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1  Introduction
On the basis of traditional two-dimensional SAR, three-dimensional synthetic aperture 
radar (3D SAR) system can obtain the height information of a target or scene and 
construct a 3D imagery with a high resolution, which has an important significance for 
military and civilian practical applications. In these years, a number of 3D SAR imaging 
technologies have arisen, such as Interferometric SAR (InSAR) [1, 2], Tomographic SAR 
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[3], Circular SAR (CSAR) [4–6] and Linear Array SAR (LASAR) [7–9]. The former two 
types of SAR systems are based on the interferometric technique, in which multiple 
antennas are used to observe the target from different angles and obtain the 3D elevation 
information [1]. However, these methods do not result in a real 3D imagery [1–3]. CSAR 
achieves 3D imaging capability by controlling the circular trajectory of the flight, which 
requires precise control of the flight trajectory [10]. In view of the above problems, 
Gierull introduced the concept of downward-looking line array (DLLA) SAR [11]. 
DLLA 3D SAR [12–14] synthesizes virtual 2-D aperture by real and synthetic aperture, 
and achieves accurate height-oriented imaging by pulse compression. The downward 
looking mode can effectively solve the issues of shadowing and overlaying caused by the 
traditional side looking.

Moreover, the disadvantages of massive data storage and transmission burden make 
the LASAR system meet many difficulties in the practical application as it requires 
densely sampled data in three dimensions. As a result, sparse data collection strategy can 
greatly reduce the data collection burden, which creates powerful incentives to research 
3D SAR sparse imaging. Unfortunately, when the conventional imaging algorithms 
meet sparsely collected data, the quality of 3D images deteriorates dramatically with 
unpredictable sidelobe and false targets behavior. The targets cannot be exactly focused 
because the signal sampling no longer meets the Nyquist sampling rate.

The methods for reconstructing sparse signal can be grouped into two categories. The 
first category is to recover sparse signals with overwhelming probability directly through 
a finite number of measurements based on compressive sensing (CS) theory [15–17]. 
However, high accuracy of the measurement matrix is required to ensure the quality of 
the 3D images. In comparison, the methods belonging to the second category complete 
the lost samples of a sparse signal using only its available elements. The key is to establish 
the relationship between existing entries and the missing ones [18]. As a representative 
technique, tensor completion constructs the potential connections between the existing 
and the missing elements by leveraging the low-rankness [19]. Meanwhile, the intrinsic 
structure of the high-dimensional data will not be destroyed by tensor [18] because of no 
dimensionality reduction. Therefore, the lost elements in sparse signal can be recovered 
by solving a convex optimization problem when the echo data tensor meets the low-
rankness [20]. Some heuristic algorithms [18, 21–24] were proposed to estimate the 
lost values iteratively and have been proven to be effective in 3D SAR sparse imaging 
applications [12, 25, 26]. However, in fact the echoed data acquired by the sparse linear 
array can be viewed as a 3-order incomplete tensor with randomly missing slices. In 
this case, the tensor completion methods mentioned above generally failure recover the 
missing data element, which causes the unacceptable imaging performance. Fortunately, 
by applying multi-dimensional Hankelization to the incomplete data, a good idea of data 
completion has been proposed [27, 28].

A novel imaging algorithm using TC in embedded space is proposed in this manuscript 
for sparse array 3D SAR. Firstly, the signal model of the 3D sparse array SAR is modeled 
in tensor space. By using tensor, it is possible to mine the internal properties hidden in 
the 3D data. Secondly, the inadequate data with missing slices is represented as a Hankel 
tensor with higher order by MDT. Due to the Hankel structure, this tensor with higher 
order is expected to have a relatively low rank. The lost elements are then completed 



Page 3 of 18Zhang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:66 	

perfectly by a tucker decomposition in the embedded space and subsequently the 3D 
imagery can be focused by the various 3D imaging approaches. Finally, the effectiveness 
and the accuracy of the proposed algorithm have been evaluated by various experiment 
results of simulated and measured data.

