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1  Introduction
More and more software for digital audio editing has been developed recently, and it has 
become much easier to edit, tamper and forge digital audio. The audio editing software 
(such as Adobe Audition, WavePad, and Ocenaudio) makes it easy for ordinary people 
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Digital audio tampering detection can be used to verify the authenticity of digital 
audio. However, most current methods use standard electronic network frequency 
(ENF) databases for visual comparison analysis of ENF continuity of digital audio or 
perform feature extraction for classification by machine learning methods. ENF data-
bases are usually tricky to obtain, visual methods have weak feature representation, 
and machine learning methods have more information loss in features, resulting in low 
detection accuracy. This paper proposes a fusion method of shallow and deep features 
to fully use ENF information by exploiting the complementary nature of features at 
different levels to more accurately describe the changes in inconsistency produced by 
tampering operations to raw digital audio. Firstly, the audio signal is band-pass filtered 
to obtain the ENF component. Then, the discrete Fourier transform (DFT) and Hilbert 
transform are performed to obtain the phase and instantaneous frequency of the ENF 
component. Secondly, the mean value of the sequence variation is used as the shallow 
feature; the feature matrix obtained by framing and reshaping of the ENF sequence is 
used as the input of the convolutional neural network; the characteristics of the fitted 
coefficients are obtained by curve fitting. Then, the local details of ENF are obtained 
from the feature matrix by the convolutional neural network, and the global informa-
tion of ENF is obtained by fitting coefficient features through deep neural network 
(DNN). The depth features of ENF are composed of ENF global information and local 
information together. The shallow and deep features are fused using an attention 
mechanism to give greater weights to features useful for classification and suppress 
invalid features. Finally, the tampered audio is detected by downscaling and fitting 
with a DNN containing two fully connected layers, and classification is performed using 
a Softmax layer. The method achieves 97.03% accuracy on three classic databases: 
Carioca 1, Carioca 2, and New Spanish. In addition, we have achieved an accuracy of 
88.31% on the newly constructed database GAUDI-DI. Experimental results show that 
the proposed method is superior to the state-of-the-art method.
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to delete, insert, copy and paste digital audio tampering, resulting in changes in audio 
semantics. Moreover, with the continuous enhancement of audio editing technology, it 
is impossible to tell whether the audio has been tampered with by the human ear. How-
ever, some edited digital audio may be misused, especially in essential security applica-
tions such as courts, politics, or business, which may cause serious consequences [1]. 
For digital audio that is deliberately or even maliciously tampered with, it is essential to 
develop efficient digital audio tampering detection methods.

Digital audio tampering detection methods include active detection and passive 
detection [2]. There are two standard technologies in active detection methods: digital 
watermark and digital signature of digital audio. These two technologies require a pre-
embedding watermark or signature in the audio to be detected. However, most of the 
audio to be detected is not pre-embedded with this additional information in practice. 
The passive detection methods are more practical to use the characteristics of digital 
audio itself to detect tampering without adding any additional information [3].

At present, passive audio tamper detection methods are mainly based on visual con-
trast analysis of frequency continuity of electronic network based on digital audio 
and standard ENF database, or feature extraction of ENF signals and classification by 
machine learning method. ENF database is usually challenging to obtain, and the fea-
ture expression of the visualization method is weak. In contrast, the feature information 
loss of the machine learning method is significant, resulting in low detection accuracy. 
This paper proposes an audio tamper detection method based on the fusion of shallow 
and deep features to solve this problem. Firstly, the audio signal is bandpass filtered to 
obtain the ENF component. Then, the phase and instantaneous frequency of the ENF 
component are obtained by DFT and Hilbert transform. Second, the ENF phase and 
instantaneous frequency are processed in three ways. The mean value of sequence varia-
tion is taken as the shallow feature. The feature matrix obtained by framing and reshap-
ing of the ENF sequence is the input to the convolutional neural network. Curve fitting 
was carried out to obtain the characteristics of fitting coefficients. The problem of the 
unequal length of ENF features is proposed to be solved by framing and fitting process-
ing methods to make them suitable for the input of neural networks. Then, in the neu-
ral network, the feature matrix is input into the convolutional neural network to obtain 
the local details of ENF, and the fitting coefficient feature obtains the global information 
of ENF through DNN. The global information and local details together constitute the 
deep features of ENF. The characteristics of the ENF phase and frequency features are 
fully considered to obtain deep features containing both global and local information 
about ENF. The attention mechanism fuses the shallow and deep features. The fusion 
of shallow and deep features exploits the complementary nature of features at different 
levels to more accurately describe the changes in inconsistency produced by tampering 
operations to natural digital audio. Finally, the DNN classifier with two fully connected 
layers was used to fit, and Softmax was used to classify and detect tampered audio. The 
main contributions of this paper are as follows: 

