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1 Introduction
Traditional radar multi-target tracking (MTT) algorithms usually process the pre-pro-
cessed data by compressing the single-frame data image into a finite set of points [1–3]. 
However, since the radar cross section (RCS) of the target fluctuates with the change 
of the viewing angle, the target’s echo amplitude does not exceed the pre-processing 
threshold at certain moments which results in the loss of the potential target informa-
tion. For weak targets, such as stealth aircraft, the problem is more serious. Unlike the 
traditional tracking algorithms, the track-before-detect (TBD) algorithm does not need 
to set a threshold, it is an effective method for weak target tracking. Most of the TBD 
implementation techniques are based on batch implementations, such as dynamic pro-
gramming (DP) [4–7]; however, they are not suitable for real-time operations due to the 
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high computational complexity. A well-established real-time TBD approach is based 
on recursive implementations [8–10] of particle filtering (PF) algorithm. Nonetheless, 
the PF algorithm cannot solve the problem well that the number of targets in MTT is 
unknown and time-varying.

Another class of real-time TBD tracking is one of the methods that use random finite 
set (RFS). The MTT algorithm based on RFS theory solves the problems of the time-
varying number of targets, data associations uncertainty, and detection uncertainty. The 
multi-Bernoulli (MB) filter [11–13] was another RFS-based MTT method proposed 
after the probability hypothesis density (PHD) filter [14–18] and the cardinalized PHD 
(CPHD) [19–21] filter. Compared to the two algorithms mentioned above, the MB filter 
has an advantage in terms of accuracy and computational complexity. It is worth noting 
that the above filters cannot provide identity information for multi-object estimation, 
and the existence of this problem drives the development of label RFS [22–24].

The key to the realization of MB-TBD is the calculation of the measurement likelihood 
ratio function (MLRF) based on the hidden state condition. It is worth noting that most 
MB-TBD algorithms in radar system choose the MLRF that only considers the ampli-
tude information, i.e., square modulus measurement likelihood ratio (SLR) [25, 26]. For 
SLR that discard phase information, there are two ways to deal with the amplitude fluc-
tuations. The first one is the overall likelihood ratio of the marginalized amplitude fluc-
tuation density [27]. However, in practice this treatment is difficult to obtain an exact 
solution and can only be achieved using numerical approximation. The second way con-
sists in marginalizing the likelihood in each cell independently [28]. The advantage of 
this heuristic second solution is that a closed form can be obtained. Unlike infrared and 
optical sensors, which receive real-valued measurements that contain only amplitude 
information, radar measurements are complex-valued, i.e., phase information in addi-
tion to amplitude information. The literature [29] shown that the phase loss leads to a 
filter sensitivity decrease.

In order to improve the recognition of targets from noise, Davey et al. [29] proposed 
a MLRF method containing phase information, called complex likelihood ratio (CLR). 
In addition, due to the change of target relative radar view and the influence of other 
unknown factors causing the target RCS to change, making the target amplitude infor-
mation is fluctuating. Typical radar fluctuating targets include Swerling 0, 1, 3 [30]. The 
literatures [30, 31] introduce CLR into PF-TBD and DP-TBD, respectively, and consider 
a single target with fluctuation types of Swerling 0, 1 and 3. Single-target tracking of 
Swerling 0, 1, 3 target types in the Rayleigh sea clutter model was realized by the use 
of finite difference with continuous-discrete filtering in [32]. It is worth noting that the 
measurements used in [25] are square measurements.

In the detection and tracking of fluctuating targets, the existing research mainly 
introduces CLR into the filter to solve the problem of the single fluctuating target. Less 
research has been done for multiple fluctuating targets with unknown and time-varying 
target numbers. The problem of the co-existence of stronger and weaker amplitude tar-
gets can occur during multiple fluctuating targets movements. The traditional MB-TBD 
filter ignores targets with weak amplitudes, which leads to errors in the estimation of 
the target number. What is more serious is that the birth prior information of the target 
of traditional MB-TBD is known, which is inconsistent with most practical situations. 
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Although there are some measurement-based adaptive birth algorithms, such as the lit-
erature [25, 33] and so on. However, during the fluctuation process of the target ampli-
tude, the amplitude information may be completely obscured in the noise for several 
consecutive frames. The maximum echo information received by the receiver may not 
be the surveillance target. When the fluctuating target reappears, the traditional MB-
TBD filter will fail because the target prior information is unknown at this time.

To address the above issues, this paper extends the radar CLR method to MB-TBD, 
and embeds the assumption that target amplitude fluctuation follows the Swerling 0, 1, 
3 model. Swerling statistical models belong to the RCS fluctuation statistical models, 
which are universal and include more radar target types. For example, Swerling 1 typical 
target such as small jet and Swerling 3 typical target such as helicopter. Specific contri-
butions of this paper are given as follows.

Firstly, the expression of SLR with amplitude fluctuations of type Swerling 0, 1, 3 is 
modified, the expression of CLR considering phase information is given, and CLR is 
used as the likelihood ratio function of MB-TBD instead of SLR. The simulation results 
show that the MB-TBD algorithm-based CLR under amplitude fluctuation has better 
detection tracking performance than SLR, and it can reduce the complexity of the algo-
rithm and run faster.

Secondly, in order to solve the problem that prior knowledge for target births is 
unknown, joint measurement likelihood ratio driven and successive-target-cancellation 
(STC)-based adaptive birth distribution for MB-TBD are proposed (LABer-STC-TBD), 
which is able to pick out the measurements that are likely to arise from real targets, so 
that the filter iteration can be maintained even when the target echo strength is covered 
below the noise.

Finally, after the update process, to account for the non-overlapping assumption, the 
overlapping estimates are merged. The Bernoulli components of the same target are 
merged at the end of the MB-TBD update, i.e., the trajectories are managed to estimate 
the correct number of targets after the MB-TBD filter is updated. The proposed trajec-
tory management algorithm is more accurate and has lesser target estimation error.