The paper sections are shown below. Section  2 briefly introduces the notations and 
formulas of tensor as the preliminaries and backgrounds. In Sect.  3, the construction 
of 3D sparse array SAR signal model in the tensor space is given. In Sect. 4, we discuss 
the low rank and sparse property and then present a 3D imaging algorithm using TC in 
embedded space for 3D sparse array SAR. Section 5 shows experimental findings that 
demonstrate the validity of the presented method. Finally, conclusions are drawn in 
Sect. 6.

2 � Notation and preliminaries
This section first introduces the notations and formulas related to tensor or tensor 
operation as a preparation for the following algorithm derivation, as shown in Table 1.

3 � Signal model
Figure 1 illustrates the imaging geometric relationship of 3D sparse array SAR. Suppose 
that the aircraft flies at the altitude H with a speed Va . Under the wings of the aircraft, a 
number of antenna arrays suspended at unequal intervals made up a sparse linear array 
with the length of Ly . In the 3D space coordinate system, three orthogonal axes repre-
sent the azimuth, cross-tack and altitude, corresponding to the aircraft flight direction, 
linear array direction and radar irradiation direction, respectively.

Table 1  Notations and preliminaries

Definitions Notations and formulas Notes

Vector b

Matrix B

Tensor A A(i)—the ith matrix in a sequence

Unfolding/matricization The i-mode unfolding/matricization: A(i) Unfolding a tensor to a matrix

Frobenius norm �A�F =
m1 m2

· · ·
mI

a2m1m2···mI

A ∈ C
M1×M2×···×MI

Tensor multiplication The i-mode product of ten-
sor A and matrix B : 
(A×i B)m1···mi−1kmi+1···mI

=
∑Mi

mi=1
am1m2···mI

bkmi

Tucker decomposition A= C×1 F
(1) ×2 F

(2) · · · ×I F
(I) C is core tensor

F
(i) is factor matrix

Multi-linear tensor product Multi-linear tensor product: 
C× {F} = C×1 F

(1) ×2 F
(2) · · · ×I F

(I)
{F} = {F(i)}I

i=1
 is a set of the factor 

matrices
Multi-linear tensor product 
with the i-th mode excluded: 
C×−i {F} = C×1 F

(1) · · · ×i−1 F
(i−1) ×i+1 F

(i+1) · · · ×I F
(I)

Rank-one tensor If A can be expressed as an 
outer product of vectors, i.e., 
A= x

(1) ◦ x(2) ◦ · · · ◦ x(I) , it satisfies 
rank-one tensor

◦ denotes the outer product of vectors

Tensor rank rank(A) The minimum quantity of rank-one 
tensors which make up A by their 
sum
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From the theory of scattering center model [29], the large volume target consists of a 
finite number of scattering points. The activate antennas transmit a step frequency sig-
nal. This modulated signal consists of a set of K  pulses with a reference frequency f0 . 
The step frequency increases sequentially in a constant frequency increment �f  . The 
signal reaches target B and then is reflected back to be received by the activate anten-
nas. After a double-way propagation distance, the receiving antenna can obtain the echo 
signal E as

where A is the amplitude. γ denotes the backscattering coefficient of the target. τ is the 
time variable. The one-way distance of signal propagation Rd is indicated as the dis-
tance between the transmitting/receiving antenna Pt = (Vatm, yn,H) and the target 
PB = (xB, yB, zB).

where R0 =
√

(Vatm)2 + y2n +H2 indicates Zero-Doppler distance. The first approxi-
mately equal sign is established according to Fresnel approximation. It can be seen that 
the third part can be neglected due to the far-field condition, i.e., R0 ≫ xB, yB, zB.

