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1  Introduction
Ship radiated noise is one of the important ways of detecting and identifying ships. In 
order to prevent detection by the enemy’s perception system, it will take the interference 
signal for the purpose of confrontation to cover its own radiated noise signal. The explo-
sion signal is a typical interference signal. The explosion signal has the characteristics of 
high energy and wide coverage frequency. If an effective anti-interference method can be 
studied, it will greatly improve the identification efficiency of enemy ships in wartime, 
improving the efficiency and success rate of tactical operations. This paper will mainly 
study the ship radiation anti-interference method under the interference of explosion 
signal.

The ship radiated noise signal is regarded as the target signal, and the interference 
signal is regarded as noise. The existence of the interference signal will make the ship 
radiated noise signal with a very low signal-to-noise ratio. To resist the interference of 
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interfering signals, a very heuristic idea is that if we can effectively enhance the target 
signal, we can eliminate the influence of interfering signals, and finally achieve anti-
interference. Therefore, the problem of anti-interference of ship radiated noise signal 
can be transformed into a signal enhancement problem. This paper will focus on the 
signal enhancement research under the low signal-to-noise ratio of single-channel ship 
radiated noise signal.

The traditional signal enhancement methods mainly include: spectral subtraction, 
Wiener filtering, mask method and so on [1–3]. According to the data in our hands and 
after testing and simulation, we found that the traditional signal enhancement method 
has a very poor effect on the enhancement of ship radiated noise signal in the case of 
extremely low signal-to-noise ratio. The specific simulation results are shown in the 
experiment. This paper will focus on signal enhancement methods based on data-driven 
deep learning methods. Due to the dependence of deep learning on massive data, cur-
rent signal enhancement methods focus on the field of speech enhancement research 
[4–13]. Among them, the single-channel time domain signal enhancement method 
based on deep learning is to establish the mapping relationship between the enhanced 
signal and the mixture signal through the deep learning model, directly realize the sig-
nal enhancement in the time domain [14–23]. The method of using the time domain 
has certain advantages, avoiding the calculation of the mutual conversion of the time 
domain to the frequency domain. Moreover, through training, the model can have the 
ability to extract better signal features of the signal, and the features obtained through 
data-driven training may be more suitable for the current signal enhancement task. And 
the current time-frequency domain representation of the signal has the requirement of 
time resolution. The time domain method can avoid this problem. In theory, the sig-
nal enhancement method in the time domain can use any resolution. Recently, end-to-
end signal enhancement in time-domain has shown state-of-the-art results in a variety 
of signal enhancement tasks [24–32]. WaveNet is uesed to deal with the text-to-speech 
problem through the CNN, which is also applied to time-domain signal enhancement 
[33, 34]. Conv-TasNet verifies and proposes the superiority of signal enhancement in the 
time domain [35]. Dual-Path RNN can build a bidirectional RNN deep learning model. 
Realize the modeling and learning of long-sequence signals [36]. In order to improve 
the learning ability of the model and effectively obtain sequence and local signal fea-
tures, WaveCRN establishes a flexible signal enhancement strategy by combining CNN 
and LSTM [37]. In addition to adopting different deep learning paradigms, there are 
some other deep Learning techniques are applied to deal with the time-domain signal 
enhancement problem. For example, various attention mechanisms are combined in the 
model, such as self-attention, transformer, etc [38, 39].

In this paper, we propose a deep learning model for signal enhancement in the time 
domain, which is mainly aimed at the enhancement of ship radiated noise signal. Our 
method is inspired by Conv-TasNet. Our method is an encoder and decoder-based 
architecture with U-net. The U-net is established through 1d-conv, and combined with 
the transformer attention mechanism. In this paper, our enhanced target is ship radiated 
noise signal, and the interference signal is mainly explosion signal. The final experiments 
show that our method works well. The contributions of this paper mainly include two 
aspects. First, we propose the use of deep learning method for anti-interference of ship 
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radiated noise signal for the first time, which verifies that it is feasible to use deep learn-
ing paradigm for signal enhancement of ship radiated noise signal. Secondly, our experi-
ment sets the signal-to-noise ratio at extremely low level, our final experimental results 
show that the ship radiation noise signal can still be effectively enhanced.

