a constant ( N/M → β ), the 
diagonal elements of the matrix HTH tend to a certain constant, and the off-diagonal 
elements tend to zero. The following analyzes the symmetry of HTH under SAUE and 
MAUE systems: Known from formulas (4) and (5): R and T are symmetric matrices, so 
suppose

and

where R1,R2 ∈ RN/2×N/2 , 
[

T1 T2

TT
2 T1

]

∈ RmUE×mUE , T1,T2 ∈ RmUE/2×mUE/2 . 

(a)	 HT
SHS under SAUE system. From equation (2) we know that: 

(6)R =

[

R1 R2

RT
2 R1

]

(7)T =















T1 T2 · · · 0 0

TT
2 T1 · · · 0 0
...

...
. . .

...
...

0 0 · · · T1 T2

0 0 · · · TT
2 T1















Fig. 5  HT

M
HM in multi-antenna user equipment (MAUE) with ξr = 0.2, ξt = 0.4,mUE = 4
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 It can be seen from (8) that the upper left matrix and the lower right matrix of 
HT

SHS are the same, and the matrix is symmetric about the main diagonal.
(b)	HT

MHM under MAUE system (only T1/2 ) 

 where HS = [HS1, . . . ,HSi, . . . ,HSm] ∈ RN×M . It can be seen from (8) that the 
upper left corner matrix and the lower right corner matrix of HT

SHS are the same, 
and the matrix is symmetric about the main diagonal. We rewrite (8) formula 
HT

SHS =

[

Q1 Q2

QT
2 Q1

]

 , and rewrite (7) formula T1/2 =

[

K
1/2
1 0

0 K
1/2
1

]

 , where 

K1 ∈ RM/2×M/2 , Q1 ∈ RM/2×M/2 , Q2 ∈ RM/2×M/2 . Bringing T into equation (9), 
you can write equation (9) as 

 Therefore, the upper left corner matrix of HT
MHM is the same as the lower right 

corner matrix, and the matrix is symmetric about the main diagonal.
(c)	 HT

MHM under MAUE system (only T1/2 and R1/2 ) 

 where 

 After calculation, we can find that the matrix 
(

R1/2HS

)T
R1/2HS is symmetric 

about the main diagonal, but the upper left matrix and the lower right matrix are 
not the same, we set 

(8)

HT
SHS =

[

ℜ(H̃S)
T ℑ(H̃S)

T

−ℑ(H̃S)
T ℜ(H̃S)

T

] [

ℜ(H̃S) − ℑ(H̃S)

ℑ(H̃S) ℜ(H̃S)

]

=

[

ℜ(H̃S)
Tℜ(H̃S)+ ℑ(H̃S)

Tℑ(H̃S) −ℜ(H̃S)
Tℑ(H̃S)+ ℑ(H̃S)

Tℜ(H̃S)

−ℑ(H̃S)
Tℜ(H̃S)+ℜ(H̃S)

Tℑ(H̃S) ℑ(H̃S)
Tℑ(H̃S)+ℜ(H̃S)

Tℜ(H̃S)

]

(9)HT
MHM =

(

HST
1/2

)T
HST

1/2 = T1/2HT
SHST

1/2

(10)

T1/2HT
SHST

1/2 =

[

K
1/2
1 0

0 K
1/2
1

]

[

Q1 Q2

QT
2 Q1

]

[

K
1/2
1 0

0 K
1/2
1

]

=

[

K
1/2
1 Q1K

1/2
1 K

1/2
1 Q2K

1/2
1

K
1/2
1 QT

2 K
1/2
1 K

1/2
1 Q1K

1/2
1

]

(11)
HT

MHM =
(

R1/2HST
1/2

)T(

R1/2HST
1/2

)

=
(

T1/2
)T(

R1/2HS

)T
R1/2HST

1/2

(12)

R1/2HS =

[

R
1/2
1 ℜ(H̃S)

T − R
1/2
2 ℑ(H̃S)

T R
1/2
1 ℑ(H̃S)

T + R
1/2
2 ℜ(H̃S)

T

(

RT
2

)1/2
ℜ(H̃S)

T − R
1/2
1 ℑ(H̃S)

T
(

RT
2

)1/2
ℑ(H̃S)

T + R
1/2
1 ℜ(H̃S)

T

]

(13)
(

R1/2HS

)T
R1/2HS =

[

Z1 Z2

ZT
2 Z3

]
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where Z1 ∈ RM/2×M/2 , Z2 ∈ RM/2×M/2 , Z3 ∈ RM/2×M/2 . Substitute (13) into 
HT

MHM , get 

 It can be seen from formula (14) that the upper left corner matrix and the lower 
right corner matrix of HT

MHM are different, but the matrix is symmetric about the 
main diagonal.

3 � Related work
The goal of the receiver is to calculate the maximum likelihood (ML) estimate x̂ of x set as

However, its complexity is too high. In the past few decades, researchers have been stud-
ying various detectors to reduce their complexity while maintaining their SER.

3.1 � OAMPNet

OAMPNet is a model-driven DL algorithm for MIMO detection derived from orthogonal 
approximate matching tracking (OAMP). Compared with approximate message passing 
(AMP), the advantage of OAMP is that it can be applied to unitary invariant matrices, while 
AMP is only applicable to Gaussian measurement matrices. OAMPNet has better perfor-
mance than OAMP and can be adapted to various channel environments by using a num-
ber of learnable variables. The algorithm for OAMPNet is as follows.