Since the sample on a 3D signal grid is discrete, the received data by these scatterers 
can be expressed as

(1)E = Aγ exp
[

−2π j(f0 + k�f )(τ − 2Rd

/

c)
]

(2)

Rd =

√

(Vatm − xB)2 + (yn − yB)2 + (H − zB)2

=

√

R2
0 − 2(VatmxB + ynyB +HzB)+ x2B + y2B + z2B

≈ R0

[

1−
2(VatmxB + ynyB +HzB)

2R2
0

+
x2B + y2B + z2B

2R2
0

]

≈ R0 −

(

VatmxB

R0
+

ynyB

R0
+

HzB

R0

)

(3)E =
∑

m

∑

n

∑

k

γ (xB, yB, zB) exp

(

−4π j
R0

�

)

Fig. 1  Imaging geometric relationship of 3D sparse array SAR
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Further simplification, the part of constant exp(−4π jR0

/

�) is ignorable in the 
below content. Let three variables δx , δy , δz are introduced as

Therefore, the echo signal can be represented as follow format. It can be view as a 
generic signal model for 3D SAR imaging.

In order to obtain the 3D imagery in tensor space, the above signal model can be 
represented into tensor form. The imaging scene can be divided into grids at equal 
intervals with the size of P × Q × L . That is to say, if there is a scattering point in the 
grid, γ  is not equal to 0. Thus, Eq. (5) can be re-described as

The tensor representation of the signal model can be described as

where E is tensor format of the echo E with the order of M × N × K  , G is tensor format 
of the backscattering coefficient γ with the order of P × Q × L , ×i, i = 1, 2, 3 represents 
tensor multiplication. �x is the azimuth steering vector matrix, �y is the cross-track 
steering vector matrix, �z is the range steering vector matrix.

4 � Methods
Before reconstruction the target, we consider recovering the lost data elements first. 
Then, a traditional 3D imaging algorithm is exploited to obtain a more excellence 3D 
imagery. However, the echo data acquired by the sparse linear array can be viewed as 
a 3-order incomplete tensor with randomly missing slices. In this case, it is difficult 
for the traditional TC approach to recover the lost data elements, which cause the 
unacceptable imaging performance.

In this section, we present a novel 3D imaging algorithm for sparse array SAR 
using TC in embedded space to solve the above problem. Figure 2 depicts the flow 
diagram of this 3D sparse array SAR imaging method based on the echo tensor with 
missing slices. The algorithm includes two parts: tensor completion and 3D imaging, 
where the part of tensor completion contains MDT, low-rank tensor approximation, 
and inverse MDT steps.

(4)δx =
2Vatm

�R0
, δy =

2yn

�R0
, δz =

2H

�R0

(5)E(δx, δy, δz) =
∑

m

∑

n

∑

k

γ (xB, yB, zB) exp
[

2π j(δxxB + δyyB + δzzB)
]

(6)E(m, n, k) =
∑

p

∑

q

∑

l

γ (p, q, l) exp
[

2π j(δxxp + δyyq + δzzl)
]

(7)E = G ×1 �x ×2 �y ×3 �z

(8)

�x = exp(2π jδxxp) ∈ C
M×P

�y = exp(2π jδyyq) ∈ C
N×Q

�z = exp(2π jδzzl) ∈ C
K×L
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4.1 � Property analysis for signal tensor

First, we discuss the sparse property based on the signal model in (6), which helps to 
perform 3D image reconstruction from a sparse signal tensor. For 3D sparse array SAR, 
massive quantity of non-target areas exists in the 3D scene. That means the sum of the 
backscattered responses of few prominent scatters constitutes the 3D radar image G , which 
means that G is expected to be sparse.

Then, the prerequisite of tensor completion is the low-rank property. The signal data for 
one scattering point B is constructed as

Thus, the tensor representation of signal E is expressed as

The operator of outer product indicates as ◦ . Since E is expressed as an outer product of 
vectors, it satisfies a rank-one tensor. It also shows that E is a low-rank tensor.

Due to the superposition of signals from several scatterers, the final signal E can be 
characterized as a linear combination of the corresponding 3-mode rank-one tensor.