1.	 We propose a novel shallow and deep feature fusion-based framework for digital 
audio tampering detection by automatically analysing the continuity of ENF. With 
using deep learning methods to learn features for tampering detection automati-
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cally, the algorithm has a higher degree of automation than threshold and visualiza-
tion methods. In addition, the proposed framework achieves state-of-the-art perfor-
mance on three publicly available dataset Carioca 1, Carioca 2, and New Spanish.

2.	 On the one hand, through the fusion of shallow and deep features, it will acquire the 
complementarity of different features, which is a more comprehensive description 
of audio ENF features and can be used to improve algorithm robustness and model 
generalization capabilities. On the other hand, the local and global information is 
obtained from the audio ENF through automatic learning to reduce information loss 
and further improve detection accuracy.

3.	 The attention mechanism is used to fuse phase and frequency features to obtain use-
ful detailed information for tampering detection and classification task from audio 
through automatic learning to improve classification accuracy and model generaliza-
tion ability.

The rest of this paper is organised as follows. Section  2 presents the relevant existing 
works in the literature. Section 3 describes the audio tampering detection framework. 
Section  4 presents the proposed audio tampering detection method based on shallow 
and deep feature fusion. The results of experiments and analyses are shown in Sect. 5. 
Lastly, we come to a conclusion and list some future work in Sect. 6.

2 � Related work
Digital audio passive forensics realizes tampering detection by extracting and analyzing 
audio features. These features can be divided into traditional shallow features and deep 
features generated by deep neural networks.

2.1 � Detection methods based on shallow features

The features contained in digital audio are divided into three categories, which are (1) 
environment and device characteristics; (2) time-domain and frequency domain charac-
teristics; and (3) electronic network frequency characteristics.

(1) Environment and device characteristics in audio Digital audio is obtained by 
recording equipment in a particular environment, which will lead to the existence of 
some equipment and environment information in the audio. An audio file is regarded 
as edited one when there is different background information involved in the audio [4]. 
Malik [5] carries out endpoint detection of speech signals, extracts the attenuating signal 
part at the end, and uses statistical methods to model and estimate the reverberation and 
background noise in the attenuating signal, which is used to classify different signals. In 
[6], the method is tested and improved on this basis, and the robustness of the original 
method against MP3 compression is improved. The device information in the audio can 
be analyzed to determine whether the audio has been edited [7]. Cuccovillo et  al. [8] 
analyze the microphones of recorded audio to detect the presence of multiple micro-
phones in single audio for tampering detection. When recording audio, the surrounding 
environment mainly contains background noise, which can be used for audio tampering 
detection by analyzing background noise. In [9], according to the significant differences 
in the audio background noise levels of different recording environments, the similarity 



Page 4 of 20Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:69 

of each syllable’s background noise variance is compared to judge whether there is a het-
erogeneous splicing tampering operation in the audio.

(2) Time-domain and frequency domain characteristics of audio When editing digital 
audio, some features of the audio will be affected, resulting in abnormal changes in fea-
tures, which will make the discontinuity or correlation between adjacent frames weak-
ened. Audio tampering detection can be realized by analyzing audio time-domain and 
frequency domain characteristics [10]. Time-domain features are used for tampering 
detection as follows: Yan et al. [11] detect the smoothing processing after audio tamper-
ing through the local variance of differential signals. Yan et al. [12] took pitch sequence 
and formant sequence as the features of voiced fragments and realized copy-move 
tampering detection and location by comparing their similarity. The use of frequency 
domain features for tampering detection includes: Chen et al. [13] used wavelet packet 
singularity analysis to detect the insertion, deletion, replacement, and concatenation 
operations according to the singularity points generated by the weakened signal correla-
tion caused by audio tampering. In [14], Lin et al. used the short-time Fourier transform 
(STFT) to reconstruct the spectral phase to offset the influence of noise and propose a 
feature based on the spectral phase residual and spectral phase correlation between two 
adjacent clear segments, so as to realize tampering detection and location at the high 
noise level. Xie et al. [15] combined the four characteristics of the Gammatone feature, 
Mel-frequency cepstral coefficients (MFCCs) feature, pitch feature, and DFT coefficients 
and adopted the decision tree method to conduct copy-move tampering detection.