Step 1:We need to design a linear detector. v2t  is the variance of the nonlinear estimation 
error

here Wt is the optimal W in OAMP in [35]

In this way, the value of the linear estimate can be obtained

(14)

HT
MHM =

[

K
1/2
1 0

0 K
1/2
1

]

[

Z1 Z2

ZT
2 Z3

]

[

K
1/2
1 0

0 K
1/2
1

]

=

[

K
1/2
1 Z1K

1/2
1 K

1/2
1 Z2K

1/2
1

K
1/2
1 ZT

2K
1/2
1 K

1/2
1 Z3K

1/2
1

]

(15)x̂ = arg min
x∈S

∥

∥y −Hx
∥

∥

2

(16)v2t =

∥

∥y −Hx̂t
∥

∥

2

2
−N

σ 2

2

tr
(

HTH
)

(17)Ŵt = v2tH
T

(

v2tHHT +
σ 2

2

)−1

(18)Wt =
M

tr
(

ŴtH
)Ŵt

(19)rt = x̂t + γtWt

(

y −Hx̂t
)
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Step 2:We take the linear detection estimates as input and perform nonlinear detection

τ 2t  is the variance of the linear estimation error

p(xi) is the prior probability

Bring τ 2t  and p(xi) into E{x|rt , τt}

In this way, the input value of the (t+1) layer can be obtained

The performance of the OAMPNet detection algorithm is very good, and there are only 
two training parameters (γt , θ2t ) , but each layer of Ŵt needs to be calculated once, and 
each calculation requires a pseudo-inverse, which brings great complexity, not suitable 
for massive MIMO, suitable for medium-scale MIMO [25, 26].

3.2 � MMNet‑iid

The main idea of MMNet-iid is to introduce an appropriate degree of flexibility in the 
linear and denoising components of the iterative framework while maintaining its linear 
plus non-linear structure [27, 28].

Step 1: We need to design a linear detector to estimate zt.

Step 2:We take zt as input and perform nonlinear detection. σ 2
t  is the variance of the 

linear detection estimation error

ηt(zt; σ
2
t ) is a nonlinear detection estimate

In this way, the input of the next layer can be obtained

(20)Ct = I− θ2t WtH

(21)τ 2t =
1

M
tr(CtC

T
t )v

2
t +

θ2t σ
2

M
tr(WtW

T
t )

(22)p(xi) =
∑

j∈M
1√
M
δ(xi − sj)

(23)E{xti|rti, τt} =

∑

si∈S
siNc(si; rti, τ

2
t )p(si)

∑

si∈S
Nc(si; rti, τ

2
t )p(si)

(24)x̂t+1 = E{x | rt , τt}

(25)zt = x̂t + θ
(1)
t HT(y −H x̂t)

(26)σ 2
t =

θ
(2)
t

M

(

�I− AtH�2F

�H�2F

[

∥

∥y −H x̂t
∥

∥

2

2
−Nrσ

2
]

+
+

�At�
2
F

�H�2F
σ 2

)

(27)ηt(zti; σ
2
t ) =

1

Z

∑

si∈S
siexp(−

�zti−si�
2

σ 2
t

)

(28)x̂t+1 = ηt(zt; σ
2
t )
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where Z =
∑

si∈S
exp(−�zti−si�

2

σ 2
t

) , At = θ
(1)
t HT . It has two training parameters (θ(1)t , θ

(2)
t ) , 

and its complexity is much smaller than OAMPNet. MMNet-iid performs well when the 
number of antennas is large and the linear Gaussian channel is good, and has poor per-
formance in correlated channels or when the number of antennas is low.

4 � The proposed BGS‑Net method

4.1 � Gauss‑Seidel iterative method

GS is one of the common iterative methods used to solve systems of linear equations. If 
a system of linear equations Ax = b is required to be solved, it will be decomposed as 
follows.

The iterative formula of GS [36] is

For each layer, bi is used to subtract the updated 
∑i−1

j=1 aijx
(k+1)
j  and the not yet updated 

∑n
j=i+1aijx

(k)
j  , its matrix representation is

GS is used in communication, that is, the Hermitian positive semi-definite matrix A is 
decomposed into strictly lower triangular terms L , strictly upper triangular terms U and 
diagonal terms D

Then the problem we solve is

Then solve a set of linear equations by calculating the solution of the iterative be havior 
[37].

(29)ai1x1 + ai2x2 + · · · + ainxn = bi (i = 1, 2, . . . , n)

(30)
x
(k+1)
i = (bi −

∑i−1
j=1 aijx

(k+1)
j −

∑n
j=i+1aijx

(k)
j )/aii

(i = 1, 2, . . . , n; k = 0, 1, 2, . . . , t)

(31)x(k+1) = D−1(−Lx(k+1) −Ux(k) + b)

(32)(D+ L)x(k+1) = −Ux(k) + b

(33)x(k+1) = (D+ L)−1(−Ux(k) + b)

(34)A = HTH+
σ 2

2
I

(35)A = D+ L+U

(36)Ax = HTy

(37)x̂(n) = (D+ L)−1[x̂MF −Ux̂(n−1)]
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where x̂(n) is the estimated signal, iteratively refined in each iteration and x̂MF = HTy , 
replacing b in (32). Here x̂(0) is initialised to D−1HTy . Gauss-Seidel has good conver-
gence, and is guaranteed to converge when A is diagonally dominant or symmetrically 
positive definite. This is because in MAUE systems, A is not guaranteed to be diagonally 
dominant, but A is definitely symmetric positive definite. The following is a proof of con-
vergence of Gauss-Seidel for diagonally dominant or symmetric positive times, respec-
tively [38].

Theorem 1  When A is diagonally dominant, Gauss-Seidel can guarantee convergence.

Proof of Theorem 1. For strictly diagonally dominant matrix A , its diagonal elements 
aii  = 0, i = 1, 2, . . . , n , so

Suppose BG = −(D+ L)−1U , the characteristic value is � , then the characteristic equa-
tion is

When the determinant is zero, the equation has a non-zero solution. Use contradiction: 
suppose |�| ≥ 1,

It is a strictly diagonally dominant matrix, so it is non-singular, that is, 
|�(D+ L)+U| �= 0 contradicts the eigenvalue � satisfying |�(D+ L)+U| = 0 . So 
|�| < 1 is ρ(BG) < 1 , when A is diagonally dominant, Gauss-Seidel converges.

Theorem 2  When A is symmetrically positive, Gauss-Seidel can guarantee convergence.

Proof of Theorem 2. Suppose BG = −(D+ L)−1U , the eigenvalue is � , and x is the 
eigenvector, then

Because A is positive definite, so p = xTDx > 0 , set −xTUx = a , then

(38)|D+ L| =
∏n

i=1aii �= 0

(39)
|�I− BG| =

∣

∣

∣
�I+ (D+ L)−1U

∣

∣

∣
=

∣

∣

∣
(D+ L)−1

∣

∣

∣
|�(D+ L)+U| = 0

⇒ |�(D+ L)+U| = 0

(40)�(D+ L)+U =









�a11 a12 . . . a1n
�a21 �a22 . . . a2n
... . . .