The rest of the paper is organized as follows. Section 2 presents the multi-target state 
model under RFS, TBD measurement model, and the multi-target tracking problem 
under RFS. Section 3 gives the formulas for the CLR and the SLR under the amplitude 
fluctuation type Swerling 0, 1, 3. Section 4 presents the MB-TBD filter, the adaptive birth 
distribution and the trajectory merging model under the amplitude fluctuation type, and 
gives the SMC implementation. The experimental results are followed in Sect. 5. Results 
and discussion are given in Sect. 6. Finally, we conclude in Sect. 7.

2  Models and background
2.1  Multi‑targets dynamic model

At time k, the kinematic state of the i-th individual target is represented by 
xk ,i = [xk ,i, ẋk ,i, yk ,i, ẏk ,i]T , where xk ,i, yk ,i  and 

(
ẋk ,i, ẏk ,i

)
 , respectively, denote the ith tar-

get position and velocity, T denotes the matrix transpose. For the multi-target tracking 
problem, since the number of targets is an unknown and random variable, the ranking 
of target states has no physical significance, so the state of the multi-target Xk can be 
expressed as a random finite set (RFS) [11], which is defined as follows
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where F(X ) denote the collection of all subsets of state space X  , and Nk denote the 
number of targets at time k.

The dynamics model of multi-target state can be expressed as:

where Xk is the multi-target state set at time k, Sk|k−1(ζ ) is surviving RFS of target at 
time k that evolves from a target with previous state ζ , Bk|k−1(ζ ) is the spawning RFS of 
target at time k, Ŵk is the RFS of spontaneous births at time k. In addition, it is assumed 
that each RFS in (2) is independent of each other.

2.2  Measurement model

In this paper we considered radar sensor is an active monopulse radar, with a linear 
phased array antenna. In the TBD algorithm, the sensor provides a two-dimensional 
image of the surveillance area at intervals T, the surveillance region scenario considered 
in this paper is shown in Fig. 1. As shown in Fig. 1, every image consists of Nc = Nr × Nθ 
resolution cells [30]. The measurement matrix can also be denote as a vector form 
Zk = [z(1)k , z

(2)
k , . . . , z

(Nc)
k ] . The measurement z(j)k  can be denoted as [30],

where ω(j)
k  is the complex Gaussian noise with covariance Ŵ . ϕk ,i is the unknown phase 

assumed to be uniformly distributed over the interval [0, 2π) at time k. hk (j)(xk .i) denotes 
the contribution intensity from the target cell j. H1 denote the assumption that there are 
Nk targets, and H0 denote that there is no target. ρk ,i is the amplitude of the target, in 

(1)Xk = {xk ,1, xk ,2, . . . , xk ,Nk
} ∈ F(X ).

(2)Xk =




�

ζ∈Xk−1

Sk|k−1(ζ )



 ∪




�

ζ∈Xk−1

Bk|k−1(ζ )



 ∪ Ŵk .

(3)z
(j)
k =

{
∑Nk

i=1 ρk ,ie
jϕk ,i hk

(j)(xk .i)+ ω
(j)
k H1

ω
(j)
k H0

Fig. 1 Radar surveillance region illustration
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this paper, which is modeled using the Swerling family of target amplitude fluctuation 
models, i.e., 

1 Under the Swerling 0 model, the amplitude ρk ,i of each target is equal to the param-
eter ρi.

2 For the Swerling 1 model, the amplitude ρk ,i of the target is assumed to submit to a 
Rayleigh distribution, E[ρ2

k ,i] = 2σ 2
ρi

 , the PDF of ρk ,i is as follows 

 .
3 When the amplitude fluctuation type is Swerling 3 and ρk ,i follows a chi-square dis-

tribution with four degrees of freedom, E
(

ρ2
k ,i

)

= νρi , the PDF of ρk ,i is as follows 

For equation 3, range and bearing radar covering the surveillance area in polar coor-
dinates are considered. For the range, it is assumed that the transmitted pulse is a linear 
frequency modulated signal with bandwidth B and duration Te , and the range ambiguity 
function is given by the [34]

where 
∣
∣τ l

∣
∣ = 2(rk − rl)/c , c is the speed of electromagnetic waves; rk =

√

x2k ,i + y2k ,i , 

rl = rmin +
(

l + 1
2

)

�r , l ∈ [0,Nr − 1] , �r = c
2B is range resolution.

At the receiver side, the radar consists of a linear phased array, where the spacing of 
the Na antenna is �2 and � is the wavelength of the carrier frequency. Then the bearing 
ambiguity function is given by the [31] as

where �m = π [sin (θk)− sin (θm)] , θk = arctan
(
yk
xk

)

 , θm = θmin +
(

m+ 1
2

)

�θ , 

m ∈ [0,Nθ − 1] , �θ = 1.722 �

Na
 represents the half-power beamwidth.

The ambiguity function in the range-bearing cell (l,m) is

The set of complete measurements collected up to time is given by

(4)pSw1(ρk ,i) =
ρk ,i

σ 2
ρ,i

exp

(

−
ρ2
k ,i

2σ 2
ρ,i

)

(5)pSw3
(
ρk ,i

)
=

8ρ3
k ,i

ν2ρi
exp

(

−
2ρ2

k ,i

νρi

)

(6)
hlr
(
xk ,i

)
=

sin

(

πBτ l

(

1−
∣
∣
∣τ l

∣
∣
∣

Te

))

πBτ l
,
∣
∣
∣τ

l
∣
∣
∣ ≤ Te

(7)hmθ (xk ,i) =
sin

(
Na�

m

2

)

Na sin
(
�m

2

)

(8)h(j)(xk) = hlr(xk)× hmθ (xk)

(9)Z1:k =
{
Zi, i = 1, 2 . . . k

}
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2.3  The optimal Bayesian filter

The finite sets statistics (FISST) proposed by Mahler provides a mathematical frame-
work for the problem of detection, tracking and classification of multi-target under uni-
fied Bayesian paradigm [11]. In FISST framework, given the measurements Zk at time 
k and the history of measurements Z1:k−1 , then the optimal multi-target Bayesian filter 
propagates RFS based on the posterior probability density pk|k(Xk |Z1:k) , its prediction 
and updating steps are as follows

where considering the function f: F(X ) → R , F(X ) denotes the set containing all sub-
sets of X  , the integral of the function f over a closed subset S of X  is given by

TBD uses the raw measurements generated by sensor. The measurement is an image 
composed of thousands or even millions of pixels, however the target does not affect all 
the pixels, but only occupies a small area of the image, which leads to an estimation of 
inefficient if we use p(Zk |Xk) directly. Define the proportion of the likelihood p(Zk |Xk) 
of the existing target to the likelihood p0(Zk) of no target [29].

