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1  Introduction
Through-the-wall radar imaging (TWRI) is an emerging radar imaging technique that 
allows visualization and identification of objects inside the building. The technique may 
be used to determine room layout or to recognize nature of the activities executed by 
people in the room. TWRI offers a wide range of applications, including rescue mission 
in natural disasters (fire, flood, and earthquake), criminal investigation, emergency relief 
operation, and military operations [1–10].

The TWRI technique involves generation of scenes through image reconstruc-
tion, where the technique provides visual representation of objects contained in the 
enclosure (e.g., room or building). Image reconstruction suffers from some techni-
cal challenges: firstly, clutters caused by strong reflections from the front wall; and 
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secondly, multipath returns from secondary reflectors  [11–16]. The first challenge 
can be addressed using appropriate wall mitigation technique  [17–20]. The second 
challenge (multipath returns) introduces multipath ghosts that corrupt the scene, 
hence creating confusion with genuine targets [6, 10, 21–24].

Several methods have been devised to address the challenge of multipath ghosts, 
and these methods can broadly be categorized as Aspect Dependent (AD) and Mul-
tipath Exploitation (ME)-based methods [13, 21–25]. The AD-based approach does 
not require prior knowledge of the reflecting geometry, thus making it superior over 
ME-based approaches.

Currently, when addressing reconstruction challenges associated with multipath 
returns, the target is modeled as a point, implying that each target assumes a single 
pixel. In real situations, however, the target may span more than one pixel, resulting 
into extended targets. Unlike point target, the received signal from extended targets 
originates from the integration of signals from various parts of the same target [26]. 
Therefore, modeling extended target as point target gives the possibility of misinter-
preting the target of interest—a consequence that adversely affects the target identi-
fication process.

Several works in TWRI have addressed multipath ghost by exploiting AD feature. 
Dong et  al.  [27] used N non-overlapping sub-apertures to reconstruct sub-images 
and combined them using multiplicative image fusion to produce a final image. 
Muqaibel et al. [28] developed a new multipath ghost suppression technique, based 
on the compressed sensing framework, which incorporates AD feature of the ghost. 
In their work, only a pair of measurement vectors were selected such that the AD 
feature is maximized; the authors strategically combined the corresponding images 
to suppress the effect of ghosts. Guo et al. [15] made an interesting contribution to 
realize AD feature through array rotation, assuming that the scene contains point 
targets—which rarely holds in various real situations. Measurements were collected 
at different array orientations, then back-projection and incoherent multiplication 
fusion methods were applied to achieve ghost-free images.

Scholars have attempted to incorporate extended targets into the point target 
model  [9, 29–33]. Abdalla et  al.  [33] modeled extended targets with block sparse 
reconstruction. The proposed approach is agnostic to the target shape, size, and 
reflectivity distribution. The approach operates irrespective of the length, number, 
or distribution of the blocks. As an added advantage, the approach by Abdalla et al. 
can reconstruct scenes with mixed point targets and extended targets concurrently. 
Despite their promising results, the authors disregarded multipath effects for scenes 
with extended targets. Inspired by this limitation, the current work introduces a 
method that addresses multipath effects under the environment of extended targets. 
The proposed method is based on AD feature exploiting duo sub-apertures. Firstly, 
the best suppression method is evaluated using a performance metric called rela-
tive clutter peak (RCP); secondly, the method is further extended to encompass the 
target extent during sub-images reconstruction. In this work, we have devised an 
effective image fusion method, taking into account target pixels’ neighborhood, to 
recover extended targets.



Page 3 of 14Rambika et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:63 	

2 � Received signal and scene model
Consider a scene model representing possible first-order multipath returns with N dif-
ferent radar locations (Fig. 1). At every radar location, M monochromatic waves, equally 
spaced in frequency, are transmitted and received  [28]. The scene is divided into Nx 
and Ny pixels along the cross-range and down-range directions, respectively. Let σp be 
the target reflectivity of the pth pixel, where p = 0, 1, . . . ,NxNy − 1 ; the value of σp = 1 
signifies the presence of a target, otherwise no target exists in a given pixel location. If 
we considerR multipath returns, the target return, yt [m, n] , observed with the nth trans-
ceiver when transmitting the mth frequency, fm , in the presence of a Gaussian noise, 
υ(m, n) , can be expressed as [28, 34]

where σ (r)
p  and σ (rw)

w  represent the target and wall pixel reflectivities, respectively, τ (r)pn  is 
the round-trip delay between the pth target and the nth transceiver due to the rth return, 
and τ (rw)w  is the time delay of the rthw  front wall return. The first and the second terms on 
the right-hand side of (2.1) represent the target return and the return from the front 
wall, respectively, while the last term denotes the Gaussian noise.