(3) Electronic network frequency in audio ENF is widely used in audio forensics [16]. 
ENF is the transmission frequency with a nominal value of 50 or 60 Hz in the power grid. 
When recording audio in the electrical activity area, the ENF signal will be embedded 
into the audio [17]. The fluctuation of ENF in a specific area is stable and unique within 
a certain period [18], so ENF can be used to detect audio tampering [19, 20]. Two exist-
ing methods for audio tampering detection using ENF include database comparison and 
consistency analysis. Audio tampering detection can be carried out by comparing ENF 
in audio with the ENF database. Hua et al. [21] detect insertion, deletion, and stitching 
operations through the Absolute-Error-Map between the ENF signal in audio and the 
database. However, it is difficult to obtain the ENF database, and many studies have used 
ENF discontinuity to detect audio. Most tampering operations cause the ENF to change 
suddenly at the tampering point. Esquef et al. [22] use Hilbert transform to calculate the 
instantaneous frequency of ENF and propose two-pass split window (TPSW) method to 
estimate the change degree ENF background to achieve tampering detection. Rodriguez 
et al. [23, 24] detect audio tampering by extracting ENF signals and detecting ENF phase 
changes’ consistency.

2.2 � Detection methods based on deep features

With the development of deep learning and artificial intelligence technology, some 
scholars also use deep learning methods to deal with audio forensics tasks. Deep 
learning-based methods perform audio tampering detection tasks by training a 
deep neural network model with dataset in advance. Using a large amount of data to 
train the model can reduce the practical problems caused by artificially setting the 
threshold. The deep learning method supports higher-dimensional input features. 
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Combining multiple parameters in the deep neural network can better fit the audio 
features, learn the difference between original audio and tampered audio, and make 
the detection more accurate and more robust.

Tamper detection based on deep learning methods can be divided into three sub-
categories. (1) Frequency domain features are used to identify audio post-processing 
operations. Wang et al. [25] used the features of audio after STFT transformation as 
the input of the convolutional neural network (CNN) to identify the post-processing 
operation of audio pitch transformation. (2) ENF is applied for audio recapture detec-
tion. Lin et al. [26] take ENF spectrogram as the convolutional neural network input 
for audio recapture detection. (3) Use the spectrogram to detect insertion and tam-
pering in audio. Jadhav et al. [27] directly input the audio spectrum map into the con-
volutional neural network to detect the audio insertion tampering.

3 � Audio tampering detection framework
The audio tampering detection framework is shown in Fig. 1. The tampering detec-
tion methods can be classified into active detection methods and passive detection 
methods. The active detection method is to embed a digital watermark, and signature 
in the audio when the audio is generated. When the audio is edited and tampered 
with, the watermark information embedded in the audio in advance will change so 
that the edited audio can be accurately distinguished. However, there are often no 
such watermarks in audio. The passive detection method uses the audio content itself 
as a feature, detects tampering in these features through a threshold, or trains a model 
through machine learning and other methods to perform tampering detection.

In the audio tampering detection task, the audio signal can be formulated by

where s(n) represents speech content, v(n) represents background noise, and f (n) repre-
sents ENF. In traditional digital audio tampering detection, one of the speech contents, 
background noise or ENF in audio, is usually extracted and analyzed. The audio is win-
dowed and divided into frames. Extract the time domain or frequency domain features 
of each frame of audio, such as pitch, reverberation, background noise, MFCC, ENF, 
and other time and frequency domain features. Then set the corresponding threshold 
to detect the abrupt changes between frames or detect it through the support vector 
machine (SVM) [16].

(1)y(n) = s(n)+ v(n)+ f (n)

Audio
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Fig. 1  Audio tampering detection framework
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4 � Audio tampering detection based on shallow and deep feature fusion
The audio tampering detection method based on the fusion of shallow and deep features 
proposed in this paper consists of three parts (Fig. 2): 

1.	 Phase and frequency feature extraction First, down-sampling and band-pass are 
employed to filter the audio to obtain the ENF component. Then, windowing and 
framing process is implemented on the ENF components. Finally, DFT is used to 
obtain the phase feature, and Hilbert transform is applied to obtain the instantane-
ous frequency.