The rest of this paper is organized as follows: Sect.  2 defines the problem of signal 
enhancement of ship radiated noise. Section  3 proposed method and related techni-
cal details. Section  4 outlines experimental results and analysis. Section  5 represent 
Conclusion.

2 � Problem definition
In this paper, we mainly focus on ship radiated noise signal enhancement, its application 
scenarios are different from general speech enhancement. Here, we need to clarify our 
main problems. The ship radiated noise signal is s and the interference signal is n, then 
the interfered signal can be expressed as:

where {y, s, n} ∈ Rl∗m , m is the number of sampling points of the signal. We hope to use 
the signal enhancement method to enhance the received signal with a very low signal-
to-noise ratio to reduce the influence of interference and obtain a signal ŷ with a higher 
signal-to-noise ratio from y.

where fθ is the parameters θ of the deep learning model.

3 � Proposed method
The method proposed in this paper is inspired by Conv-TasNet, and adopts an end-to-
end signal enhancement strategy to build a 1dconv-Unet model based on the encoder 
decoder structure. Our idea is to frame and reduce the input signal through the input 
block, and then train the 1dconv-Unet model to obtain the mask of the signal [40], 
and multiply the mask by the time-domain signal vector to obtain the enhanced signal. 
After that, the signal is restored to the signal with the same time resolution as the input 
through the output block. The structure of the entire model is shown in Fig. 1. We will 
elaborate on it below.

3.1 � Input block

The input signal x ∈ R1∗m , m is the length of the signal. Generally, the input signal is 
chunked into overlapping frames which is processed as frame-level enhancement: 
s ∈ RT∗L . Where T is the number of frames. L is the length of frames. After a 1d-conv 
layer, the frames are transformed into a vector representation of C channels. After pass-
ing through a nonlinear activation function:

where H() is nonlinear activation function, here we use the PRelu() function.

(1)y = s + n

(2)ŷ = fθ y

(3)I = H(Conv1(seg_with_overlap(s))) ∈ RT∗C∗L
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3.2 � 1d‑Conv Unet block

This block is mainly composed of two modules: downsample block and upsample block. 
The multi-layer stacking of the downsample block realizes the dimension reduction trans-
formation of the input vector. And upsample block realizes the up-dimension transforma-
tion of vector, and there will be skip connection in the conversion process of upsample. The 
interaction of information in different transformation processes at the same resolution is 
beneficial to improve model performance.

The main components of the Downsample block are shown in the Fig. 2. Among them, 
1d-conv is mainly responsible for dimensionality reduction operations at different resolu-
tions. In many other signal enhancement articles, in order to make the model have better 
temporal information learning ability, it is mostly through some deep learning paradigms 
such as LSTM and RNN. However, such the typical time series deep learning model will 
greatly increase the complexity and computational complexity of the model. Therefore, we 
choose the transformer as the attention mechanism here, so that the model has the ability 
to learn time series information [41].

In actual training, we found that the use of globe layer norm can greatly improve the per-
formance of the model.

(4)gLN(F) = F − E[F ]√
Var[F ] + ε

⊙ γ + β

Fig. 1  Model

Fig. 2  Downsample
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where F ∈ RC∗T is the vector of input, γ , β is learnable parameters.
The main components of the upsample block are shown in the Fig.  3. Among them, 

1d-conv is mainly responsible for expanding the input vector at the channel level. It is then 
dilated at the temporal resolution by Pixel shuffle. Pixel shuffle is mainly used in the field of 
image super-resolution research [42]. It is usually applied to 2-dimensional data. Here, we 
apply it to a 1-dimensional signal. The input vector v ∈ RT∗C∗K . For the r upsample rate, we 
first expand the vector at the channel level through 1d-conv v′ ∈ RT∗rC∗K , and then expand 
at the temporal resolution level o ∈ RT∗C∗rK . The pixel shuffle operation process is shown 
in the Fig. 3.