. . .
...

�an1 �an2 . . . �ann









(41)
− (D+ L)−1Ux = �x

→ −Ux = �(D+ L)x

→ −xTUx = �xT(D+ L)x

(42)xTAx = xT(D+ L+U)x = p− 2a > 0
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So |�| < 1 is ρ(BG) < 1 . When A is symmetric positive definite, Gauss-Seidel converges, 
and we divide the numerator and denominator of (44) by a2 at the same time, we get

From (45) we can see that the more diagonally dominant, the smaller the �2 , the faster 
the convergence.

4.2 � BGS‑Net architecture

In this section, a model-driven DL detector network (called BGS-Net) is proposed. The 
signal detector uses the Gauss-Seidel method and nonlinear activation to improve the 
detection performance. The only training parameters is � = γt , γt ∈ RM×1 . In the algo-
rithm (D+ L)−1 , x̂MF , U , tr(HTH) , 1M tr(CtC

T
t ) , 

σ 2

M tr(WtW
T
t ) , all of which need to be 

computed only once and then reused at each layer. In contrast, Wt and At for OAMPNet 
and MMNet-iid need to be calculated once per layer because of the training parameters 
present in them. The structure of BGS-Net is shown in Figure 6, which is an improved 
algorithm by adding a learnable vector variable γt . The network consists of Llayer cas-
caded layers, each of which has the same structure, including nonlinear estimator, error 
variance τ 2t  , and tied weights. The input of the BGS-Net network is x̂MF and the initial 
value x̂0 , and the output is the final estimate of the signal x̂Llayer . To make it easier to see 
the deep learning structure, see Figure 7. We first calculate ẑt and scalar τ 2t  through GS 
detection block, plus the constellation map S as the input of the network. We introduce a 

(43)� =
−xTUx

xT(D+ L)x
=

a

p− a

(44)�
2 =

a2

p2 − 2pa+ a2
=

a2

p(p− 2a)+ a2
< 1

(45)�
2 =

1

(
p
a − 1)2

Fig. 6  Structure of BGS-Net
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vector variable γt in nonlinear detection, and finally output x̂t+1 . The difference between 
model-driven and DNN is that many of the parameters of model-driven are fixed values 
obtained from past experience, while the parameters of DNN are all variable values.

Algorithm1: BGS-Net algorithm for MIMO detection

Input: Received signal y , channel matrix H , noise level σ 2/2

Initialize: x̂0 ← D−1HTy

1.ẑt = (D+ L)−1[x̂MF − Ux̂t ]

2.v2t =
�y−Hx̂t�

2

2
−N σ2

2

tr(HTH)

3.v2t = max(v2t , 10
−9)

4.τ 2t = 1
M
tr(CtC

T
t )v

2
t +

σ 2

M
tr(WtW

T
t )

5.τ 2t =
τ 2t
γt

6.x̂t+1 = E
{

x|ẑt , τt
}

where

(46)Wt = HT

(47)Ct = I−WtH

Fig. 7  Deep learning network neuron structure of BGS-Net
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where softmax(Vi) =
expVi

∑

j exp
Vj

 . It can be seen from Algorithm1 that we only have one 

training parameter per layer, and vector γt is used to adjust the variance τ 2t  which is an 
estimated value. Because 1M tr(CtC

T
t ) used is a constant value, it is multiplied by v2t  each 

time in τ 2t  , which saves a large amount of calculation. What we need to pay attention to 
is that when 4 → 5 , τ 2t  ’s dimension expansion to a vector τ 2t  .

4.3 � Low‑complexity algorithm for (D+ L)−1

In this section, the complexity of (D+ L)−1 will be reduced. The complexity in cal-
culating x̂t = (D+ L)−1[x̂MF −Ux̂t−1] is mainly concentrated in solving (D+ L)−1 . If 
the inverse is solved directly, the complexity of the algorithm will reach O(M3) , so a 
circular nesting method is proposed to reduce its complexity, as described below :

(48)
E
{

xti|ẑti, τti
}

=
∑

sj∈S
sj × p(sj/ẑti, τti)

=
∑

sj∈S
sj × softmax(

−�ẑti−sj�
2

τ 2ti
)

Fig. 8  Matrix solution for (D+ L)−1
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The first: From Eq. (30), the complexity of each row is M− 1 multiplication, 1 divi-
sion, for a total of M rows, so the complexity of one iteration is M2 . However, this 
method is not applicable to BGS-Net.

The second: Solve the lower triangular matrix in parallel, the structure is shown 
in Figure  8. For the inversion of the lower triangular matrix, we have the following 
properties:

where B , C , F have the same size. The main complexity of (37) is to solve (D+ L)−1 , 
which we know to be a lower triangular matrix, and use the above property for its 
inverse. It can be known from (8),(10) and (14) that when the system is SAUE or MAUE 
(only T ), it has the following (50) properties; when MAUE (both T and R ), there is no 
(50) property:

We can see from Figure  8 that the specific steps of the loop nesting method are as 
follows.

Step 1: Find the reciprocals of a1,1, a2,2, a3,3, . . . , , aM
2 ,M2

 and assign them to B−1
1,t  and F−1

1,t  , 

t ∈ (1, M4 ) respectively.
Step 2: Bring the resulting B−1

i,t  and F−1
i,t  , and the corresponding Ci,t , t ∈ (1, M

2i+1 ) into 
(49), we can get B−1

i+1,t and F−1
i+1,t , t ∈ (1, M

2i+2 ) . If B−1
i+1,t is an M2 × M

2  matrix, then the next 
step, otherwise loop the second step.