3 � Performance evaluation of point target‑based reconstruction methods 
for extended target

The initial goal was to determine a superior suppression method, based on AD feature, 
which can then be improved to include extended targets. Ghost suppression methods 
based on AD feature, assuming point target model, can be categorized into three groups: 
multiple subarrays, hybrid subarray, and sparse arrays [26]. Maintaining the same envi-
ronment, the best method is determined for each group. In evaluating the performance 
of these groups, the signal model presented in (2.1) was used.

An experimental simulation setup to mimic TWRI environment was performed using 
the MATLAB software, assuming a stepped frequency monostatic radar. The array 

(2.1)

yt [m, n] =

R−1

r=0

NxNy−1

p=0

σ (r)
p exp(−j2π fmτ

(r)
pn )

+

Rw−1

rw=0

σ (rw)
w exp(−j2π fmτ

(rw)
w )+ υ(m, n),

1 radar radar

target

Virtual target 1Virtual target 2

Virtual target 3

Front wall

Fig. 1  Multipath scenario in through-the-wall radar imaging with first-order returns
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element consisting of 77 array elements linearly spaced at 3.94 cm and parallel with the 
front wall and 1 m away was realized. The center of the array defines the origin of the 
system. A 2 GHz bandwidth ranging from 1 GHz to 3 GHz was used with 201 frequen-
cies spaced at 10 MHz. The number of frequencies and radar locations were selected 
according to the compressive sensing theory that gives a threshold below which targets 
cannot be reconstructed correctly  [37]. The room was assumed to be made of non-
reinforced concrete with relative permittivity of 7.6 and wall thickness of 20 cm. Four 
first-order multipath returns were considered: direct return, return from the back wall, 
right-wall return, and left-wall return. As the signal undergoes multiple reflections, their 
corresponding ghosts either become very weak or reside outside the perimeter of the 
room in question. Thus, they can be fairly ignored as Leigsnering et al. [8] suggests. The 
effect of front wall was mitigated using spatial filtering [17]. The scene image resolution 
was set to 64 × 64 pixels. During simulation, one-fourth of the frequency bins and one-
third of the radar locations were used to reconstruct the scene of interest.

Results show that non-overlapping duo subarray, hybrid subarray, and Pythagorean-based 
Displaced Subarrays (PDSA) [25, 26] are the best methods in their respective groups. To 
quantify the performance with respect to extended targets reconstruction, signal-to-clutter 
ratio (SCR), RCP, and precision were used to evaluate performance. Precision is quantified 
as the ratio of the number of true targets to the sum of the number of true targets and 
ghost targets. Figure 2a shows the original scene with the extended target. Figure 2b, c, d 
represents the final images generated by three methods, namely duo-subarray, hybrid, and 
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(a) Original scene
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(c) Hybrid subarray
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(d) Sparse array-PDSA
Fig. 2  Extended target reconstruction using point target model
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sparse array configuration employing PDSA, respectively. Figure 3 shows that duo subar-
ray generates images with higher SCR and RCP values, and this observation translates to 
high-quality images containing well-preserved target shapes. For the entire range of signal-
to-noise ratio (SNR), duo subarray demonstrates the best performance, as supported by the 
precision curve in Fig. 4. Therefore, results suggest that duo sub-array can suppress mul-
tipath ghost more effectively compared with other methods.

4 � Aspect dependent‑based extended target signal modeling
Consider a signal model presented in (2.1), which can be re-written in matrix form as

where R is the number of multipath returns, Rw is number of returns due to wall reflec-
tions, s(r) and s(rw)w ∈ C

(NxNy×1) are their vectors of reflectivities for r = 0, 1, 2, . . . ,R− 1 , 
and rw = 0, 1, 2, . . . ,Rw − 1 ; φ(r) and φw(r) are the phase information matrices defined as

and

(4.1)y =

R−1∑

r=0

φ(r)s(r) +

Rw−1∑

rw=0

φ(rw)
w s(rw)w + v,

(4.2)
[
φ(r)

]
ip
= exp(−j2π fmτ

(r)
pn )

(4.3)
[
φ(r)
w

]
ip
= exp(−j2π fmτ

(rw)
wn ),
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Fig. 3  Variation in performance with signal-to-noise ratio during extended target reconstruction with point 
target model
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for m = i mod M, n = ⌊i/M⌋, i = 0, 1, 2, ..,MN − 1. Expressing (4.1) in terms of φ(0) 
yields

Let a column vector, z , be defined as

Substituting (4.5) into (4.4) gives

Let s̃(0) = s(0) + z , which denotes the sum of the desired image vector and the multipath 
returns, then

Equation (4.7) indicates that only the direct path information is suffice to reconstruct the 
contaminated scene.