It can be seen from the (13) that the calculation of the likelihood ratio is limited to the 
area around the target, which improves the efficiency of the calculation.

2.4  Basic MB‑TBD filter

A MB RFS X is a union of M independent Bernoulli RFS X that represents a fixed num-
ber M of targets. Therefore, the set 

{
r(i), p(i)

}M

i=1
 denotes the MB RFS, where r(i) is exist-

ence probability and p(i) is the spatial distribution of the i-th Bernoulli distribution. The 
probability density π(X) of a MB RFS is given by [11]

In [20], it is shown that the MB filtering method under RFS provides an accessible solu-
tion to the multi-target estimation problem for image measurements. If the posterior 
probability density πk−1 is in the form of MB, then the prediction πk|k−1 and the update 
πk|k in the case of non-overlapping targets will also to be in the form of MB. Hence, the 
prediction (10) and the update (11) can be approximated in the following way.

(10)pk|k−1(Xk |Z1:k−1) =
∫

pk|k−1(Xk |Xk−1)pk−1(Xk−1|Z1:k−1)δXk−1

(11)pk|k(Xk |Z1:k) =
pk(Zk |Xk)pk|k−1(Xk |Z1:k−1)

∫
pk(Zk |Xk)pk|k−1(Xk |Z1:k−1)δXk

(12)

∫

S
f (X)δX =

∞∑

n=0

1

n!

∫

S × · · · × S
︸ ︷︷ ︸

ntimes

f ({x1, . . . , xn})dx1 · · · dxn

(13)Lz(Zk |Xk) =
p(Zk |Xk)

p0(Zk)

(14)π({x1, . . . xn}) =
M∏

j=1

(1− rj)×
∑

1≤i1 �=···�=in≤M

n∏

j=1

r(ij)p(ij)
(
xj
)

1− r(ij)
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MB-TBD prediction: Given the posterior MB -TBD parameters 
πk−1 =

{(

r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
 at time k − 1 , the predict MB-TBD parameters are

where

where given previous state ζ , fk|k−1(· | ζ ) and pS,k(ζ ) denote the single target transition 
density and probability of target existence at time k, respectively. 

{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
 is 

parameters of the MB RFS of births at time k.
MB-TBD update: Given the predict MB-TBD parameters 

π k|k−1 =
{(

r
(i)
k−1, p

(i)
k−1

)}Mk|k−1

i=1
 , the update MB-TBD parameters are

where

Each pixel cell received by the radar sensor is a complex random variable containing 
both amplitude and phase information. The existing MB-TBD algorithm is the problem 
of target tracking in the non-fluctuating target, where the implementation only consid-
ers the amplitude information and ignores the phase information. In this paper, we con-
sider two implementations of MB-TBD in the case of target amplitude fluctuation, one 
is the SLR under the squared radar measurement, and the other is the CLR under the 
consideration of phase information.

3  Calculation of the SLR and CLR
The measurement (3) contains the unknown phase ϕk ,i and amplitude ρk ,i of the tar-
get. They are unknown, therefore, the likelihood p(Zk |Xk) or p

(
|Zk |2

∣
∣Xk

)
 cannot be 

directly calculated, and the phase ϕk ,i and amplitude ρk ,i need to be marginalized.

(15)πk|k−1 =
{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1

(16)r
(i)
P,k|k−1 =r

(i)
k−1

〈

p
(i)
k−1, pS,k

〉

(17)p
(i)
P,k|k−1(x) =

〈

fk|k−1(x | ·), p(i)k−1pS,k

〉

〈

p
(i)
k−1, pS,k

〉

(18)πk =
{(

r
(i)
k , p

(i)
k

)}Mk|k−1

i=1

(19)r
(i)
k =

r
(i)
k|k−1

〈

p
(i)
k|k−1, Lz

〉

1− r
(i)
k|k−1 + r

(i)
k|k−1

〈

p
(i)
k|k−1, Lz

〉

(20)p
(i)
k =

p
(i)
k|k−1Lz

〈

p
(i)
k|k−1, Lz

〉
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3.1  Calculation of the SLR

Denote the squared modulus vector of the complex measure is 
|Zk |2 =

[∣
∣
∣z

(1)
k

∣
∣
∣

2
,
∣
∣
∣z

(2)
k

∣
∣
∣

2
, . . . ,

∣
∣
∣z

(Nc)
k

∣
∣
∣

2
]

 . Assuming that pixel values are distributed inde-

pendently and that the target’s influence area does not overlap, then,

When the target does not exist, the likelihood p0(Zk) is [29]

(1) For Swerling 0, the Lz can be written as [29]

 where I0(·) is the modified Bessel function of the first kind.
(2) Modify the Lz of the Swerling 1 model in the literature [30], then,

then,

where �(j)k = σ 2
n + σ 2

ρi

∣
∣
∣h
(j)
k

∣
∣
∣

2

.

(3) Different from the expression of Lz by Swerling 3 in [30], this paper re-derives 
Swerling 3,

 where the derivation of Eq. (25) is analogous to Eq. (23).