The minimum quantity of rank-one tensors which make up E by their sum (see Sect. 2) 
denotes the rank of E . That means the rank of tensor E cannot exceed B. In addition, a 
few number of strong scattering points form the image scene, thus B ≪ PQL , and further 
derived that rank(E) ≤ B ≪ PQL . Hence, if the target is sparse, then the tensor E has the 
property of low CP-rank.

4.2 � MDT and inverse MDT

Given that the 3-order echo tensor E is transformed by a delay embedding with parameters 
ξ = {ξ1, ξ2, ξ3} ∈ N

3 and � = {M,N ,K } . This processing includes two steps: duplication 
step and folding step [28], as shown in Fig. 3.

First, the MDT produces the low order tensor E into a duplicated high order tensor, 
which is called as “Hankelization” [30]. Consider the duplication matrices are satisfied as

(9)E(m, n, k) = γB exp
[

2π j(δxxB + δyyB + δzzB)
]

(10)E = γ�x(:, x) ◦�y(:, y) ◦�z(:, z)

(11)E =

B
∑

b=1

γb�x(:, xb) ◦�y(:, yb) ◦�z(:, zb)

(12)
D1 ∈ {0, 1}ξ1(M−ξ1+1)×M

D2 ∈ {0, 1}ξ2(N−ξ2+1)×N

D3 ∈ {0, 1}ξ3(K−ξ3+1)×K

Fig. 2  The flow diagram of the proposed method
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Then the MDT can be obtained by

where fold(ψ,ξ) = unfold−1
(ψ,ξ) denotes a folding operator from a low 

order tensor to a high order one. Here a 6-th order tensor with 
ξ1 × (M − ξ1 + 1)× ξ2 × (N − ξ2 + 1)× ξ3 × (K − ξ3 + 1) is constructed from the 
input 3-th order tensor with ξ1(M − ξ1 + 1)× ξ2(N − ξ2 + 1)× ξ3(K − ξ3 + 1).

In contrast, the inverse MDT transform can be decomposed into two steps: a 
matricization operation (also known as unfolding) and the Moore–Penrose pseudo-
inverse D† = (DT

D)−1
D

T . Thus, the Hankel tensor EH after the inverse MDT 
processing is presented as

4.3 � Low‑rank tensor approximation

According to (13), the incomplete tensor E ∈ C
M×N×K  and its mask tensor 

M ∈ {0, 1}M×N×K  can be transformed by MDT, which are given by

where I = 6 because the Hankel tensor EH is a 6-th order tensor here. The zero elements 
in MH correspond to the lost entry; otherwise, the one element corresponds to the 
available entry.

Here, we can solve the low-rank tensor approximation by tucker decomposition. 
Hence, the solution of the optimization problem can be converted into the following 
form.

where ⊛ denotes the element wise Hadamard product.
The above equation is not a convex issue and the solution is not unique [20]. For the 

tensor with the complete elements, its stationary point can be efficiently obtained by 

(13)Hξ(E) = fold(ψ,ξ)(E ×1 D1 ×2 D2 ×3 D3)

(14)H
−1
ξ (EH ) = unfold(ψ,ξ)(EH )×1 D

†
1 ×2 D

†
2 ×3 D

†
3

(15)
EH = H(E) ∈ C

J1×···×JI

MH = H(M) ∈ {0, 1}J1×···×JI

(16)min
C,{F(i)}

I
i=1

�MH ⊛ (EH − C × {F})�2F , s.t. C ∈ R
R1×···×RI , F

(i) ∈ R
Ji×Ri(∀i)

Fig. 3  MDT processing for a tensor
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the alternating least squares (ALS) [20] for tucker decomposition, whereas for the tensor 
with lost elements, we can address this optimization problem effectively by gradient 
descent method [31] and manifold optimization [32]. It is obvious that the step-size 
parameter affects the efficiency of both algorithms. Therefore, an auxiliary function [28] 
is introduced as

where a parameter set α = {C,F(1),F(2) . . . ,F(I)} , T α = C × {F} denotes a tucker 
decomposition, and MH as a complement set of MH is equal to 1−MH.

