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1  Introduction
Polarization is an essential property of the light. It is important to measure the polariza-
tion state in many applications, such as remote sensing [1–3], biomedicine [4, 5], sky 
polarized light navigation [6], fluorescence polarization immunoassay [7], ellipsometry 
[8–10], seismic acquisition [11] and so on.

The state-of-the-art methods for polarization measurement can be summarized 
as four typical classes, interferometric polarimeter [12, 13], temporally modu-
lated polarimeter [14, 15], division-of-amplitude polarimeter [16, 17] and spatially 
modulated polarimeter [6, 10, 18–23]. The first three families of methods need to 
carry out a serial of measurements with different orthogonal states of polariza-
tion. They usually suffer from high computation, poor stability, and complex sys-
tem structure [9]. Contrarily, spatially modulated polarimeter methods are more 
simple and efficient. There is no need of optical components twisting, and polariza-
tion direction can be obtained by a single measurement [24]. However, the classical 
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spatial modulated polarimetry methods are highly dependent on spatial modulation 
devices. They were difficult to be deployed in the realistic scenarios.

To address the issue of the classical spatial modulated polarimetry methods, vec-
torial optical field-based spatially polarization modulated polarimetry methods have 
been proposed recently [6, 18, 21–23]. In the strategy, the polarization informa-
tion is recorded by the modulated intensity pattern of the input light. In this way, 
when the pattern of the light is captured by a camera, the polarization measurement 
can be transformed into the problem of analyzing the irradiance image. In [22, 23], 
when a zero-order vortex quarter-wave retarder was used as a space variant bire-
fringence device to achieve spatial modulation for all polarization components, a 
normalized least-squares method and a hybrid gradient descent algorithm were pro-
posed, respectively, to calculate the polarization state from the irradiance images. 
Researchers have found that, when the input light was analyzed by an azimuthally (a 
radially) spatial modulator, the irradiance image has hourglass-shaped gray distribu-
tion. In other words, the darkest line of the irradiance image is parallel (or perpen-
dicular) to the polarization direction [21]. Consequently, the polarization direction 
of the input light can be captured by extracting the darkest line from the image. In 
[6, 10], the global Radon transform (GRT) was adopted. Gao and Lei [18] also cho-
sen GRT to get the intensity modulation curve from which the four Stokes param-
eters of the input light can be measured. Lei and Liu [21] compared the accuracy and 
cost time of different image processing algorithms such as interesting area detection 
(IAD), local correlation (LC), GRT and so on. They found that the precision of the 
IAD was low, and the Radon transform was quite sensitive to image noise. The LC 
had more stable and higher accuracy, but it was time-consuming like IAD and Radon 
transform.

To measure the polarization direction more robust and faster, a novel method is 
presented in this paper. Motivated by GRT and LC, the method contains three stages: 
coarse estimation, local Radon transform (LRT), and error compensation (EC). At the 
first, the coarse direction is estimated based on threshold segmentation. Then, LRT 
is performed in a local angle range while the coarse estimated direction is taken as 
the center angle. In the end, the accurate darkest direction (parallel or perpendicular 
to the polarization direction) is gotten by EC, which establishes a quantitative link 
between the error of coarse estimation and the correlation between LRTs. The advan-
tages of our algorithm are fourfold.

Firstly, the proposed method is robust to noise owing to the gray integral operation 
in LRT.

Secondly, the utilization of EC makes the proposed method highly precise.
Thirdly, different to the GRT with small angle interval [6, 10, 18], LRT is only need 

to be computed in a local angle domain with large angle interval. It is therefore more 
computationally efficient.

Finally, since most of the processing can be done by looking up tables generated 
offline, our algorithm is suitable for real-time task for its high speed.

The outline of this article is as follows. In Sect. 2, the coarse estimation, LRT, and 
EC are introduced, followed by a flowchart to summarize our method. Section  3 
shows several experimental results. Finally, some conclusions are drawn in Sect. 4.



Page 3 of 12Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:70 	

2 � Method
It has been verified that, when the input light was analyzed by an azimuthally (or a radi-
ally spatial modulator, the hourglass-shaped intensity pattern of the modulated light sat-
isfies Malus’s law [21]. In other words, the gray distribution of the irradiance image, as 
shown in Fig. 1, is directly proportional to the square of the cosine of the angle between 
the azimuthal angle and the darkest direction. The darkest direction, which is parallel (or 
perpendicular) to polarization direction, has the minimum radial integral value of the 
image. To capture the darkest direction accurately and quickly, our method include three 
stages: coarse estimation, LRT and EC. They are introduced as follow.