When the scene contains spatially extended targets, there exists a position in the image 
corresponding to the target extensions where the target pixels are contiguous. The position 
of these pixels is determined by their pixel indices within the image. Let the position of the 
entries be denoted as a = a1, a2, a3, . . . , ai . The vector of coefficients corresponding to the 
nonzero entries can be represented as

Equation (4.7) can be represented as

where φ0
i  is obtained from the measurement matrix, φ0 , after removing columns with 

zero valued coefficients [35] such that

(4.4)

y =φ(0)
[
s(0) + φ(0)−1

φ(1)s(1) + φ(0)−1
φ(2)s(2)

+φ(0)−1
R−k∑

r=k

φ(r)s(r) + φ(0)−1
φ(0)
w s(0)w + φ(0)−1

φ(1)
w s(1)w

+ . . .+ φ(0)−1
Rw−m∑

rw=m

φ(rw)
w s(rw)w

]
+ v.

(4.5)

z =φ(0)−1
φ(1)s(1) + φ(0)−1

φ(2)s(2) + . . .

+ φ(0)−1
R−k∑

r=k

φ(r)s(r) + φ(0)−1
φ(0)
w s(0)w + φ(0)−1

φ(1)
w s(1)w

+ · · · + φ(0)−1
Rw−m∑

rw=m

φ(rw)
w s(rw)w .

(4.6)y = φ(0)[s(0) + z] + v.

(4.7)y = φ(0)s̃(0) + v.

(4.8)ψi = [ψ(a1) ψ(a2) ψ(a3) . . . ψ(ai)]
T .

(4.9)yi = φi
0ψ i,

(4.10)e2 = (yi − φ0
i ψi)

H (yi − φ0
i ψi)
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Taking the derivative of e2 in (4.10) with respect to ψH
i  , we get

Setting ∂e
2

∂ψH
i

= 0 , we have

Then,

Assuming that ψ0 is an initial measurement estimate, we get

The position of the first element of the maximum value, a1 , is determined as

Using the position, a1 , obtained from (4.16), we obtain ψ1 from equation (4.14), 
and, subsequently, we obtain y1 from (4.9). Then, the estimated nonzero compo-
nent is removed from the measurement y. The second nonzero position is estimated 
as a2 = argmax |φ(0)Hη1| , with η1 = y− y1 . This process continues until the accept-
able error is achieved. The acceptable error, ǫ = σ

√
2 log(NxNy) , as given by Abdalla 

et  al.  [10], is a function of noise power. The entries in s(0) are modified by replac-
ing the corresponding entries with the entries in ψi and with zero for entries not in ψi 
(Algorithm 1).

Let the modified signal coefficients be denoted by z̃l (0) . Then, equation (4.7) can be rep-
resented as

Let Di ∈ {0, 1}J×NxNy , i = 1, 2, . . . , k with J << MN  be the downsampling matrices. 
Basically, D is a Bernoulli matrix obtained by randomly selecting J rows from identity 
matrix, IMN . Then, (4.17) can be downsampled to obtain

The contaminated subimage, z̃(0)
l

, in (4.18) is obtained by solving an optimization 
problem

(4.11)= �yi�
2
2 − 2ψH

i φ0
i

H
yi + ψH

i φ0
i

H
φ0
i ψi

(4.12)
∂e2

∂ψH
i

= −2ψ0
i

H
yi + 2φ0

i

H
φ0
i ψi

(4.13)2ψ0
i

H
yi = 2φ0

i

H
φ0
i ψi.

(4.14)ψi = (φ0
i

H
φ0
i )

−1φ0
i

H
yiψi = pinv(φ0

i )yi.

(4.15)
ψ0 = φ(0)Hy

= φ(0)Hφ(0)s̃(0)

(4.16)a1 = argmax
∣∣∣φ(0)Hφ(0)s̃(0)

∣∣∣.

(4.17)y = φ(0)z̃
(0)
l + v.

(4.18)yi = Diy = Diφ
(0)z̃

(0)
l + vi.

(4.19)min
z̃l

�z̃
(0)
l �1 s.t. �yi − Diφ

(0)z̃
(0)
l �1 < δ
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using YALL1 algorithm, as recommended by AlBeladi and Muqaibel [36], and the result-
ing subimages are then strategically fused to obtain the final image. We should note that 
YALL1 algorithm does not converge to a good solution when nonzero elements extend 
in two dimensions. This is the situation when considering extended targets in through-
the-wall-radar imaging applications.