(21)p
(

|Zk |2
∣
∣
∣xk

)

=
Nc∏

j=1

p

(∣
∣
∣z
(j)
k

∣
∣
∣

2
∣
∣
∣
∣
xk

)

(22)p0

�

|Zk |2
�

=
Nc�

j=1

�
�
�z
(j)
k

�
�
�

σ 2
n

· exp




−

�
�
�z
(j)
k

�
�
�

2

2σ 2
n






(23)Lz

�

|Zk |2
�
�
�xk

�

=
Nc�

j=1

exp




−

ρ2
i

�
�
�h
(j)
k

�
�
�

2

2σ 2
n




× I0






ρi

�
�
�h
(j)
k z

(j)
k

�
�
�

σ 2
n






(24)

Lz

�

|Zk |2
�
�
�xk

�

=
Nc�

j=1

� +∞

0

p

��
�
�z
(j)
k

�
�
�

2
�
�
�
�
xk , ρ

�

p0

��
�
�z
(j)
k

�
�
�

2
� p(ρ)dρ

=
Nc�

j=1

� +∞

0
exp




−

ρ2
i

�
�
�h
(j)
k

�
�
�

2

2σ 2
n




× I0






ρi

�
�
�h
(j)
k z

(j)
k

�
�
�

σ 2
n




pSw1dρ

(25)Lz

�

|Zk |2
�
�
�xk

�

=
Nc�

j=1

σ 2
n

�
(j)
k

exp






σ 2
ρi

�
�
�z
(j)
k

�
�
�

2�
�
�h
(j)
k

�
�
�

2

2σ 2
n�

(j)
k






(26)Lz

�

|Zk |2
�
�
�xk

�

=
Nc�

j=1

2σ 2
n

1+
νρi

�
�
�h
(j)
k

�
�
�

2

(4σ 2
n )

2







1+

�
�
�z
(j)
k

�
�
�

2

2σ 2
n

1+ 4σ 2
n

νρi

�
�
�h
(j)
k

�
�
�

2








× exp








1

1+
νρi

�
�
�h
(j)
k

�
�
�

2

4σ 2
n
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3.2  Calculation of the CLR

The SLR of the square measurement does not consider the spatial coherence of the 
complex measurement, and for the case of amplitude with no fluctuation, the SLR 
also needs to calculate a Bessel function with a significant point spread function con-
tribution for each pixel. Experience shows that the calculation of the Bessel function 
is the most computationally expensive part of the TBD algorithm. In summary, SLR 
using squared measures is not optimal, in order to avoid these drawbacks, in [29–32], 
the joint likelihood of the entire sensor image is given, taking into account the spa-
tial coherence of the phase and spatially correlated noise. The calculation of CLR not 
only improves the performance of target detection and tracking, but also effectively 
reduces the computational complexity.

The likelihood p0(Zk) of no target is [29]

This subsection gives the expression for the CLR for the three Swerling types [30].
(1) Swerling 0,

(2) Swerling 1,

 (3) Swerling 3,

4  Implementation issues
4.1  Adaptive birth distribution of MB‑TBD filter with amplitude fluctuating targets

The traditional MB-TBD assumes that the birth RFS is known as a priori and initial-
izes the multi-Bernoulli filter with a priori knowledge (KpMB-TBD). However, when 
the prior knowledge is completely unknown and the SNR is low, the continuous miss-
detection of MB components, may lead to the ineffective of KpMB-TBD. For the envi-
ronments of low SNR, missed detection is a common phenomenon. If the birth target 
appears in a state area that is not covered by the true target birth intensity, it is dif-
ficult for KpMB-TBD to find the targets, even if a large number of birth targets cover 
the whole space. The general strategy is to let the birth distribution cover the total 
scenario. However, this requires a large number of particles to represent the birth 
model, this method is very inefficient although it is feasible.

(27)p0(Zk) =
1√

2π det(Ŵ)
exp
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−1

2
Z
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k Ŵ
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}
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−1hk

)

I0
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2ρi

∣
∣
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∣
∣
∣

)

(29)Lz(Zk |xk) =
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hHk Ŵ

−1hk
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2σ 2
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∣
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∣
∣
2

1+ 2σ 2
ρi
hHk Ŵ
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)
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2
×

(

1+
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∣hHk Ŵ
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∣
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∣
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In [25, 32], it is shown that for the MB filter, the adaptive birth distribution must 
follow the MB distribution, and the MB birth distribution πŴ,k at time k + 1 depends 
on the measurement Zk at the previous moment, i.e.,

Then the existence probability of each Bernoulli component is

where �Ŵ, k+1|k is the expected number of targets for newborn at time k + 1 and 
rŴ,max ∈ [0, 1] . Since the mean cardinality of MB RFS is given by the sum of the existence 
probabilities, the mean cardinality of the new birth targets is

For target kinematics of amplitude fluctuation, the target intensity will change at any 
time. In the target tracking process, the weaker target is often ignored, which leads to an 
error in the estimation of the number of targets. Figures 2 and 3 show that in the case of 
SNR=8dB, considering the influence of noise on the target amplitude fluctuation type 
Swerling 3.

(31)πŴ,k+1 =
{

r
(i)
Ŵ,k(z), p

(i)
Ŵ,k(x|z)

}|Zk |

i=1

(32)rŴ,k(z) = min

(

rŴ,max,
1− rU ,k(z)

∑

ξ∈Zk
1− rU ,k(ξ)

· �Ŵ, k+1|k

)

rU ,k(x) =
Mk|k−1∑

ℓ=1

r
(ℓ)
k|k−1

〈

p
(ℓ)
k|k−1, Lz

〉

1− r
(ℓ)
k|k−1 + r

(ℓ)
k|k−1

〈

p
(ℓ)
k|k−1, Lz

〉

(33)
∑

ξ∈Zk

rŴ,k(ξ) ≤ �Ŵ, k+1|k

Fig. 2 The target amplitude fluctuation schematic. Top: Noiseless. Bottom: SNR=8dB
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Figure  2 shows the type of target amplitude fluctuations Swerling 3 under noiseless 
and SNR=8dB. The truth target amplitude with time is indicated in Fig. 3 top, and Fig. 3 
bottom shows the strongest echo position in both backgrounds. Figures 2 and 3 intui-
tively reflects that for Swerling 3 type, the target echo is completely swamped by noise at 
part of the time, which may lead to the ineffective of filter when the a priori information 
is known. Also, for fluctuating targets, the maximum echo information detected by the 
receiver in a low SNR environment may be non-surveillance targets, which will affect 
the judgment of the filter. While for Swerling 0 type with no fluctuation of the target, the 
real target echo amplitude is stable. The above only draws the fluctuation of Swerling 3, 
for another fluctuation of Swerling 1, the target amplitude fluctuation range is still very 
wide. It is also important to pay attention to the fact that in amplitude fluctuation multi-
target tracking, the amplitude among targets are different, and the target with stronger 
echoes will affect the target with weaker echoes, and the KpBer-TBD cannot solve the 
amplitude fluctuation problems of weak multi-target tracking.