2.1 � Coarse estimation

In our algorithm, the darkest direction is first coarsely estimated based on threshold 
segmentation. To reduce the computational complexity, threshold segmentation is pro-
cessed on the pixels on the circles with certain radiuses rather than all the pixels in the 
image. Given a set of radiuses (e. g, r1, r2, r3, . . . , rN ), the pixels on the circles with dif-
ferent radiuses are collected. Then, the pixels are divided into two parts (i.e., bright area 
and dark area) based on a predefined threshold T  . The average azimuthal angle of pixels 
in the dark area, denoted by θc , is treated as the coarse darkest direction, i.e.,

where I(r, θ) is the gray value of the pixel with the coordinate (r, θ).

2.2 � Local Radon transform

In this stage, Radon transform [25] is adopted to compute the integral of an image along 
specified directions. Suppose that f  is a 2-D function, the integral of f  along the radial 
line l(θi) = x, y : x sin θi − y cos θi = 0  is given by

For digital images, Eq. (2) can be transferred as

(1)θc = mean(arg I(r, θ) < T ), 3r = r1, r2, . . . , rN , θ ∈ [0◦, 180◦
)

.

(2)g(θi) =

∞
∫

−∞

∞
∫

−∞

f (x, y)δ(x sin θi − y cos θi)dxdy.

Fig. 1  The illustration of LRT
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In Eq. (3), I(x, y) is the gray of the pixel with the rectangular coordinate (x, y) . W (ξ) , the 
weight of the pixel (x, y) for integration along l(θi) , can be obtained by

d is the distance threshold to determine whether the pixel (x, y) is on the line l(θi).
Obviously, GRT needs to compute the integral of the image along radial lines orientated 

from 0◦ to 180◦ . Moreover, to have the accurate result, the angle interval that the GRT 
adopts should be as small as possible. Different from GRT, LRT only needs to capture the 
integral of the image in a local angle range, in which, the coarse darkest direction (i.e., θc ) is 
taken as the center angle. For example, assuming the angle range and angle interval for LRT 
are ±θT and θs , LRT is gotten while the radial integral values are arranged in azimuth order. 
It is G(θc) =

{

g(θi)
}

(θi = θc − θT + (i − 1)θs, i = 1, 2 . . . , 2θT /θs + 1).
As illustrated in Fig. 1, the actual darkest direction of the irradiance image is 25◦ . As the 

image is disturbed by Gaussian white noise ( µ = σ 2 = 0.01 ), the darkest direction calcu-
lated by coarse estimation is 25.06◦(the white solid line in Fig. 1), LRT is composed of the 
normalized integral values of the image along the radial lines (the white dotted line in Fig. 1) 
counterclockwise oriented from 145.06◦ to 85.06◦ . Here, θT is set to be 60◦.

2.3 � Error correction

Theoretically, the darkest direction has the minimum value in LRT. It is regrettable that, the 
radial integral value of the image is always disturbed by the noise. For instance, the LRT of 
the image (shown in Fig. 1) is displayed in Fig. 2. The actual darkest direction of the image is 
25◦ , yet the direction that has the minimum value in LRT is 25.6◦ . Apparently, the direction 
with the minimum value is not the actual darkest direction under the noise. To address this 
issue, EC is developed to explore the error of coarse estimation.

Assuming we have two modulate irradiance images ( Im1 and Im2 ) with hourglass-shaped 
gray distribution, and the darkest directions of two images are θd1 and θd2 , respectively, 
G1(θd1 − θa) and G2(θd2 − θa) has the best correlation. That is,

G1(θd1 − θa) and G2(θd2 − θa) denote the LRTs of Im1 and Im2 while  θd1 − θa and  
θd2 − θa are the centers of the local angle ranges for integration, i.e.,  
G1(θd1 − θa) = {g1(θi)} (θi = θd1 − θa − θT + (i − 1)θs) , and G2(θ) = {g2(θi)} (θi = θ − θT + (i − 1)θs) . 
Similarly, G1(θ) is the LRT of the image Im1 while the center of the local integral angle 
range is θ . θa is an arbitrary angle.

Let the coarsely estimated darkest direction for Im2 is θc , the error of the coarse estima-
tion is θe . From Eq. (5), we can infer that, the LRT of Im1 that has the best correlation with 
G2(θc) is G1(θd1 − θe) . This inference can be represented as

(3)g(θi) =

v
∑

d=−v

∑

x

∑

y

I(x, y)W (x sin θi − y cos θi).

(4)W (ξ) =
d − |ξ |

d
.

(5)corr(G1(θd1 − θa),G2(θd2 − θa)) = max
θ∈[0,π)

[corr(G1(θ),G2(θd2 − θa))].