2.	 Feature process In this part, the average of ENF phase and frequency variations is cal-
culated as the shallow features. Meanwhile, the feature matrix is obtained by framing 
and reshaping operations on the audio (see Sect. 4.2.2 for details). The feature matrix 
will be used as the convolutional neural network’s input to obtain more local infor-
mation. The fit coefficients are obtained by fitting the phase to the instantaneous fre-
quency through Sums of Sines functions [16], and the fit coefficients are the input to 
the DNN to give some global information compensation to the deeper features.

3.	 Deep neural network In this part, the feature matrix and fitting coefficients are input 
to the neural network, and the output is stitched to obtain the deep features that 
contain both global and local information. Finally, the deep, deep phase, and instan-
taneous frequency features are fused with features using the attention mechanism to 

Fig. 2  Shallow and deep feature fusion method



Page 7 of 20Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:69 	

give different weights to each feature vector value to achieve feature selection. Finally, 
a DNN classifier is proposed to classify the tampered audio with the authentic audio.

The specific details will be introduced later in this section.

4.1 � ENF phase and frequency feature extraction

According to the method in the literature [22, 23], to obtain the phase and instantane-
ous frequency of ENF, we performed subsampling and bandpass filtering on the audio. 
Firstly, the subsampling frequency is set as 1000 Hz and 1200 Hz according to the ENF 
nominal frequency of 50 or 60 Hz. The purpose of this is to ensure the accuracy of ENF 
while reducing the amount of calculation. Then, after subsampling, bandpass filtering is 
carried out to obtain ENF components in the audio. We use a linear zero-phase FIR filter 
of order 10000 to carry out narrowband filtering. The centre frequency is ENF stand-
ard (50 Hz or 60 Hz), the bandwidth is 0.6 Hz, the passband ripple is 0.5 dB, and the 
stopband attenuation is 100 dB. Finally, we can obtain the phase and instantaneous fre-
quency of ENF through DFT and Hilbert transformation.

4.1.1 � DFT transformation gets the phase

The phase of ENF is obtained by discrete Fourier transform, and the phase of DFT0 and 
DFT1 is calculated. DFTk represents the k derivative of the DFT transform of a signal, 
and DFT0 represents the conventional DFT transform [23].

First, the approximate first derivative x′ENFC[n] of ENF signal XENFC[n] at point n is 
calculated

where fd(∗) represents the approximate derivative operation, and XENFC[n] represents 
the n-th point of the ENF component.

Then, Hanning window w(n) was used to frame and window x′ENFC[n] . The frame 
length was 10 standard ENF frequency cycles ( 1050 or 1060 ), and the frame was moved to 1 
standard ENF frequency cycle ( 150 or 160).

where x′N [n] represents the ENF signal after window addition, and w(n) represents the 
Hanning window.

To obtain the phase φDFT0 of ENF and the phase φDFT1 of the first derivative of ENF, 
n-point DFT should be executed for each frame signal x′N [n] and XENFC[n] , respectively, 
to obtain X ′(k) and X(k) . Estimated frequency fDFT1 based on the integer index kpeak of 
X ′(k)  peak points

where DFT0
[

kpeak
]

= X
(

kpeak
)

 , DFT1
[

kpeak
]

= F
(

kpeak
)∣

∣X ′(kpeak
)∣

∣ and F
(

kpeak
)

 are 
scale coefficients.

(2)x′ENFC[n] = fd(XENFC[n]− XENFC[n− 1])

(3)x′N [n] = x′ENFC[n]w(n)

(4)fDFT1 =
1

2π

DFT1
[

kpeak
]

DFT0
[

kpeak
]
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where NDFT represents the number of discrete Fourier transform points, and k is the 
index of peak point.

Now the ENF phase φDFT0 of the conventional DFT transformation can be calculated, 
φDFT0 = arg

[

X
(

kpeak
)]

 . Through Eq. (6), φDFT1 [23] can be calculated.

where ω0 ≈ 2π fDFT1/fd , fd are heavy sampling frequency, kDFT1 = fDFT1NDFT/fd , 
klow = floor

[

kDFT1

]

 , khigh = ceil
[

kDFT1

]

 , floor[a] is the maximum integer less than a, and 
ceil[b] is the minimum integer greater than b. Since the calculated φDFT1 has two possible 
values, φDFT0 is used as a reference, and the value closest to φDFT0 in φDFT1 is selected as 
the final φDFT1.