In order to solve the above difficulties, this section draws on the idea of successive-
target-cancellation (STC) in [35], by making a balance between low false alarm rate and 
high detection probability, and proposes a MB-TBD based on measurement likelihood 
adaptive birth distribution (LABer-STC-TBD).

To facilitate the following calculations, transform vector Zk into matrix Zk , i.e.,

The idea of LABer-STC-TBD firstly select previous instants measurements to generate 
birth targets adaptively, and not all measurement information is used to drive the birth 
distribution, i.e.,

(34)Zk =









z
(1,1)
k z

(1,2)
k · · · z

(1,Nθ )
k

z
(2,1)
k z

(2,2)
k · · · z

(2,Nθ )
k

...
...

. . .
...

z
(Nr ,1)
k z

(Nr ,2)
k · · · z

(Nr ,Nθ )
k









Fig. 3 The schematic diagram of the target amplitude. Top: Target amplitude fluctuation. Bottom: The 
highest echo intensity position
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The threshold γ can be calculated by giving the false alarm Pfa of the resolution cell, the 
threshold γ is used to avoid information redundancy and to discard measurements that 
may originate from noise or clutter. In this paper, a threshold γ more suitable for the case 
of target fluctuation is modified on the basis of the [36].

Since each Bernoulli component represents a target, and this paper considers target 
detection and tracking in the case of non-overlapping targets, the measurements are 
divided after selection so that the particles in each cluster are generated from measure-
ments around the target diffusion location, which not only avoids particle clutter in the 
components but also reduces the overlapping components as much as possible. The 
adaptive birth distribution can be expressed as

Using (37) to calculate the existence probability of each cluster, the Bernoulli compo-
nents whose existence probability less than 0.5 are eliminated. The detected component 
is used to modify the existing measurement to eliminate the influence of the component 
on the detection of the remaining target. When the detected target acts on the resolu-
tion cell (l,m) , the measurement of the resolution cell (l,m) after eliminating the effect of 
this target

At this point the sensor gets the repaired measurement set within the whole Nr × Nθ 
scenario as

After returning to the above steps and increasing the false alarm rate until the presence 
probability of all Bernoulli components is below 0.5. It is important to note that (39) 
holds because (3) of the measurement equation is established and the assumption that 
the target contribution to the intensity is additive. A modification of (39) is needed for 
the measurements that are not additive models. Algorithm 1 gives the LABer-STC-TBD 
algorithm for adaptive birth multi-Bernoulli density 

{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
.

(35)Z̃k =
{

z
(l,m)
k

∣
∣
∣

∣
∣
∣z

(l,m)
k

∣
∣
∣

2
> γ

}

(36)γ = −2E[ρ2
k ] log Pfa

(37)πŴ,k+1 =
{

r
(i)
Ŵ,k(z̃), p

(i)
Ŵ,k(x|z̃)

}
∣
∣
∣Z̃k

∣
∣
∣

i=1

(38)rŴ,k(z̃) = min

(

rŴ,max,
1− rU ,k(z̃)

∑

ξ∈Z̃k
1− rU ,k(ξ)

· �Ŵ, k+1|k

)

(39)z̄
(l,m)
k = Zk − z

(l,m)
k

(40)Zk =
[

z̄
(l,m)
k

]

, l = 1, 2, . . .Nr ,m = 1, 2, . . .Nθ
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Note: In Step 4, each 
{(

l
j
i ,m

j
i

)}Ni

j=1
 denotes the location of the target energy scattered 

to the surroundings, and the selected measurements are divided into NK  classes based 
on the distance, i.e., for any A =

{(

l
j
i ,m

j
i

)}Ni

j=1
 , B =

{(

l
j
k ,m

j
k

)}Nk

j=1
 , there are: A,B ∈ Ẑ , 

A ∩ B = ∅ , and for any element in A are in the circle whose radius is R (R is set by the 

target diffusion intensity) and the center is 
(

l1i +l2i +...l
Ni
i

Ni
,
m1

i +m2
i +...m

Ni
i

Ni

)

 . The number of 

elements in Ẑ with 1 is eliminated, i.e., the positions with no energy scattering are elimi-
nated. Figure 4 reflects the point spreading of the target. Figure 4a indicates that the tar-
get energy spreads to the neighboring pixels around the target location with little 
spillover to more distant locations, and the white circle in the image is centered on the 
target location. Figure  4b indicates the measurement from the receiver with 
SNR = 10 dB.

As can be seen from Fig. 4, the real target affects the surrounding pixel locations, while 
the noise locations are disorderly, even if the SNR is so low that the target location intensity 
is treated as noise in the first cycle, there is a chance of detecting the real target after the 
repair of the measurement. In Step 5–6, the target distance and bearing are converted to 
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positions in Cartesian coordinates, and the SMC implementation is considered to generate 
particles in the near of the real target. In Step 7, r(i)

Ŵ,k = rstart is to cope with the update in 
Step 8-13, not the existence probability of the birth component, which is calculated based 
on equation 37, and the birth particle in Step 7 is not in the position of selection measure-
ment, but contains some disturbances, the reason is that the target will be affected by noise 
in the process of moving, which will add some disturbances to prevent the estimated target 
from leaving the real trajectory in the moving process. Remove the Bernoulli components 
with the existence probability lower than 0.5 in the Step 8–13 and Step 14–18, if it leads 
to the disappearance of all components, then the search is over, otherwise the target loca-
tion information will be found and the surrounding pixels will be eliminated for the next 
iteration. It should be noted that in the first search process, if Ni = 1, i = 1, 2 . . . ,N  , then it 
shows that there is no newborn target at this time, and the MB filter will continue to iterate 
to the next moment with surviving targets.

4.2  Track merging

After the update of traditional MB-TBD, the Bernoulli components whose existence prob-
ability lower than the threshold Hmerge will be discarded, so as to reduce the increase of 
Bernoulli components. To solve the problem of linear growth of Bernoulli components 
after updating, an algorithm for trajectory merging based on distance and particle weights 
is proposed.