Step 3:In the case of Section 2.3 (a) (b), assign B−1 = B−1
i+1,t to F−1 ; otherwise, the same 

method as for B−1 , solve F−1 . In this way, we can obtain (D+ L)−1 =

[

B−1 0

−F−1CB−1 F−1

]

Note that we don’t need to find the value of (D+ L)−1 , just take the following formula 
to solve the linear detection term. (Because P1 ∈ RP×Q , P2 ∈ RQ×K , b ∈ RK×1 , we know 

(P1P2)b = P1(P2b) . Let b = x̂MF −Ux̂t =

[

c1
c2

]

 , where c1, c2 ∈ R
M
2 ×1 . So

(49)Y =

[

B 0
C F

]

→ Y−1 =

[

B−1 0

−F−1CB−1 F−1

]

(50)















a1,1 0 . . . 0 0
a2,1 a2,2 . . . 0 0
... . . .

. . . . . .
...

aM
2 −1,1 aM

2 −1,2 . . . aM
2 −1,M2 −1 0

aM
2 ,1 aM

2 ,2 . . . aM
2 ,M2 −1 aM

2 ,M2















=

















aM
2 +1,M2 +1 0 . . . 0 0

aM
2 +2,M2 +1 aM

2 +2,M2 +2 . . . 0 0

... . . .
. . . . . .

...
aM−1,M2 +1 aM−1,M2 +2 . . . aM−1,M−1 0

aM,M2 +1 aM,M2 +2 . . . aM,M−1 aM,M

















(51)
(D+ L)−1[x̂MF −Ux̂t ] =

[

B−1 0

−F−1CB−1 F−1

] [

c1
c2

]

=

[

B−1c1
−F−1CB−1c1 + F−1c2

]
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4.4 � Error analysis

In this section, we will study the reasons why BGS-Net can improve performance. The 
analysis of the error ( ̂xt − x ) is as follows:

Define the output error elint = zt − x for the linear phase at iteration t and the output 
error at the previous iteration t − 1 as edent−1 = x̂t − x . We can rewrite the update equa-
tion of Algorithm 1 based on these two output errors as:

and

From Figure 2, we know that under channel hardening conditions, the first term of equa-
tion (52) (I− (D+ L)−1(HTH+ σ 2

2 I)) tends to 0; the second term is divided into the 
effect of n and the effect of x , for the noise, where n =

√

σ 2/2 ∗ N (0, 1) , so when the 
signal-to-noise ratio(SNR) is small, HTn becomes larger, σ

2

2 x also becomes larger; when 
the SNR is large, HTn becomes smaller and σ 2

2 x also becomes smaller. And 
(D+ L)−1(HTn − σ 2

2 x) can in turn be reduced to 
(D+L)−1HTy− (D+L)−1(HTHx+ σ 2

2 x) = (D+L)−1HTy− (D+L)−1(HTH+
σ 2

2 I)x

  , 

which is approximated under good channel hardening as xMMSE − x , and as far as we 
know, the gap between xMMSE − x decreases as the channel hardens more. Under chan-
nel hardening conditions the error edent−1 from the previous stage, suppressed by 
(I− (D+ L)−1(HTH+ σ 2

2 I)) , is significantly attenuated. These calculations explain why 
BGS-Net has good performance on i.i.d Gaussian channels. Moreover, it is better than 
MMNet-iid’s I− θ

(1)
t HTH on correlated channels, where channel hardening disappears 

when the channel is correlated and there is no way for I− θ
(1)
t HTH to converge to 0 as 

the number of antennas increases, while I− (D+ L)−1(HTH+ σ 2

2 I) , since A is symmet-
ric and D+ L itself contains all the information in A . When the number of antennas 
increases, it can be approximated as I− A−1A , tending to 0 but not to 0.

For the effect of the nonlinear activation function, E
{

x|ẑt , τt
}

− x in (53) reduces the 
difference of x̂t+1 − x . The proof is as follows:

Assuming that the true value xti is s1 , then the above formula is equal to

(52)

elint = (D+ L)−1HTy − (D+ L)−1Ux̂t − x

= (D+ L)−1HT(Hx + n)− (D+ L)−1Ux̂t − x

= (D+ L)−1HT(Hx + n)− (D+ L)−1(A −D− L)x̂t − x

= edent−1 + (D+ L)−1HT(Hx + n)− (D+ L)−1(HTH+
σ 2

2
I)x̂t

= (I− (D+ L)−1HTH)edent−1 + (D+ L)−1(HTn −
σ 2

2
x̂t)

= (I− (D+ L)−1(HTH+
σ 2

2
I))edent−1 + (D+ L)−1(HTn −

σ 2

2
x)

(53)edent = E
{

x|ẑt , τt
}

− x

(54)E
{

xti|ẑti, τti
}

− xti =
∑

sj∈S
sj × softmax(

−�ẑti−sj�
2

τ 2ti
)− xti
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We know that the softmax soft decision uses an exponent that allows judgments with 
larger probabilities to become larger and smaller probabilities to become smaller, but the 
total probability is still 1. It can be seen that as the probability of judging s1 increases, the 
first term of equation (55) gets closer and closer to s1 , so using this activation function 
can further reduce the error.

5 � Improved BGS‑Net method

5.1 � Analysis of the problem

Under the MAUE system, A cannot be approximated as a diagonal matrix D , which has 
a great influence on x̂0 ← D−1HTy . x̂0 is a initial solution. If x̂0 is given well, then the 
number of iterations required is small. In the SAUE system, the value of x̂0 ← D−1HTy 
is approximately equal to (HTH+ σ 2

2 I)−1HTy , so the number of iterations is small, which 
can also explain why fast iterations converge under channel hardening conditions. In the 
MAUE system, HTH loses the diagonal dominance, and the sum of the other elements 
in the same line is no longer much smaller than the diagonal elements. D−1HTy cannot 
approach the real solution x , here x̂0 ← A−1HTy replaces x̂0 ← D−1HTy , so that no mat-
ter how the channel changes, a good initial solution can be extracted.

However, calculating A−1 has a high complexity, so the low-complexity method is used to 
approximate the solution of A−1.

5.2 � Improved BGS‑Net Design

In this section, BGS-Net is improved to adapt to the MAUE system by replacing 
x̂0 ← D−1HTy with x̂0 ← A−1HTy .