4.1.2 � The Hilbert transform captures the instantaneous frequency

Hilbert transformation [22] was performed on the filtered ENF signal XENFC[n] to obtain 
the ENF instantaneous frequency f [n] . So first, we get the analytic function of XENFC[n]

where H{∗} stands for Hilbert transformation, i =
√
−1 . Instantaneous frequency f [n] 

is the rate of change of H{XENFC[n]} phase angle.
The parasitic oscillation generated by the numerical approximation during the Hilbert 

transformation needs to be removed after the instantaneous frequency f [n] obtained. 
The fifth-order elliptic IIR filter was used to carry out the low-pass filter on f [n] to 
remove oscillation. The filter’s central frequency is ENF standard frequency, the band-
width is 20 Hz, the passband ripple is 0.5 dB, and the stopband attenuation is 64 dB. Due 
to the boundary effect of frequency estimation, the head and tail of f [n] are removed 
for about 1 s. Finally, fhil of instantaneous frequency estimation of ENF component is 
obtained.

4.2 � Shallow feature acquisition and deep feature preparation

We use the average of ENF phase and instantaneous frequency changes as shallow fea-
tures. To obtain the deep features, we use a convolutional neural network better to learn 
the details of ENF phases and instantaneous frequencies. We frame, reshape and fit the 
ENF phase and frequency to get the input to the neural network and feed it to the neural 
network to obtain the depth features for the training phase of the network.

4.2.1 � Acquire shallow features

The estimated phase φDFT0 , φDFT1 and Hilbert instantaneous frequency fhil are put into 
Eq. (8) to obtain the statistical feature F01f =

[

F0, F1, Ff
]

 , which reflects the abrupt tran-
sition of ENF phase and instantaneous frequency [19].

(5)F(k) = πk

NDFT sin
(

πk
NDFT

)

(6)







φDFT1 = arctan
�

tan (θ)[1−cos (ω0)]+sin (ω0)
1−cos (ω0)−tan (θ) sin (ω0)

�

θ ≈
�

kDFT1 − klow
� θhigh−θlow
khigh−klow

+ θlow

(7)x(a)ENFC[n] = XENFC[n]+ i ∗H{XENFC[n]}
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where φ̂′(nb) = φ̂(nb)− φ̂(nb − 1) , 2 ≤ nb ≤ NBlock . φ̂(nb) is the estimated phase of the 
corresponding nb frame. m

φ̂′ represents the average value of φ̂′(nb) from nb = 2 to NBlock . 
len = length(XENFC[n]) , f ′(n) = f (n)− f (n− 1) . f (n) is the instantaneous frequency of 
the nth sampling point, and mf ′ represents the average value of f ′(n) from n = 2 to len.

4.2.2 � Obtaining the input of deep features Fm×m,Pn×n

The deep features proposed in this paper consist of two parts, firstly, the local detail 
information obtained by the feature matrix Fm×m and Pn×n through the convolutional 
neural network, obtained by framing and reshaping operations. The second is the global 
information obtained by fitting coefficients through DNN. Finally, the global informa-
tion is stitched with detailed information to obtain deep features.

To reduce information loss, we acquire the deep features by convolutional neural net-
works. Therefore, we designed a framing approach for obtaining the input of the con-
volutional neural network so that the audio ENF phase or frequency of unequal lengths 
through the dataset becomes a matrix of m×m . Where m is the frame length (the audio 
determines the frame length with the longest duration in the data), and each row in the 
matrix is one frame, and the frame shift s of each audio is computed adaptively. The 
detailed steps are listed in following Algorithm 1.