The Bernoulli component within the threshold represents the same target, then the MB 
components can be expressed as:

(41)
{{(

r
(i)
k , p

(i)
k

)}M1

i=1
,
{(

r
(i)
k , p

(i)
k

)}M2

i=1
. . .

{(

r
(i)
k , p

(i)
k

)}MN

i=1

}

Fig. 4 Measurement diagram
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 where M1 +M2 + · · ·MN = Mk|k , and 
{(

r
(i)
k , p

(i)
k

)}Mj

i=1
, j = 1, 2, . . .Mk|k denotes the 

Bernoulli components of the same target, the Mk|k components are divided into a total 
of MN classes, 1 ≤ Mj ≤ MN .

Subsequently, the components with the highest existence probability of the same tar-
get are reserved, then the Bernoulli components before selection are denoted as 
{(

r
(i)
k , p

(i)
k

)}Mj

i=1
 , and there will be only one component of the same target after selection, 

i.e.,

where 
∣
∣
∣
∣

{(

r
(ij)
k , p

(ij)
k

)}∣
∣
∣
∣
= 1 , and |·| denotes the cardinality of the set.

If the existing probabilities are the same between the components, i.e., rijk = r
im
k  , and 

the distance between the Bernoulli components is within the threshold, then the two 
components are combined into a new one, the details are depending on pijk and pimk  , the 
specific algorithm is given in Algorithm 2.

Algorithm 2 gives the implements of merging algorithm to merge trajectories. Suppose 
that the MB filter eliminate the components whose existing probability below the threshold 
Hmerge after the update step and the total number of Bernoulli components is within Tmax.

(42)
{(

r
(ij)
k , p

(ij)
k

)}

, r
(ij)
k = max(r

(1)
k , r

(2)
k . . . , r

(Mj)
k )
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Note: Step 2 truncates the particles in each component and discard particles with low 
weights to avoid errors in the target estimation process. Step 3 is to resample the truncated 
particles and select the particles with high weights to represent the Bernoulli components. 
Step 7–13 is to remerge the probability densities of the hypothetical components with the 
same probability within the threshold to obtain the new components, and the components 
outside the threshold are retained.

4.3  SMC implementation of MB‑TBD filtering with target amplitude fluctuations

In this section, the SMC implementation of the amplitude fluctuation target MB-TBD is 
given.

SMC Prediction: Given a MB posterior density πk−1 =
{(

r
(i)
k−1, p

(i)
k−1

)}Mk−1

i=1
 at time 

k − 1 , each spatial probability density p(i)k−1, i = 1, . . . ,Mk−1 can be represented by a set of 
particles with weights
{

w
(i,j)
k−1, x

(i,j)
k−1

}L
(i)
k−1

j=1
 , i.e.,

Then the predicted multi-Bernoulli density 
πk|k−1 =

{(

r
(i)
P,k|k−1, p

(i)
P,k|k−1

)}Mk−1

i=1
∪
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
 can be expressed as follows

The birth Bernoulli component 
{(

r
(i)
Ŵ,k , p

(i)
Ŵ,k

)}MŴ,k

i=1
 is given by the LABer-STC-TBD 

algorithm.

(43)p
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SMC Update: Given the predicted MB density πk|k−1 =
{(

r
(i)
k|k−1, p

(i)
k|k−1

)}Mk|k−1

i=1
 at time 

k, each spatial probability density p(i)
k|k−1

, i = 1, . . . ,Mk|k−1 can be represented by a set of 

particles with weights 
{

w
(i,j)

k|k−1
, x

(i,j)

k|k−1

}L
(i)
k|k−1

j=1
 , i.e.,

Then the updated multi-Bernoulli multi-target density πk =
{(

r
(i)
k , p

(i)
k

)}Mk|k−1

i=1
 can be 

expressed as

where ̺(i)k =
L
(i)
k|k−1∑

j=1

w
(i,j)
k|k−1Lz

(

Zk |x(
i,j)
k|k−1

)

 . Note that in this paper Lz
(

Zk |x(
i,j)
k|k−1

)

 is CLR 

in section 3.1, and for SLR Lz
(

|Zk |2
∣
∣x
(i,j)
k|k−1

)

 in section 3.2. Select the likelihood ratio 

under different measurement type and fluctuation type as needed.
Resampling and Implementation Issue: Analogous to the standard multi-Bernoulli fil-

ter, each Bernoulli component resamples the particles follow the update step, in order 
to reduce the increasing number of trajectories, the components whose existence prob-
ability lower than the threshold Hmerge are discarded. However, this cannot accurately 
estimate the number of Bernoulli components, especially when the birth Bernoulli com-
ponent can also accurately estimate the true position of the target, it will produce cardi-
nality bias.

5  Experiments
This paper addresses the detection and tracking of fluctuating targets such as stealth air-
craft for range-bearing surveillance radar. The Swerling model is more effective for mis-
siles and aircraft. In this section, the effectiveness of the method is verified by Monte 
Carlo simulation experiments.

5.1  Measurement model parameters and multi‑objective error estimation

Assume that the noise covariance is Ŵ = 2σ 2
n INc , SNR = 10log10

(
E(ρ2k )

2σ 2
n

)

 , rmin = 100 km , 

rmax = 120 km , θmin = −75◦ , θmax = 75◦ , Nr = 300 , Nθ = 100 , σ 2 = 0.5 , B = 150KHz , 
Te = 6.67× 10−5 s , Na = 55 , � = 3 cm , c = 3× 108 m/s . In this paper, E

[

ρ2
k ,i

]

= E
[
ρ2
k

]

The Optimal Sub-pattern Assignment (OSPA) [30] is used to evaluate the perfor-
mance of the algorithm, and the OSPA metric evaluates the estimation error of the 
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number of targets and the estimation error of the position of the targets for the multi-
target filter. Consider now two sets X = {x1, x2, . . . xm} and Y = {y1, y2, . . . yn} , where 
m, n ∈ N0 = {0, 1, 2, . . .} . Let d(c)

(
x, y

)
= min

(
c,
∥
∥x − y

∥
∥
)
 , and 

∏

n denote the set of per-
mutations on {1, 2, . . . , n} . Then, for p ≥ 1 , c > 0 , if m ≤ n , OSPA is defined as follows 
[37]

if m > n , d̄(c)p (X ,Y ) = d̄
(c)
p (Y ,X) and d̄(c)p (X ,Y ) = d̄

(c)
p (Y ,X) = 0 if m = n = 0.