In order to improve the learning ability of the model at different time resolutions. Here, 
we will use multiple Unet networks in series, and use different dilated 1d-conv convolu-
tions. In actual training, it is found that setting different dilated parameters can significantly 
improve the performance of the model. We believe that under the condition that multiple 
Unet networks are connected in series, using different dilated parameters can extract time 
series information at different time resolutions. Greatly improves the performance of the 
model.

3.3 � Output block

The Output block is to ensure that the time resolution of the signal is restored to the length 
of the original signal. The input v ∈ RT∗C∗K is converted to by 1d-transconv m ∈ RT∗L , and 
finally converted to the same size as the input signal by the overlap-and-add method.

(5)E[F ] = 1

NT

∑

NT

F

(6)Var[F ] = 1

NT

∑

NT

(F − E[F ])2

(7)O = overlap_and_add((Conv1(s))) ∈ R1∗m

Fig. 3  Upsample
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3.4 � Loss function

The model proposed in this paper adopts an end-to-end training strategy, and the target 
of model training is the scale-invariant source-to-noise ratio. This metric is often used to 
evaluate the performance of signal enhancement methods. It is defined as:

where ŝ and s are the estimated and original clean sources. 〈〉 is inner product operation. 
A mean squared error (MSE) loss in the time domain is defined as:

where ŝ and s are same as (8). Finally, We combine the two loss functions:

where α is a hyperparameter. The combination loss function we designed is divided into 
two parts, the first part is that SI-SNR is our task objective. We hope that the SI-SNR of 
the enhanced signal will be significantly improved. The second part is to want the signal 
output by our model to be as consistent as possible in the time domain. We found that 
the combination loss function can improve the effect of signal enhancement.

4 � Experiment
4.1 � Data

Our ship radiated noise signal data comes from DeepShip [43]. Our interference sig-
nal data were collected in the South China Sea. The explosion signals are simulated by 
periodic air guns ranging from seconds to minutes for scientific research. The sampling 
locations are located in two different sea areas, with a total length of 8 hours. During 
this period, there will be short-term long-distance ships passing through. Moreover, 
some of the noise signals have oil exploration platform operating noise. The waveform 
of the interference signal is shown in Fig. 4. When we use these airsoft signals. we split 
it into ten-second segment. When making the dataset, we clean the data to make sure 
that there is an airsoft signal in the segment, and then fuse it with the ship’s radiated 
noise signal at − 20 dB to − 25 dB. Finally, it is fused with the radiation noise signal of 
the ship. The data set we finally formed has a total of 32,312 signals, and the sampling 
frequency is 8 KHz.

Two samples in our dataset are shown in the Fig. 4. The raw_sig in the figure is the ship 
radiated noise signal, the noi_sig is the air gun signal, and the mix_sig is the mixed signal, 
and the legend on the mixed signal shows the signal-to-noise ratio of the mixed signal. 

(8)starget =
〈

ŝ, s
〉

s

�s�2

(9)enoise = ŝ − starget

(10)LS=SI-SNR=10log10

∥

∥starget
∥

∥

2

‖enoise‖

(11)LT
(

s, ŝ
)

= 1

N

N−1
∑

k=0

(

s[k] − ŝ[k]
)2

(12)L = αLT + (1− α)LS
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Fig. 4  Two samples of the dataset
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(a) and (c) are the time-domain waveforms of the two samples, we can find that the two 
samples are seriously distorted after mixing with the noise signal. (b)(d) are the visuali-
zation images of the two samples after time-frequency transformation. We can find that 
the frequency range of ship radiated noise signal is mainly distributed 0–1200 Hz. Our 
airsoft noise signaling industry is mainly distributed in this frequency band too. After 
mixing, it can be seen that the ship’s radiated noise signal has been submerged in the 
noise, which is very difficult to identify.