5.2.1 � Approximation of A−1

From Figures  3, 4 and 5, it can be seen that as the correlation coefficient increases, the 
channel is block-like in character. To approximate A−1 , as in Figure  9, divide the diago-
nal of matrix A into M

mUE
 small matrices, the size of the small matrice is mUE ×mUE , each 

(55)
∑

sj∈S
sj × p(sj/ẑti, τti)− s1

Fig. 9  Block matrix approximation of A
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small matrice in order is set to D(2,t) ∈ RmUE×mUE , (t ∈ [1 : T]) respectively. The matrix 
A is again divided into 4 matrices, with the upper left and lower right matrices set to 
D(1,1),D(1,2) ∈ RM/2×M/2 respectively. To ensure convergence of the Neumann Series, 
here, unlike in [32], the parameter αopt = 1+ η , η = M/N was introduced [39]. We do the 
following for all small matrices D(2,t) as D(2,t) = D(2,t) × αopt and find the inverse of each 
small matrix D−1

(2,t) . In order to get D−1
(1,1) , we don’t want to find it directly, because its com-

plexity is O(M3/4) , at this time D−1
(1,1) has both diagonal elements and non-diagonal ele-

ments, unlike only diagonal elements under channel hardening conditions. In this paper, 
the Neumann Series is used to approximate it [32, 40] by the following method:

use E to approximate the off-diagonal block part of D(1,1)

and use N to approximate D−1
(1,1)

So we can approximate D−1
(1,1) by kN times Neumann method.

As above, we can obtain D−1
(1,2) , and then splice D−1

(1,1) and D−1
(1,2) together

In this way we can get the required D−1 . The same can be obtained:

In this way, we get Ã−1 . Considering the high complexity of Eq. (64), we rewrite Eq. (64) 
without changing its principle [41]

where S0 = D−1(HTy) , ϑ = D−1E . In this way, we can bypass the high complexity of 
solving Eq. (64) and directly obtain x̂0 ← A−1HTy with low complexity.

(56)N = diag[D−1
2,1 ,D

−1
2,2 , . . . ,D

−1

2, T2
]

(57)D̃1,1 = diag[D2,1,D2,2, . . . ,D2,
T
2

]

(58)E = D̃1,1 −D(1,1)

(59)D−1
(1,1) = N

(60)kN times : D−1
(1,1) = NED−1

(1,1) +N

(61)D−1 = diag[D−1
(1,1),D

−1
(1,2)]

(62)E = D−1 − A

(63)Ã−1 = D−1

(64)kF times : Ã−1 = D−1EÃ−1 +D−1

(65)St = ϑSt−1 + S0 (kF ≥ t ≥ 1)
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5.2.2 � Offline training algorithm

A relatively good initial solution is obtained from the approximation of A in 5.2.1.

Algorithm2: Improved BGS-Net offline training

Input: Received signal y , channel matrix H , noise level σ 2/2

Initialize: x̂0 ← Ã−1HTy

1.ẑt = (D+ L)−1[x̂MF − Ux̂t ]

2.v2t =
�y−Hx̂t�

2

2
−N σ2

2

tr(HTH)

3.v2t = max(v2t , 10
−9)

4.τ 2t = 1
M
tr(CtC

T
t )v

2
t +

σ 2

M
tr(WtW

T
t )

5.τ 2t =
τ 2t
γt

6.x̂t+1 = E
{

x|ẑt , τt
}

6 � Complexity analysis

6.1 � Complexity of (D+ L)−1

In this section, the complexity of (37) is analysed. x̂t = (D+ L)−1[x̂MF −Ux̂t−1] in 
which the complexity is mainly solving (D+ L)−1 . If the inverse is solved directly, the 
complexity of the algorithm will reach O(M3) , so we use a nested loop method to reduce 
its complexity.

So the complexity calculation formula of (D+ L)−1 is: 

(a)	 When the system is SAUE or MAUE (only T ) 

 Because (D+ L)−1 only needs to be calculated once, the complexity of formula 
(37) is 124M

3 + 3
4 tM

2 + ( 13 + t)M.
(b)	 When MAUE (both T and R ) 

 So the complexity of formula (37) is 112M
3 + 3

4 tM
2 + ( 23 + t)M.

6.2 � Complexity of x̂0
In this section, the complexity analysis of x̂0 is carried out. The initial solutions of 
Improved BGS-Net and BGS-Net are different: 

(1)	 The complexity of x̂0 ← D−1HTy is: MN +M .

(66)

M

2
+ (2× (20)3 ×

M

8
× 2+ 2× (21)3 ×

M

16
× 2+ . . .

+2× (2log2 M−3)3 ×
M

2log2 M
× 2)+

M3

32
=

1

24
M3 +

1

3
M

(67)
2× [

M

2
+ (2× (20)3 ×

M

8
× 2+ 2× (21)3 ×

M

16
× 2+ . . .

+2× (2log2 M−3)3 ×
M

2log2 M
× 2)+

M3

32
] =

1

12
M3 +

2

3
M
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(2)	 The complexity of x̂0 ← A−1HTy is: From [32] we can see that the com-
plexity of (60) is kN−1

8 M3 + kN−2
4 mUEM

2 +Mm2
UE , and the complexity of 

ϑ is M2M
2 −M(M2 )

2 = 1
4M

3 , then the complexity of equation (64) becomes 
1
4M

3 + (kF +
1
2 )M

2 +MN . 

(a)	 When the system is SAUE or MAUE (only T ): 
kN+1
8 M3 + (

kN−2
4 mUE + kF +

1
2 )M

2 +Mm2
UE +MN

(b)	 When MAUE (both T and R ): 
kN
4 M3 + (

kN−2
2 mUE + kF +

1
2 )M

2 + 2Mm2
UE +MN

6.3 � Complexity comparison

This section will analyze the computational complexity according to the number of mul-
tiplications of different algorithms. Here Nr = 256 , Nt = 32 , kN = kF = 2 , mUE = 4 . 
From Table 1, we can know that in the environment of a (when the system is SAUE or 
MAUE (only T)), the complexity of BGS-Net is about 16% of MMSE, 0.01% of OAMP-
Net, 30% of TL-BD-INSA , and 20% of MMNet-iid; the complexity of Improved BGS-Net 
is about 38% of MMSE, 0.02% of OAMPNet, 42% of TL-BD-INSA, and 65% of MMNet-
iid. In the environment of b (when MAUE (with both T and R)), the complexity of BGS-
Net is approximately 19% of MMSE, 0.01% of OAMPNet, 32% of TL-BD-INSA, and 21% 
of MMNet-iid; the complexity of Improved BGS-Net is about 46% of MMSE, 0.02% of 
OAMPNet, 80% of TL-BD-INSA, and 52% of MMNet-iid. So our algorithm complexity 
is very low. From [28] we can know that the complexity of MMNet-iid nonlinear detec-
tion is O(M2) , while the complexity of BGS-Net’s nonlinear detection is much smaller 
than that of MMNet-iid nonlinear detection, and the complexity of nonlinear detection 
of MMNet-iid is much smaller than that of linear detection, so we ignore its complexity.