In the simulation experiments of this paper, set p = 1 , c = 1000 . The smaller the OSPA 
value, the more accurately the number of targets and the state estimation are indicated.

5.2  Scenario 1: experiments comparing LABer‑STC‑TBD and KpMB‑TBD algorithms

Suppose that targets move in a straight line at a constant speed, there are three targets in 
the whole scenario, the duration is K = 30 s , the targets are initialized at different posi-
tions, the target state includes plane position and velocity, the model is given by the fol-
lowing equation

where F =
[
Fs 0
0 Fs

]

 , Fs =
[
1 T
0 1

]

 , vk ∼ N
(
·; 0, σ 2

v Q
)
 , σv = 5m/s2 , 

Q =
[

T 2

2 T 0 0

0 0 T 2

2 T

]T

σ 2
v .

To verify the broadness and effectiveness of the LABer-STC-TBD algorithm as 
well as the track merging algorithm in the case of target amplitude fluctuations, the 
LABer-STC-TBD algorithm and the KpMB-TBD algorithm are used to detect and 
estimate multiple targets based on different amplitude fluctuations. The multi-Ber-
noulli density of the birth process is

where p(i)Ŵ (x) = N

(

x;m(i)
γ ,Pγ

)

,

m
(1)
γ = [94000, 0, 9000, 0]T,

m
(2)
γ = [−177000, 0,−51000, 0]T,

m
(3)
γ = [148300, 0,−23500, 0]T,

rŴ = 0.1 , Pγ = diag
(
[1000, 500, 1000, 500]T

)2.
The real trajectory on the two-dimensional plane is shown in Fig. 5, and the initial 

position of the target is shown in Table 1.
In SNR=9dB, the number of particles for each new birth Bernoulli component is 

1000, and the algorithm simulations are compared under different amplitude fluctua-
tions using 100 Monte Carlo experimental simulations. The LABer-STC-TBD algo-
rithm is compared with the KpBer-TBD algorithm implementation under different 
amplitude fluctuations considering four filters as follows. 
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n
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1 The first filter, labeled as “LA-STC-Com”, considers the LABer-STC-TBD algorithm 
under multi-Bernoulli filter CLR.

2 The second filter, labeled as “LA-STC-Squ”, considers the LABer-STC-TBD algorithm 
under the multi-Bernoulli filter SLR.

3 The third filter, labeled as “Kp-Com”, considers the KpBer-TBD algorithm with multi-
Bernoulli filter CLR.

4 The fourth filter, labeled as “Kp-Squ”, considers the KpBer-TBD algorithm with multi-
Bernoulli filter SLR.

The results are shown in Figs. 6, 7 and 8. To verify the reasonableness of the results, 
100 Monte Carlo experiments were conducted and averaged, and Figs. 6, 7 and 8 rep-
resent the LABer-STC-TBD algorithm and KpBer-TBD algorithm for two likelihood 
ratio calculations under three amplitude fluctuation types Swerling 0, 1, 3, based on the 
Monte Carlo average OSPA distance estimation error and the average number of tar-
gets. The results confirm that the LABer-STC-TBD algorithm can accurately estimate 
the positions and number of targets, although the estimation error of the KpBer-TBD 
algorithm is smaller than that of the LABer-STC-TBD algorithm at the initial moment, 
but the error increases rapidly and eventually show a divergence. The reason is that 
the KpBer-TBD algorithm is given the correct initialization and the prediction of the 
state transfer equation happens to be close to the true state for the initial few moments, 
after which the target state prediction decreases as noise as well as uncertainties such as 
clutter interfere, eventually leading to worse and worse tracking and higher and higher 
errors. The same is true for the estimation of the number of targets. In the process of tar-
get amplitude fluctuation, the target echoes will be completely annihilated in the noise 
part of the time, and the LABer-STC-TBD algorithm will use the previous moment’s 
measurement information to search for the true target location as much as possible, 
making the estimated number accurate and the filter can keep iterating even if the noise 

Fig. 5 True trajectories of 3 targets on the 2D plane
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drowns out all the target information at a certain moment. If the KpBer-TBD algorithm 
does not estimate the target at a certain moment effectively, and the target is moving 
faster, the target will not be estimated at the next moment, resulting in the failure of the 
filter. And Figs. 6, 7 and 8 also show that the filter with the CLR outperforms the filter 
with the SLR.

Comparing these four filter algorithms from Figs.6, 7 and 8, the LABer-STC-TBD 
algorithm under the CLR has the best effect, proving that the phase information can 
improve the detection tracking performance of the MeMBer-TBD algorithm, and 
the selection of the measurement threshold of the birth algorithm reduces the com-
putational complexity, and the selected measurements generated by the real targets 
are based on the target amplitude, to the largest degree. Using the likelihood ratio 
to select Bernoulli components to eliminate the wrong estimation at the previous 
moment, the STC idea is introduced to avoid the influence of strong and weak echoes 
of the target at the same moment and to maximize the exploitation of the target echo 
information. From Figs. 7b and 8b, it can be seen that the LABer-STC-TBD with SLR 
is not accurate for target number estimation in the target with amplitude fluctuation 
type Swerling 1,3, due to the fact that the square measure ignore the phase informa-
tion of the target, and comparing with Fig. 6b, it can be seen that the loss of phase 
information is extremely obvious for fluctuating targets.