According to [28], we can transform the auxiliary function into

Clearly, there is a two-step processing composing the auxiliary function minimization 
solution. First, the auxiliary tensor X  can be calculated by

Then, the factor matrices {F} and the core tensor C are updated by using the ALS to 
optimize

In order to the non-uniqueness of the tensor T  solution, the rank increment strategy is 
integrated into tucker-based completion, which has been discussed in [28]. Specifically, 
a very low-rank tucker decomposition is first set up and used as initialization to obtain 
a higher-rank decomposition. Following that the rank is updated iteratively until the 
noise condition is less than a threshold. In short, the algorithm of low-rank tensor 
approximation can be summarized step by step as follows.

1: Set a low rank sequence Ri = 1 where i = 1, . . . , 6 as the initial value.
2: According to Eqs. (19) and (20), compute C and {F(i)}Ii=1 with the initial rank 

sequence Ri . T = C × {F} is calculated accordingly.
3: Judge whether �MH ⊛ (EH − T )�2F as a noise condition is not larger than a noise 

threshold parameter η . If it is satisfied, the algorithm is terminated; otherwise, the 
algorithm continues to execute.

4: update the parameter i′ = argmaxi
∥

∥(MH ⊛ (EH − T ))×−i {F
T }
∥

∥

2

F
 and increment 

Ri′ , and then go back to step 2.

4.4 � 3D image reconstruction

After the completely sampled 3D data has been recovered by TC mentioned above, 3D 
imagery can be focused exactly by the Fourier transform-based technologies. Further, 
some super-resolution imaging algorithms such as the spectrum estimation strategies 
[33] also can be employed.

(17)f (α|α′) := �MH ⊛ (EH − T α)�
2
F +

∥

∥MH ⊛ (T α′ − T α)
∥

∥

2

F

(18)

f (α|α′) = �MH ⊛ (EH − T α)�
2
F +

∥

∥MH ⊛ (T α′ − T α)
∥

∥

2

F

=
∥

∥(MH ⊛ EH +MH ⊛ T α′)− (MH +MH )⊛ T α

∥

∥

2

F

= �X − T α�
2
F

(19)X = MH ⊛ EH +MH ⊛ T α′

(20)min
C,{F(i)}Ii=1

�X − C × {F}�2F , s.t. F
(i)T

F
(i) = IRi(∀i)
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To summarize, the proposed method for 3D sparse array SAR imaging using TC 
in embedded space is shown in Algorithm  1. It is clear that the sparse tensor is 
transformed to an incomplete high order Hankel tensor by MDT first. Next, low-
rank tensor approximation is leveraged to complete the higher order tensor and in 
the next step converted to the full-sampled data tensor by inverse MDT. Last, the 
3D imagery can be focused by applying the 3D Range Doppler (RD) algorithm. More 
details of 3D RD algorithm can be found in [34].

Algorithm 1 3D SAR sparse imaging using tensor completion in embedded space
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5 � Results and discussion
In this section, the validity and accuracy of the proposed 3D imaging algorithm is 
evaluated by the simulated and real datasets. The running environment carried out in 
our experiments is listed in Table 2.

5.1 � Verification of the proposed algorithm using simulated dataset

First, the simulations of the imaging distributed scene for 3D sparse array SAR are 
presented to verify the validity of the proposed algorithm. An X-band SAR and a sin-
gle scatterer located at (3 m, 0 m, − 1 m) are utilized. Table 3 lists the parameters used 
in the simulations. A full-sample 3D data in this simulation is collected by a uniform 
virtual linear array. The virtual array of 120 elements is built by using 4 transmit and 
30 receive elements with MIMO technique. SNR = 10 dB. The first line in Fig. 4 shows 
the 3D imaging results by using 3D RD method with full-sampled data.