(6)corr(G1(θd1 − θe),G2(θc)) = max
θ∈[0,π)

[corr(G1(θ),G2(θc))].
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In Eq.  (5), the range for θ is [0,π) . In fact, the optimal θ fluctuates around θd1 as a 
result of the small error of coarse estimation. To reduce calculation, the range for θ can 
be decreased to [θd1 − θM , θd1 + θM] . Substituting θe = θd2 − θc into Eq. (5), we can have

Equation (6) explores the link between the error of coarse estimation and the correc-
tion between LRTs. Based on Eq. (6), the actual darkest direction of  Im2 can be captured 
by

In Eq.  (7), the range for θ is [0,π) . In fact, the optimal θ fluctuates around θd1 as a 
result of the small error of coarse estimation. To reduce calculation, the range for θ can 
be decreased to [θd1 − θM , θd1 + θM].

In practice, according to Malus’s law, Im1 can be generated and treated as the model 
image. Apparently, LRTs of Im1 also satisfies Malus’s law. That is, the integral of the 
image at the direction θi is

A is a coefficient decided by the image brightness. θd1 is the darkest direction of the 
image. Depending on Eq. (8), a set of LRTs of Im1 (i.e., G1(θi),θi = θd1 − θM + (i − 1)θr ) 
can be gotten. For the input image Im2 , substituting G2(θc) into Eq.  (7), the corrected 
darkest direction can be captured.

(7)θe = θd1 − arg max
θ∈[θd1−θM ,θd1+θM ]

[corr(G1(θ),G2(θc))].

(8)θd2 = θc + θd1 − arg max
θ∈[θd1−θM ,θd1+θM ]

[corr(G1(θ),G2(θc − θ))].

(9)g(θi) = A cos2
(

θi − θd1 +
π

2

)

.

Fig. 2  The normalized LRT of the image in Fig. 1
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Taking the image in Fig.  1 as an example, the working mechanism is illustrated in 
Fig. 3. In this experiment, the darkest direction of the model image is 0◦ . According to 
Eq. (8), a set of LRTs of the model image are generated while the center angle changes 
from −5◦(175◦) to 5◦ , in 0.01◦ increment. For the input image shown in Fig. 1, the pre-
dicted darkest direction estimated by coarse estimation is θc = 25.6◦ . In EC stage, we 
found that, G1(0.6

◦) has the best correlation value with G2(θc) . G1(□) and G2(□) denote 
the LRTs of the model image and the input image, respectively. Finally, according to 
Eq. (7), the estimated darkest direction of the input image is corrected to be 25◦.

2.4 � Implementation details

In practice, once the parameters of the algorithm are given, some intermediate data 
including the coordinates of pixels used for the coarse estimation, the coordinates and 
weights of pixels for LRT computation keep unchanged while different input images are 
treated. Hence, these data can be computed ahead and saved in tables which are named 
as circle pixel coordinate table (CPCT), integral pixel coordinate table (IPCT), and inte-
gral pixel weight table (IPWT), respectively. It should be noted that, due to the different 
darkest direction of the input images, the coordinates and weights of pixels for gray inte-
gration should be saved while the azimuth angle changes from 0◦ to 180◦ . In addition, 
the LRTs of the model images with different center angles, which are independent to the 
input image, also can be captured offline using Eq. (8) and saved.

The flow chart and pseudo code of our method are shown in Fig. 4.

Fig. 3  Illustration of EC



Page 7 of 12Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:70 	

3 � Results and discussion
In this section, the performance of algorithms is tested on synthetic data and real 
data. We first evaluate the sensitivity of our algorithm (LRT + EC) to the angle range 
(i.e., θT  ), the angle interval (i.e., θs ) and the image noise, and then the performance of 
LRT + EC is compared with two state-of-the-art methods, including GRT [18] and 
IAD + LC [21]. The CUP of our computer is Intel (R) Core (TM) i7-10710U@1.10G, 
the RAM is 1.61 GHz.

In practice, the marginal and central parts are not well modulated owing to the 
vignetting effect of optical system and the imperfection of optical components [18], 
so the algorithms are performed on the ring area with the inner and outer radiuses 
are 300 pixels and 500 pixels, respectively. In the following experiments, the radiuses 
of circles (denoted by r in Eq. (1)) used for coarse estimation changes from 300 to 450 
pixels in steps of 5 pixels, and the gray threshold for segmentation is 0.4. The image, 
in which the darkest direction of hourglass-shaped gray distribution pattern is 0◦ , is 

Fig. 4  a Flow chart for our proposed method, b Pseudo code for our algorithm
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taken as the model image. A set of LRTs of the model image are generated while the 
center angle changes from −0.3◦(179.7◦) to 0.3◦ in step of 0.01◦.

3.1 � Experiments on synthetic data

In this section, experiments are performed on synthetic data. The images are all gen-
erated according to Malus’s law [26]. We first evaluate the sensitivity of our algorithm 
(LRT + EC) to some parameters and noise. Moreover, the computational complexity is 
tested. All experimental results in this section are counted based on 500 Monte Carlo 
simulations.