5.3  Scenario 2: experiments comparing the likelihood ratios of CLR and SLR in MB‑TBD

Scenario 5.2 demonstrates the advantages of the LABer-STC-TBD algorithm in the 
MB-TBD with amplitude fluctuations, and the tracking effect of the CLR is better 
than the SLR in the target tracking process under the same conditions. To further 
compare the advantages and disadvantages of the CLR and SLR as well as the reason-
ableness and superiority of the LABer-STC-TBD algorithm in the MB-TBD, targets 
are assumed to make a turn at a constant speed. There are five targets in the whole 
scenario, the time duration is K = 100 s , the targets are initialized at different posi-
tions, and the target state variables is xk =

[

x̃
T
k ,ωk

]T
 include the plane position as 

well as the velocity is x̃Tk =
[
px,k , ṗx,k , py,k , ṗy,k

]T and the turn rate is ωk . The state 
transfer model is

where

(55)x̃k =F
(
ωk−1

)
x̃k−1 + Gωk−1

(56)ωk =ωk−1 +�uk−1

Table 1 The initial position of the targets

Target initial state Appearance time (s) Disappearance 
time (s)

x1 = [94815; 535; 9088; 557] 1 26

x2 = [177827; − 681;−51916; − 564] 5 30

x3 = [148390;595;−23569;565] 10 30
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Fig. 6 Comparison of LABer-STC-TBD algorithm and KpBer-TBD algorithm under Swerling 0
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Figure 9 shows the real trajectory on a two-dimensional plane. Different targets have 
different turn rates, and the initial position of the target is shown in Table  2, where 
wturn = 2π

180.
The targets are tracked in two scenarios with SNR = 7 dB and SNR = 5 dB, and the 

number of particles of each birth Bernoulli component is 1000, using 100 Monte Carlo 
experimental simulations to compare algorithmic simulations considering the LABer-
STC-TBD algorithm under different amplitude fluctuations. The following two filters are 
considered. 

Fig. 7 Comparison of LABer-STC-TBD algorithm and KpBer-TBD algorithm under Swerling 1
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1 The first filter labeled as “Comp mod”, considers the LABer-STC-TBD filter under 
CLR.

2 The second filter labeled as “Sq mod”, considers the LABer-STC-TBD filter under 
SLR.

The results are shown in Figs. 10, 11 and 12.

The detection performance of different MB-TBD strategies for Swerling type 0, 1, 3 
targets is shown from Figs. 10, 11 and 12, respectively. The advantage of the CLR algo-
rithm at low SNR ratio is verified, and for all detection results, the LABer-STC-TBD 

Fig. 8 Comparison of LABer-STC-TBD algorithm and KpBer-TBD algorithm under Swerling 3
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using the CLR outperforms the LABer-STC-TBD using the SLR. The introduction of the 
phase information improves the system performance, which makes it possible to detect 
and track the target more accurately at low SNR. Moreover, under the same fluctuation, 
the CLR only needs to perform the calculation of Bessel function once, while the SLR 
needs to perform multiple Bessel functions, which effectively reduces the computational 
complexity.

Figure 10 shows the performance of LABer-STC-TBD algorithm with no fluctuations 
in the target, and both SLR and CLR can estimate the target state and the number of 
targets more accurately. Figures 11 and 12 show performance of the LABer-STC-TBD 
algorithm with fluctuation type Swerling 1, 3, which reflects the advantage of the CLR 
over the SLR. However, in the case of low SNR, the estimated number of targets is often 
lower than the true number of targets, the reason is that the fluctuation of the target 
amplitude lead to the targets annihilated in the noise.

Fig. 9 True trajectories of 5 targets on the 2D plane

Table 2 The initial position of the targets

Target initial state Appearance time (s) Disappearance time (s) Turn rate (rad/s)

x̃1 = [94815; 435; 9088; 457] 1 65 wturn/8

x̃2 = [148390; 295;−23569; 465] 1 80 − wturn/9

x̃3 = [78949; 401;−21061; 145] 5 90 − wturn/8

x̃4 = [81837; 223;−48736; 763] 40 100 wturn/9

x̃5 = [138136; 519;−48036; 498] 42 100 wturn/2
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Fig. 10 Two likelihood ratio algorithms with different SNR ratios under Swerling 0
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Fig. 11 Two likelihood ratio algorithms with different SNR ratios under Swerling 1
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Fig. 12 Two likelihood ratio algorithms with different SNR ratios under Swerling 3
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6  Results and discussion
It can be seen from the above experiments that the CLR method can improve the detec-
tion and tracking performance of weak multi-targets. Under the low SNR, the robust-
ness of CLR is better than that of SLR, as shown in Figs. 10, 11 and 12. At the same time, 
when the target fluctuates, the LABer-STC-TBD algorithm solves the problem of detec-
tion failure during the fluctuation process and the situation that the birth prior informa-
tion of the target is unknown, as shown in Figs. 6, 7 and 8.

It should be noted that, with the development of radar targets, stealth targets, high-
speed flying targets, etc., the classical Swrling model can no longer accurately represent 
the statistical performance of various targets. At the same time, the RCS of complex tar-
gets is sensitive to changes in frequency and attitude angle, and the RCS of complex tar-
gets does not maintain a single statistical distribution in any frequency band and under 
any attitude. Our research is mainly based on the characteristics of radar measurement 
to improve the detection performance of the target. The next work will deal with the 
limitations encountered above and solve practical problems in a reasonable range.

7  Conclusion
In this paper, the multi-Bernoulli filter based on track-before-detect for target ampli-
tude fluctuation problem is investigated under range-bearing surveillance radar. 
Three different Swerling target amplitude fluctuation models are considered. In order 
to improve the detection performance of MB-TBD, not only the amplitude informa-
tion of target is considered, but also the phase information is processed. The follow-
ing conclusions are obtained through simulation: (a) For the same fluctuating target 
model, MB-TBD filter using CLR outperforms the one using SLR, and the former has 
better detection and tracking performance for multi-targets at low SNR scenarios. (b) 
The proposed LABer-STC-TBD algorithm mainly solves two types of difficulties in the 
target fluctuation problem, one is to solve the problem of unknown prior information 
about the target birth, and the other is the problem of possible filter ineffectiveness 
when the targets fluctuation. (c) The proposed merge algorithm solves the problem of 
linear growth of the components after the MB-TBD filter update. Although the Swer-
ling 1, 3 model is no longer very suitable for modern aircraft, changing the degrees 
of freedom can fit other fluctuation target models, and this paper has some reference 
significance for the detection and tracking of targets such as stealth aircraft. In practi-
cal application, the most suitable fluctuation model should be chosen according to the 
fluctuation characteristics of the target.
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