The sparse sampling rate (SSR) is denoted by the number ratio of the observed 
samples to the all samples. Here, we use a sparse linear array by randomly selecting 
60 elements to produce the sparse data, i.e., SSR = 50%. This sparse data can be seen 
as a 3D tensor data with the missing slice. We pad the lost samples with zeros and 
then apply the different imaging algorithms to acquire 3D images. Figure 4 shows the 
3D imaging results with different methods. Images are obtained by the conventional 
3D RD method and the proposed method in the second and third line, respectively. 
The proposed method can recover the missing slices exactly. We set ξ = (32, 1, 1) and 
a (120, 200, 120) echo data was converted into a (32, 89, 1, 200, 1, 120) tensor. This 
Hankel tensor was re-expressed as a fourth-order tensor with (32, 89, 120, 200). Thus, 
we set the rank sequences as L1 = [1 2 4 8 16 32], L2 = [1 2 4 8 16 32 64 84], L3 = [1 2 4 
8 16 32 64 96 118], and L4 = [1 2 4 8 16 32 64 96 128 160 192].

Table 2  Running environment of our experiments

Software Processor Memory Operating system

MATLAB R2019a Intel Core i9-9900KF, 3.60 GHz 128G Microsoft Windows 7

Table 3  System parameters used in the simulations

Parameter Value

Reference frequency (f0) 10 GHz

Frequency step (∆f) 100 MHz

Signal bandwidth (Br) 150 MHz

Fly elevation (H) 1000 m

Fly speed ( Va) 200 m/s

Pulse repeat frequency (PRF) 1000 Hz

Number of range samples (K) 120

Number of azimuth samples (M) 200

Length of linear array (Ly) 6 m
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From Fig.  4, the scatterer is recovered with high-level side-lobes along the cross-
track direction by the 3D RD algorithm. For comparison, the proposed method can 
focus the scatterer precisely because of TC processing with MDT. Noted that there is 
no significant change along both azimuth and height directions because the missing 
slice is only appeared along the cross-tack direction. The peak sidelobe ratio (PSLR) 
and integrated sidelobe ratio (ISLR) as evaluated indexes are leveraged, which are 
shown in Table  4 for the point target. Here the best values are emphasized in bold 
font. As we can see from the cross-track direction, PSLR and ISLR values of 3D RD 
with sparse data deteriorate significantly, whereas the proposed method obtains the 
best performances, which is much closer to the corresponding indexes with 100% 
data. Moreover, PSLR and ISLR values in the other two directions obtain the similar 
results among these algorithms.

5.2 � Performance comparison with different algorithms

Furthermore, the performance of the proposed method is compared with those of other 
different algorithms including the conventional TC algorithms: high accuracy low rank 
tensor completion (HaLRTC) and tucker decomposition (TDC). Consider a target 

Fig. 4  3D imaging results of 3D RD and proposed method with 100% data or 50% sparse data. The SNR is set 
as 10 dB. The limited amplitude is − 25 dB

Table 4  Evaluated indexes with different methods

The optimal values are shown in bold

(X, Y, Z) RD (100% data) RD (50% sparse data) Proposed method (50% sparse 
data)

PSLR (dB) (− 6.3010, − 13.9317, − 9.0579) (− 5.7059, − 13.8840, − 8.5366) (− 6.3652, − 13.9663, − 9.1599)

ISLR (dB) (− 6.2692, − 4.1744, − 2.7365) (− 1.9645, − 3.9009, − 2.5161) (− 6.3401, − 4.2311, − 2.7787)
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consisting of 10 scattering points with the same amplitude. 3D RD method is chosen as 
a baseline method for comparison and the imaging results are illustrated in Fig. 5 with 
full-sampled data.