7 � Numerical results and discussion
In this section we give simulation results for MIMO detection of BGS-Net and Improved 
BGS-Net, and evaluate the performance by the symbol error rate(SER) for different sig-
nal-to-noise ratios(SNR). The SNR of the system, defined as

Table 1  Computational complexity comparison

Algorithm Number of multiplications

Cholesky MMSE [42] O(2M3 + (N+M)M)

OAMPNet [25] O(2tN3)

MMNet-iid [27] O(2tMN+ tM)

TL-BD-INSA [32] O( kN+kF
4

M3 + kN−2

2
mUEM

2 + (N+M+ 2m2
UE)M)

BGS-Net
{

a) O( 1
24
M3 + 3

4
tM2 +MN+M)

b) O( 1
12
M3 + 3

4
tM2 +MN+M)

Improved BGS-Net
{

a) O( 4+3kN
24

M3 + 4kF+(kN−2)mUE+2+3t

4
M2 + (N+m2

UE + t)M)

b) O( 1+3kN
12

M3 + 4kF+2(kN−2)mUE+2+3t

4
M2 + (N+ 2m2

UE + t)M)
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7.1 � Experimental description

BGS-Net and Improved BGS-Net simulations were implemented using Tensorflow. The 
number of layers T was set to 4. The training data consisted of a number of randomly 
generated pairs (x, y) . where the data x is generated by QPSK modulation symbols. We 
trained the network for 1000 iterations using stochastic gradient descent and the Adam 
optimiser. The learning rate was set to 0.001. kN = kF = 2 and in the experimental setup 
we chose l2loss as the cost function.

The different detectors are described in detail below, and in order to reduce the high 
latency of the deep learning method, all networks and iterations are set to 4 layers.

•	 MMSE: MMSE detector uses x̂ = (HTH+ σ 2

2 I)−1HTy.
•	 Gauss-Seidel: The maximum number of iterations is set to layer=4.
•	 TL_BD_INSA [32]: TL_BD_INSA is an improved Neumann series approximation 

algorithm based on two-level block diagonal.
•	 OAMPNet: It is a DL-based detector that develops the OAMP detector. In our sim-

ulation, the number of layers of OAMPNet is set to 4 layers, and each layer has 2 
learnable variables.

•	 MMNet-iid: MMNet-iid is specially designed for i.i.d. Gaussian channels. In our sim-
ulation, the number of layers of MMNet-iid is set to 4, and each layer has 2 learnable 
variables.

(68)SNR =
E�Hx�22

E�n�22

(69)l2loss =
1

Llayer

∑Llayer
t=1

∥

∥x̂t − x
∥

∥

2

2

Fig. 10  Effect of the number of network layers on SER under Nt = 4,Nr = 32 , QPSK, SAUE system
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•	 GS-Net: The structure of BGS-Net is shown in Section 4. It has 4 layers and each 
layer has 1 learnable vector variable.

•	 Improved BGS-Net: The structure of Improved BGS-Net is shown in Section  5, it 
has 4 layers with 1 learnable vector variable per layer. mUE = 2 when Nt = 4 or 8 ; 
mUE = 4 when Nt = 16 or 32.

Fig. 11  Effect of the ratio α between the receiving and transmitting antennas on the performance of the 
algorithm for Nt = 4 , SNR=3dB, QPSK, SAUE system

Fig. 12  SER performance comparison of different algorithms under Nt = 4,Nr = 40 , QPSK, SAUE system
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7.2 � SAUE system

The performance of BGS-Net was tested on the SAUE system using QPSK modulation; 
the SNR was 3dB during training.

7.2.1 � Convergence analysis

As shown in Figure  10, the convergence speed of BGS-Net was tested for different 
network layers with the same SNR of 3dB and the same number of antennas Nr = 32 , 
Nr = 4 . It can be observed that the 3-layer BGS-Net has converged, while MMNet-iid 

Fig. 13  SER performance comparison of different algorithms under Nt = 4, Nr = 32 , QPSK, SAUE system

Fig. 14  SER performance comparison of different algorithms under Nt = 8, Nr = 64 , QPSK, SAUE system
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needs at least 7 layers to converge and OAMPNet needs 4 layers which indicates that 
BGS-Net converges fastest in the SAUE system environment. The SER of BGS-Net is 
much better than that of MMNet-iid in the SAUE system, but there is still a gap between 
the SER of BGS-Net and that of OAMPNet.

7.2.2 � Impact of ratio α

This section analyzes the effect of the ratio α of the receiving antenna and the trans-
mitting antenna on the performance of the algorithm. We set Nt = 4 , SNR=3dB, and 
compare the performance of the algorithm when Nr = 24, 32, 40 , respectively. As shown 
in Figure 11, it is found that as the ratio α increases, the lower the SER, the smaller the 
gap between the algorithms. Studying Nt = 4,Nr = 40 separately, as shown in Figure 12, 
BGS-Net can approximate the performance of OAMPNet with much lower complexity. 
When Nr = 24 , the gap between BGS-Net and OAMPNet is 9× 10−5 ; when Nr = 40 , 
the gap between BGS-Net and OAMPNet is 3× 10−7.