5 � Image fusion
In order to successfully eliminate ghosts resulting from different sub-images, the sub-
images have to be strategically combined to yield the final image. Conventional masking, 
which involves pixel-by-pixel multiplication, has been widely used to achieve this objec-
tive. However, sometimes masking tends to suppress genuine target pixels at the target 
location. Therefore, a genuine target might be missed completely or its intensity be severely 
reduced  [10]. In this work, we proposed a combined masking and weighted sum fusion 
strategy (Algorithm 2).

Suppose z̃1(0) and z̃2(0) are the individual sub-images reconstructed from the two subar-
rays. The final image is obtained by strategically combining the two sub-images as

(5.1)Zf =





β

�
n�

i=1

Zk

�
; β = max |Zi|, max |Zk | �= max |Zk+1|

n�
i=1

Zk Otherwise
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6 � Results and discussion
To obtain the final image, the scene was interrogated at two different locations to exploit 
the aspect dependent feature. In the first scenario, a rectangular target was imaged; in 
the second scenario, a complex target was simulated. Figure 5a shows the original scene 
with a rectangular target; Fig. 5b, c represents the images of the duo subarrays recon-
structed using the point target model. Figure 5d is the final image after combining the 
two subimages. Evidently, the quality of the image is poor as the genuine target is com-
pletely missing in the final image, hence showing ineffectiveness of the point target 
model on extended target reconstruction.

Figure  6 shows images of a rectangular target reconstructed using the proposed 
extended target-based method. Figure  6a is the original scene; Fig.  6b and c is sub-
images from the duo subarrays; and Fig. 6d is the final image. The results in Fig. 6d show 
that the developed method reconstructs the extended target more effectively compared 
with the point target-based method.

Figs. 7 and 8b, c, respectively, represent duo sub-images of the existing and proposed 
methods, while Figs. 7 and 8d show images of an irregular target reconstructed using 
the existing point target-based method and the proposed extended target-based method. 
Again, the final image obtained using the proposed method has a better quality com-
pared with the existing point target-based method. Using the existing method, the tar-
get could not be recovered contrary to the proposed method where the image is clearly 
visible.
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(a) Original scene

-4 -3 -2 -1 0 1 2 3 4 5

Cross range [m]

-1

0

1

2

3

4

5

6

7

8

D
ow

n 
ra

ng
e 

[m
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) First subarray
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(c) Second subarray
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(d) Final image after reconstruction

Fig. 5  Rectangular extended target reconstruction using point target model

-4 -3 -2 -1 0 1 2 3 4 5

Cross range [m]

-1

0

1

2

3

4

5

6

7

8

D
ow

n 
ra

ng
e 

[m
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
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(d) Final image after reconstruction

Fig. 6  Rectangular target reconstruction using the proposed method
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(c) Second subarray
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(d) Final image after reconstruction

Fig. 7  Irregular target reconstruction using point target based method
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(d) Final image after reconstruction

Fig. 8  Irregular target reconstruction using the proposed method
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To quantify the performance, SCR, RCP, and precision were used. The SCR and RCP 
for the existing and the developed methods were evaluated at varying noise environ-
ments, and the results were averaged over 100 Monte Carlo runs for each SNR value. 
Figure 9 shows variation in SCR and RCP with SNR for the existing and proposed meth-
ods. When SNR=20 dB, the proposed method registered an improvement of 8.8% for 
SCR and 23.8% for RCP relative to the existing method.

To examine the target detection capability, precision was used as a performance meas-
ure. Figure 10 shows the variation in precision with the detection threshold for the exist-
ing and proposed methods. Evidently, the proposed method can more accurately detect 
the target in the presence of ghost, contrary to the existing method where the detection 
probability is low.

7 � Conclusion
In this work, we have devised a method to combat the effect of multipath ghost in 
TWRI. Assuming a point target scenario, the proposed method serves as a generaliza-
tion of the existing duo subarray-based reconstruction method. Furthermore, we have 
improved the existing method to incorporate extended targets during image reconstruc-
tion. Previous methods consider all targets as point targets, an assumption that cannot 
hold in real-world applications. Hence, inclusion of extended targets during reconstruc-
tion is inevitable to represent the scene more correctly. Simulation results show that our 
method reconstructs targets more effectively than the existing point target methods. As 
a possible future research avenue, researchers may consider the experimental validation 
of our simulation results to map the presented theoretical concepts and practice to a 
range of radar imaging modalities, including ground penetrating radar and through-the-
wall radar. Furthermore, our work may be extended to use more advanced electromag-
netic simulations of 3D objects to generate reliable results.
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Fig. 9  Variation in performance metrics with signal-to-noise ratio
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