Figure  6 illustrates the results obtained by various methods. From top to bottom, 
images are acquired by the 3D RD method, the HaLRTC-based method, the TDC-based 
method and the proposed method, respectively. The 3D tensor data with 80% random 
missing slices, i.e., SSR = 80%. From left to right, the 3D result and its 3D views on cross-
track-azimuth slice, cross-track-height slice and azimuth-height slice are displayed, 
respectively. Comparing Fig. 6 with referenced Fig. 5, it can be observed evidently that 
although the scatter points can be resolvable using the conventional 3D RD method with 
sparse data, higher side-lobes is obvious along the cross-track direction because of the 

Fig. 5  3D imaging results of 3D RD with 100% data. The SNR is set as 10 dB. The limited amplitude is − 25 dB

Fig. 6  3D imaging results of various methods with 80% sparse data. The SNR is set as 10 dB. The limited 
amplitude is − 25 dB
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inadequate sampling. As shown in the second and third lines, HaLRTC and TDC fail 
to reconstruct the lost elements, which lead to the invalid suppression of side-lobes in 
3D imaging result. By contrast, the proposed method can effectively suppress the side-
lobes and can get similar 3D imaging performance with 100% data in Fig. 5. Similar to 
the results from Fig. 4, the imaging performance along the azimuth and height direction 
changes between different methods are not obvious because the remaining samples on 
the azimuth-height slices are full sample.

5.3 � Performance with different SSRs and SNRs

Different SSRs and SNRs would bring the changes in the imaging performance. To 
quantitatively evaluate these changes, we compute the mean squared error between the 
3D image reconstructed with sparse data T sparse and the full-sampled data T full.

Apparently, we prefer a smaller MSE value, which illustrates the reconstructed signal is 
much closer to the original signal.

We set up multiple sets of experiments with different SSRs from 10 to 90% under 
Monte Carlo simulation. The SNR is chosen to be 10 dB. The Monte-Carlo trials is set 
as 50 to evaluate average MSE. Figure  7 compares average MSEs between four differ-
ent methods based on sparse data with varying SSRs. It can be expected clearly that the 
average MSEs of the 3D RD method, the HaLRTC-based method and the TDC-based 
method overlap totally because the HaLRTC-based and the TDC-based methods are 
invalid completely. When the SSR is improved, the overall trend for average MSE of all 
methods is declining, which means the reconstruction accuracy becomes higher. Among 
these curves, when the SSR is more than nearly 30%, the error is extremely tiny (almost 
less than 0.1) for the proposed method, whereas the average MSE increases drastically 
when the SSR is less than 30%. It demonstrates that, if SSR is not excessively low (e.g., 
30%), the proposed method gains a reliable imaging performance.

The SNRs are examined ranging from − 20 to 20 dB under Monte Carlo simulation. 
The number of Monte Carlo trials is 50. Figure  8 draws the trend of average MSE on 

(21)MSE =

∥

∥T sparse − T full

∥

∥

F

�T full�F

Fig. 7  Trend of average MSE between different methods based on sparse data with various SSRs. The SNR is 
set to be 10 dB
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each SNR levels. Although we found that the fluctuation of the curves with 3D RD 
method, HaLRTC-based method and TDC-based method are not prominent, the aver-
age MSEs are slightly reduced with the increasing of SNR, as shown in the top right cor-
ner of Fig. 8. Moreover, with the increased SNR, the MSE goes down remarkably. When 
the SNR reaches − 20 dB, the value of average MSE for the proposed method is still less 
than 0.1, which implies that the imaging performance can be satisfied with a relatively 
low SNR. Even so, we can observe from the detail view in the lower right corner that 
there appears a transition point at the curve of − 15 dB, which indicates when the SNR is 
very low (less than − 15 dB), the increment of error becomes larger.

5.4 � Verification of the proposed algorithm using real dataset

The validation and evaluation of imaging performance for the proposed algorithm are 
carried out on the real dataset. The experimental principle of real data acquisition is 

Fig. 8  Trend of average MSE between different methods with various SNRs. The SSR is set as 50%

Fig. 9  Experimental principle of real data acquisition
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shown in Fig. 9. A pair of antennas moving along the 2-D track can transmit or receive 
signal, which can synthesize a virtual 2-D array. Figure 10 displays the signal transmitter, 
antenna track, foamy plate and eight targets covered with tinfoil. The experiment param-
eters on real data are shown in Table 5.