7.2.3 � Impact of the number of antennas

This section analyzes the influence of the number of antennas on the performance of 
the algorithm, and sets the ratio α as a fixed value, that is, α = 8 . As shown in Figure 13, 
Figure 14, and Figure 15, when the number of antennas increases, the performance of all 
algorithms is improving, the performance of MMNet-iid changes the most, and the per-
formance of BGS-Net changes little. Affected by the number of antennas is small, which 
shows that BGS-Net is very robust. At the same time, BGS-Net has always been better 
than Gauss-Seidel, which shows that the nonlinear activation function improves the per-
formance of Gauss-Seidel.

Fig. 15  SER performance comparison of different algorithms under Nt = 16, Nr = 128 , QPSK, SAUE system
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7.2.4 � Effect of modulation order

This section analyzes the impact of modulation methods on algorithm performance. 
We compare the performance of MMSE, Gauss-Seidel, and BGS-Net under QPSK and 
16QAM. When the test SNR is set to 5-9dB, the training test ratio is set to 7dB. As 

Fig. 16  Comparison of the effect of different modulation methods on SER for Nt = 32, Nr = 256 , SAUE 
system

Fig. 17  Effect of number of network layers on SER for Nt = 4, Nr = 32 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2
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shown in Figure 16, it is found that when the modulation order increases, the perfor-
mance of the algorithm decreases, but the performance of BGS-Net is always better than 
Gauss-Seidel, and the performance of Gauss-Seidel is close to that of MMSE.

Fig. 18  Effect of the ratio α between the receiving and transmitting antennas on the performance of the 
algorithm for Nt = 4 , SNR=4dB, QPSK, MAUE system with ξr = 0, ξt = 0.2

Fig. 19  SER performance comparison of different algorithms for Nt = 4, Nr = 44 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2
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7.3 � MAMU system

The MAUE system uses QPSK modulation, and the SNR during training is 4dB.

7.3.1 � Convergence analysis

In order to study the performance of the algorithm, what is the difference between the 
MAUE system and the SAUE system. As shown in Figure  17, we tested the conver-
gence speed of BGS-Net and Improved BGS-Net at different network layers under the 
same SNR of 4dB and the same number of antennas Nt = 4,Nr = 32 , and found that 
the 3-layer Improved BGS-Net has converged, and the BGS-Net and OAMPNet require 
4-layer can converge, while MMNet-iid needs 7-layer network to converge. The per-
formance of MMNet-iid is much lower than that of other algorithms, while the perfor-
mance of BGS-Net and Improved BGS-Net maintains a slight performance gap with 
OAMPNet, and the performance of Improved BGS-Net is better than BGS-Net.

7.3.2 � Impact of ratio α

This section analyzes the effect of α on the performance of the algorithm under ξr = 0 , 
ξt = 0.2 , we set Nt = 4 , SNR=4dB, and compare the performance of the algorithm when 
Nr = 32, 40 respectively. As shown in Figure 18, it is found that as α increases, the per-
formance of Improved BGS-Net is closer to that of OAMPNet. As shown in Figure 19, 
when the antenna ratio α = 11 , the performance gap between Improved BGS-Net and 
OAMPNet is 2.5× 10−6 . This shows that as long as α is large enough, the performance 
of Improved BGS-Net can approach OAMPNet with low complexity.

Fig. 20  SER performance comparison of different algorithms for Nt = 4, Nr = 32 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2
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7.3.3 � Impact of the number of antennas

This section analyzes the influence of the number of antennas on the performance of 
the algorithm, we set α to a constant value, i.e. α = 8 . The performance of the algorithm 
is compared for Nt = 4,Nr = 32/Nt = 8,Nr = 64/Nt = 16,Nr = 128 respectively, as 

Fig. 21  SER performance comparison of different algorithms for Nt = 8, Nr = 64 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2

Fig. 22  SER performance comparison of different algorithms for Nt = 16, Nr = 128 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2



Page 30 of 38Yao et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:51 

shown in Figures. 20, 21, and 22. It is found that the performance gap between Improved 
BGS-Net and BGS-Net decreases as the number of antennas increases in the ξr = 0 , 
ξt = 0.2 environment, while at the same time the MMNet-iid performance improves 
much faster than the others, suggesting that the impact brought by correlation can be 
improved by increasing the number of antennas in this environment. The fact that our 
proposed algorithm is consistently better than TL_BD_INSA suggests that Improved 

Fig. 23  Effect of different modulation orders on SER performance for Nt = 32, Nr = 256 , MAUE system with 
ξr = 0, ξt = 0.2

Fig. 24  SER performance comparison for Nt = 8, Nr = 64 , QPSK, MAUE system with ξr = 0, ξt = 0.2 or 0.4
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BGS-Net does improve the performance of the algorithm based on using TL_BD_INSA 
as the initial solution.

7.3.4 � Effect of modulation order

This section analyzes the effect of modulation on the performance of the algorithm. We 
compare the performance of MMSE, Gauss-Seidel, BGS-Net, and Improved BGS-Net 

Fig. 25  SER performance comparison of different algorithms for Nt = 16, Nr = 128 , QPSK, MAUE system with 
ξr = 0, ξt = 0.2 or 0.4

Fig. 26  SER performance comparison of different algorithms for Nt = 16, Nr = 128 , QPSK, MAUE system with 
ξr = 0 or 0.2, ξt = 0.4
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under QPSK and 16QAM. As shown in Figure 23, it is found that the larger the modula-
tion order, the lower the performance of the algorithm, and the gap between Improved 
BGS-Net and BGS-Net has increased a bit. Under QPSK, BGS-Net coincides with 

Fig. 27  SER performance comparison of different algorithms for Nt = 32, Nr = 256 , QPSK, MAUE system with 
ξr = 0 or 0.2, ξt = 0.4

Fig. 28  Under different antenna configurations, when the SER reaches 10−5 in the SAUE system and the 
MAUE ( ξr = 0, ξt = 0.2 , mue=2) system, the SER reaches 10−4 in the MAUE ( ξr = 0, ξt = 0.4 , mue=4) system 
Required number of network layers
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Improved BGS-Net at 5dB; under 16QAM, Improved BGS-Net has always been better 
than BGS-Net.