4.2 � Experiment setting

Our model uses 10 layers of Unet-1dconv blocks, 5 layers of downsample blocks and 5 
layers of upsample blocks. Cascading 5 Unet-1dconv blocks. The default batch is 1 dur-
ing model training. The optimization algorithm is SGD, and the learning rate is 0.0001. 
We set 50 epches, and if the loss function 5 epochs did not drop, the training would stop. 
Our dataset has a total of 32,312 signals. We divide it into three parts, 50% is used as 
training set, 20% is used as validation set, and 30% is used as test set. The original length 
of the data is 80,000, and the length of each frame through slices is 4000 with the 50% 
overlap. We use scale-invariant source-to-noise ratio and source-to-noise ratio (SNR) 
as objective evaluation. Our experimental comparison methods are: Ideal Amplitude 
Mask (IAM), Ideal Ratio Mask (IRM), Ideal Binary Mask (IBM), Winner-Filter, Conv-
TasNet. We will conduct multiple experiments and show the best results. We deploy our 
model using Pytorch. Using two NVIDIA 2080TI for training. The definition of SNR is 
as follows:

where ŝ and sreference are estimated and reference signals

4.3 � Experiment results

The objective evaluation results of our experiments are shown in the Table 1. We use SI-
SNR and SNR for verification. We find that traditional methods such as IAM, IRM, IBM, 
Winner-Filter do not perform well in the task of ship radiated noise signal enhancement. 
And it can be found that the two evaluation are quite different. We believe that SI-SNR 
reduces the influence of signal strength on signal-to-noise through orthogonality. Part 
of the frequency components can be filtered out by winner filtering, but it has a lower 
signal gain, so it has the high SI-SNR and the low SNR. And vice versa for other mask 

(13)SNR (dB) = 10log10

∣

∣ŝ
∣

∣

2

∣

∣sreference − ŝ
∣

∣

2

Table 1  Objective evaluation result

Modle SI-SNR SNR

IAM − 55.2528 0.0639

IRM − 98.7227 0.0058

IBM − 56.6350 0.0737

Winner filter − 0.0061 − 48.2690

Conv-TasNet 1.7453 1.2535

Ours 2.3459 2.9996
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Fig. 5  The output of two models
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methods. We can see that the data-driven deep learning method has crushing advan-
tages in two objective evaluation. Our method outperforms the state-of-art Conv-Tas-
Net on all of the objective evaluation.

Next we compare through the visualization of the signal. Since other traditional meth-
ods differ too much in objective evaluation criteria, we only compare Conv-TasNet. We 
visualize the signal after the enhancement of the two signal enhencement models. The 
signal time-domain waveform and time-frequency spectrum are drawn respectively. Its 
visualization results are shown in the Fig. 5. Where “mix_sig” is the input of the model 
and the signal to be enhanced. “clean_sig” is the reference signal, “tas_est_sig” is the out-
put of Conv-TasNet, and “our_est_sig” is the output of our method. By comparing (a) 
and (c), we find that our enhancement effect in the time domain is better than that of 
Conv-TasNet. By comparing (b) (d), we find that the enhancement effect is better in the 
low frequency band of 0–1000 Hz, and the line spectrum is clearer.

5 � Conclusion and discussion
We propose a data-driven deep learning method for ship radiated noise signal enhance-
ment. We directly enhance the signal in the time domain, eliminating the need for con-
version between different domains. We build the encoder–decoder structure of the Unet 
network at different temporal resolutions. We introduce a transformer attention mecha-
nism to enable our model to learn temporal information. We conduct experiments with 
actual collected data and verify that our method can effectively enhance the signal time 
in the case of extremely low signal-to-noise ratios of − 20 to − 25 dB. In the furture, we 
would like to propose suitable anti-reference methods for ship radiated noise signal for 
more interference types.
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