In the experiment, the size of the tensor is (50, 161, 1601). The proposed method is 
applied with ξ = (32, 1, 1) . The rank parameters are configured as L1 = [1 2 4 8 16 32], 
L2 = [1 2 4 8 16], L3 = [1 2 4 8 16 32 64 96 128 160], and L4 = [1 2 4 8 16 32 64 128 256 512 
1024]. Figure 11 demonstrates the 3D images reconstructed by various methods based on 
sparse data with missing slices. Similar to the above conclusions, the targets cannot be sat-
isfactorily reconstructed by ordinary low-rank model. However, the proposed method gets 
very clear results even though its accuracy is not high. At the same time, the comparison 
results by four methods with different SSRs are also shown in Fig. 11. With the decrease 
number of samples, all of the methods obtain more blurred images. When the SSR reaches 
20%, the targets cannot distinguish at all by 3D RD and HaLRTC-based method and TDC-
based method produced similar results. By contrast, the proposed method obtains signifi-
cant improvements compared with the other methods. Table  6 shows the average MSE 
results with three different SSRs. It is demonstrated that the proposed method performs 
better than the other methods and it was also very robust in terms of the SSR.

6 � Conclusion
In this manuscript, we have provided a new idea to realize the 3D imaging of targets for 
3D sparse array SAR in embedded space. On the basis of the sparsity and low-rank, the 
unsampled elements are reconstructed in the multiway delay embedded space by utiliz-
ing the tucker decomposition. After tensor complementation, the satisfactory 3D images 
can be easily achieved by any conventional algorithm. In comparison with other matched 
filter-based methods, the proposed algorithm has the advantage of acquiring target images 

Fig. 10  3D sparse array SAR system

Table 5  Experiment parameters on real data

Parameter Value

Transmitted frequency 8–12 GHz

Full sweep bandwidth 4 GHz

Frequency step 1 MHz

Center height 2.2 m

Number of azimuth samples 161

Number of cross-track samples 50

Space of azimuth samples 0.01 m

Space of cross-track samples 0.02 m
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with high-resolution and low side-lobes. Through extensive simulations and experiments 
on real datasets, the results clearly show that the proposed algorithm can significantly curb 
the adverse effects resulting from sparse data. In contrast to 3D RD and state-of-the-art ten-
sor completion algorithms, the proposed algorithm can reach similar imaging performance 
with complete data. Experimental results at different SSR and SNR values also illustrate that 
the proposed method is robust in the field of SSRs and SNRs. Note that the theoretical deri-
vation of signal model in this paper is based on the first-order Taylor expansion approxi-
mation. It is only suitable for the research of point targets in 3D scenes. In the future, 3D 
imaging will be further deeply studied for area targets with the distributed characteristics.

Fig. 11  Comparison of 3D imaging results by sparse data completed with various methods

Table 6  Average MSE results with three different SSRs

The optimal values are shown in bold

Method Average MSE

SSR = 20% SSR = 50% SSR = 80%

3D RD 0.9215 0.7096 0.4458

HaLRTC-based method 0.9215 0.7096 0.4458

TDC-based method 0.9215 0.7096 0.4458

Proposed method 0.4648 0.2558 0.1191
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3D	� Three-dimensional
ALS	� Alternating least squares
CS	� Compressive sensing
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DLLA	� Downward-looking linear array
DLSLA	� Downward looking sparse linear array
FFT	� Fast Fourier transform
HaLRTC​	� High accuracy low rank tensor completion
InSAR	� Interferometric SAR
ISLR	� Integrated sidelobe ratio
LASAR	� Linear array SAR
MDT	� Multiway delay embedding transform
MIMO	� Multiple input multiple output
MSE	� Mean square error
PSLR	� Peak sidelobe ratio
RD	� Range Doppler
SAR	� Synthetic aperture radar
SNR	� Signal noise ratio
SSR	� Sparse sampling rate
TC	� Tensor completion
TDC	� Tucker decomposition
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