7.3.5 � Effect of transmit correlation

To explore the effect of the correlation between the user’s multiple antennas on the 
performance of the algorithm, we made two sets of comparisons, one for the perfor-
mance of the algorithm with Nt = 8,Nr = 64, ξr = 0, ξt = 0.2 or 0.4 , as shown in Fig-
ure 24. one for the performance of the algorithm with Nt = 16,Nr = 128, ξr = 0,

ξt = 0.2 or 0.4 , as shown in Figure 25. it was found that when the greater the cor-
relation between multiple antennas, the lower the performance of the algorithm and 
the greater the difference between Improved BGS-Net and BGS-Net, which sug-
gests that our improvements can make BGS-Net better adapted to the MAUE system 
environment.

7.3.6 � Effect of receive correlation

This section analyzes the impact of the correlation between the multiple antennas of 
the BS on the performance of the algorithm. We have made two comparisons, one 
is the performance of the algorithm under Nt = 16,Nr = 128, ξr = 0 or 0.2, ξt = 0.4 
, As shown in Figure  26. One group is the performance of the algorithm under 
Nt = 32,Nr = 256, ξr = 0 or 0.2, ξt = 0.4 , as shown in Figure  27. It is found that 
the greater the correlation between the multiple antennas of the BS, the lower the 

Table 2  When Nt = 8, Nr = 64 , the required complexity corresponding to Figure  28 (calculated 
according to Table 1, based on the complexity of MMSE, NAN indicates that the performance cannot 
be achieved at this time)

Algorithms

Computing Complexity

ξr = 0, ξk = 0 ξr = 0, ξk = 0.2 ξr = 0, ξk = 0.4

MMNet − iid 1.93 3.23 NAN

OAMPNet 327.68 655.36 327.68

BGS − Net 0.40 0.40 0.52

Improved BGS − Net 0.61 0.64 0.61

Table 3  When Nt = 16, Nr = 128 , the required complexity corresponding to Figure  28 (calculated 
according to Table 1, based on the complexity of MMSE, NAN indicates that the performance cannot 
be achieved at this time)

Algorithms

Computing Complexity

ξr = 0, ξk = 0 ξr = 0, ξk = 0.2 ξr = 0, ξk = 0.4

MMNet − iid 0.78 2.35 NAN

OAMPNet 399.61 799.22 799.22

BGS − Net 0.25 0.27 0.36

Improved BGS − Net 0.46 0.48 0.52
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Fig. 29  SER performance of the proposed detection algorithm when there is a channel estimation error in 
an uplink multi-user massive MIMO system, where Nt = 8, Nr = 64, σ 2

ǫ = 0.1

Fig. 30  The SER performance of the proposed detection algorithm when there is a channel estimation error 
in an uplink multi-user massive MIMO system, where Nt = 8, Nr = 64, σ 2

ǫ = 0.2

performance of the algorithm, and the greater the gap between Improved BGS-Net 
and BGS-Net. And in this environment, Improved BGS-Net and MMSE are very 
close, so our algorithm can only be applied to low and medium correlations.
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7.4 � Other performance analysis

7.4.1 � Comprehensive analysis of complexity and performance

From Figure 28, Table 2, and Table 3, we can see that when the number of antennas is the 
same, as the correlation degree increases, the proposed algorithm requires more layers to 
converge; To achieve the same performance, although BGS-Net and Improved BGS-Net 
require more layers than OAMPNet, their required complexity is much lower than OAMP-
Net. When the number of antennas is increased, the performance of the algorithm should 
be better, but since the number of individual terminals is changed from 2 to 4, more layers 
are required to converge.

7.4.2 � SER performance with channel estimation error

In the presence of channel estimation errors, the performance of the proposed algorithm 
in uplink multi-user massive MIMO systems is investigated. The estimated channel gain 
matrix is given by

where �H̃ ∈ CNr×Nt is the error matrix of the complex Gaussian terms of iid with zero 
mean and variance σ 2

ǫ  .
As shown in Figures 29 and 30, when there is a channel estimation error, the Improved 

BGS-Net performance is very close to OAMPNet; With the increase of channel estima-
tion error, the performance of all algorithms decreases, but the proposed detection algo-
rithm still has good SER performance and is more robust to channel estimation error.

(70)ˆ̃
H = H̃+�H̃ ∈ CNr×Nt

Fig. 31  SER performance of the proposed detection algorithm when there is noise estimation error in an 
uplink multi-user massive MIMO system, where Nt = 8, Nr = 64
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7.4.3 � SER performance with noise uncertainty

Next, we investigate the effect of noise variance uncertainty on the performance of dif-
ferent DL detectors. It is assumed that the noise variance is unknown in both training 
and testing phases. Therefore, when evaluating performance on test data, the noise vari-
ance is not the same as when training. Suppose the estimated noise variance is σ̂ 2 = ησ 2 . 
We also define the noise uncertainty factor (NUF) as NUF = 10log10η.

As can be seen in Figure 31, both MMNet-iid and OAMPNet incur considerable per-
formance losses when the estimated noise variance deviates from the true variance.
When the estimation of noise variance is inaccurate, the performance gap between 
OAMPNet and BGS-Net, Improved BGS-Net becomes more obvious. At the same time, 
BGS-Net and Improved BGS-Net are hardly affected by inaccurate estimation of noise 
variance and have good robustness.

8 � Conclusion
We propose a new model-driven deep learning network for MIMO detection, BGS-Net, 
and build on it with Improved BGS-Net. The network is based on Gauss-Seidel, coupled 
with a non-linear activation function, and exhibits excellent performance. The network 
needs to be optimised with few adjustable parameters and the training process is sim-
ple and fast. In this paper, single-antenna user equipment (SAUE) and multiple-antenna 
user equipment (MAUE) systems are considered under Rayleigh channels. Simulation 
results show that the performance of BGS-Net is significantly better than that of the 
Gauss-Seidel algorithm; the proposed scheme is suitable for massive MIMO with low 
complexity, and the performance can be improved by increasing the ratio between the 
receiving and transmitting antennas; the robustness of BGS-Net is good, and the per-
formance is little affected by the variation of the number of antennas; under the MAUE 
system, the performance of Improved BGS-Net is better than that of BGS-Net, and both 
are suitable for low-and medium-correlation MAUE systems.
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