3.1.1 � Performance to angle range and angle interval of LRT

Generally, the larger the angle range ( θT ) and the smaller the angle interval ( θs ), the 
algorithm will get the higher accuracy. However, the complexity of the algorithm will 
increase significantly. To get appropriate parameters to guarantee the algorithm acts 
well in both accuracy and runtime, the performance of the algorithm to θT and θs are 
tested, respectively. In this set of experiments, the Gaussian white noise ( µ = 0.01 and 
σ 2=0.005 ) is added on the synthetic images. Figure 5 compared the mean absolute error 
(MAE) of the results when θs is 0.6 and θT changes from 30◦ to 85◦ . It reviews that the 
MAE of the algorithm increases rapidly with the increase of θT , and then becomes flat 
when θT is larger than 60◦ . Hence, to have low computation complexity, θT is suggested 
to be 60◦ . Moreover, the MAE of our algorithm while θs changes from 0.1◦ to 2◦ is sum-
marized in Fig. 6, and experimental results imply that the smaller θs is, the better our 
algorithm performs.

As described above, in the following experiments, θT and θs are setted to be 60◦ and 
0.6◦ , respectively.

3.1.2 � Performance to image noise

Apparently, it is easy to extract the darkest direction precisely from the images 
without noise, but it is more difficult to have the same precision on the real images 

Fig. 5  Performance of LRT + EC with respect to θT



Page 9 of 12Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:70 	

which are usually disturbed by the noise. As the noise including shot noise, thermal 
noise, and dark current noise generally obey the Gaussian distribution [10], to effect 
the performance of our algorithm to noise, the Gaussian white noise is added while 
µ = 0.01 and σ 2 changes from 0 to 0.01. MAE of different algorithms are compared in 
Fig. 7. It can be observed that the performance of all algorithms decrease when the σ 2 
increases, and LRT + EC and IAD + LC outperform GRT. For fair comparison, in this 
set of experiments, the gray threshold for ROI extraction in IAD + LC is also setted to 
be 0.4.

Furthermore, comparing the performance of coarse estimation (the green line shown 
in Fig. 7) and LRT + EC, we can note that, the MAE of LRT + EC is much smaller. To test 
the effect of integration on the performance of our algorithm, in EC, we choose the gray 
of pixels on the circle ( r = 400 ) to replace LRT. The result of this method (the rose line 
in Fig. 7) explores that the accuracy can be highly improved by gray integration.

Fig. 6  Performance of LRT + EC with respect to θs

Fig. 7  Performance of algorithms with respect to noise
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3.1.3 � Processing time

To make an overall comparison, it is necessary to analyze the processing time of each 
algorithm. Table 1 indicates that, LRT + EC has the lowest computation complexity.

3.2 � Experiments on real data

To verify the accuracy of algorithms on real data, 20 modulated intensity images are cap-
tured continuously in the same state. One of these images is shown in Fig.  8. The 20 
images are analyzed by three different algorithms, and the calculated results are illus-
trated in Fig. 9. Apparently, LRT + EC is most robust. Furthermore, this conclusion also 
can be verified by the root mean square error (RMSE) of the results (given in Table 2).

4 � Conclusions
In some spatial polarization modulated polarimetry schemes, the polarization direction 
of the input light can be achieved by image processing algorithms. In this paper, an effi-
cient image processing algorithm, named LRT + EC, is proposed to extract the polar-
ization direction from the irradiance image of the modulated input light. Different to 
GRT which performs the Radon transform in the global angle range, LRT is obtained 
by integrating the image along the radial lines orientated in a local angle range. In addi-
tion, LRT and EC can be completed by looking up tables generated offline. Therefore, 
time consumption of our algorithm is reduced to less than 0.01 s, which meet the real-
time requirement well. Moreover, owing to the EC which establish the link between the 
error of coarse estimation and the correlation between LRTs, the accuracy and robust-
ness of the algorithm are highly improved. The experimental results on synthesized and 
real data verify that, our proposed algorithm outperforms the state-of-the-art methods 
including GRT and IAD + LC.

Table 1  The running time of algorithms

Algorithm LRT + EC IAD + LC GRT​

Time (s) 0.0085 2.065 112.437

Fig. 8  One of real images used for experiments
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LRT	� Local radon transform
EC	� Error correction
GRT​	� Global Radon transform
LC	� Local correlation
IAD	� Interesting area detection
CPCT	� Circle pixel coordinate table
IPCT	� Integral pixel coordinate table
IPWT	� Integral pixel weight table
MAE	� Mean absolute error
RMSE	� Root mean square error
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