4.2.3 � Curve fitting for fitting coefficient

We performed a reshape operation when obtaining the feature matrix of the con-
volutional neural network input, which may result in the loss of global informa-
tion of the sequence, so we fit the ENF phase and frequency sequences and used 
the fit coefficients as compensation for the global information. The ENF phase and 
instantaneous frequency are curve-fitted to extract the fit coefficients containing the 
global information. We use the MATLAB fitting toolbox to extract the fitting coef-
ficients using six Sum of Sines functions to fit the phase, and frequency features 
Fcoe,Pcoe =

[

a1, b1, c1, · · · , aj , bj , cj
](

0 < j ≤ 6
)

 . The Sum of Sines functions is

(8)























F0,1 = 100 log

�

1
NBlock−1

NBlock
�

nb=2

�

φ̂′(nb)−m
φ̂′

�2
�

Ff = 100 log

�

1
len−1

len
�

n=2

�

f ′(n)−mf ′
�2
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4.3 � Shallow and deep feature fusion network

There is information loss by only going through shallow features, resulting in the inabil-
ity to obtain higher detection accuracy and model generalization. The duration of each 
detected audio is different, so the obtained phase feature length and frequency feature 
length are also different. As shown in Fig. 3, in the tampering detection method based 
on the fusion of shallow and deep features proposed in this paper, the phase and instan-
taneous frequency features of the ENF are first processed to make them suitable for 
automatic learning of the neural network and reduce information loss. Then, the depth 
features of ENF are obtained by the neural network to understand better the difference 
between tampered audio and real audio by automatic learning. Then, feature fusion is 
performed using attention, and finally, the detection results are output.

4.3.1 � Neural networks of deep features

As shown in Fig. 3, the shallow feature F123 , which are extracted through the framing 
and the Sum of Sines fitting, reflects the sudden change of ENF phase and frequency, 
but its statistical feature is only a single value, and detailed information about ENF phase 
and frequency will be lost. When it is only used for audio tampering detection, it may 
cause misjudgement due to the insignificant fluctuation of ENF in the tampered area, 
or the interference of low-frequency noise on ENF. In order to reduce the occurrence of 
this situation, we use the convolutional neural network to obtain ENF detailed informa-
tion as deep features and use the attention mechanism to combine deep features with 
shallow features to reduce misjudgements and improve the generalization ability of the 
model.

The deep features proposed in this paper are obtained from the fitting coefficients and 
the feature matrix. The fitting coefficients are passed through two fully connected lay-
ers with 32 neurons to obtain the ENF phase and global frequency information. A con-
volutional neural network extracts the phase and frequency feature matrices to obtain 
detailed information about the ENF phase and frequency. The size of the phase feature 
matrix Pn×n is different from that of the frequency feature matrix Fm×m . As the size of 
the feature matrix is n× n , m×m , the frame length is determined by the longest audio 
in the audio data, and the longest duration of the digital audio that this network can 
detect is 35 s. Since the longest audio in our dataset is 35 s, the length of the phase and 
instantaneous frequency sequences obtained by DFT and Hilbert transform are 2055 
and 37,281, so our frame length in the deep feature is set to 46,194 by the steps in 1. The 
number of convolution blocks for phase features is 2, and for instantaneous frequency, 
convolution blocks are 3. When the longest length of the audio to be measured increases 
or decreases, the number of convolution blocks should be increased or decreased as 
appropriate.

We use two convolution blocks to extract features from the phase feature matrix Pn×n 
and three convolution blocks to extract features from the frequency feature matrix 

(9)y =
6

∑

j=1

aj sin
(

bjx + cj
)
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Fm×m . Each convolutional block consists of two identical convolutional layers with one 
pooling layer (the number of filters for the three convolutional blocks is 32,64,128. The 
convolutional kernel size is 3  *  3 and the step is 1. The Maxpooling layer pool size is 
3). Detailed information of the ENF phase and frequency sequence can be obtained by 

Fig. 3  Shallow and deep feature fusion network
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using the local sensing property of the convolutional neural network. The pooling layer 
is used for dimensionality reduction to reduce the number of parameters, avoid overfit-
ting, and improve the model’s fault tolerance and generalization ability. Also, because 
the convolutional neural network has fewer parameters, it can obtain better classifica-
tion results with less training time.

Frequency fitting coefficient Fcoe , two fully connected layers were used to fit its char-
acteristics. (The number of neurons was 32, 32, and the activation function was Relu.) 
The output of the convolution block is dimensioned through a layer of fully connected 
with 1024 neurons, then splicing with the fitting coefficient features after DNN fitting. 
Finally, the deep feature is obtained through the fully connected layer of 1024 neurons. 
The deep feature contains both the global information of the fitting coefficient and the 
local information obtained by the convolutional neural network.

4.3.2 � The attention mechanism of feature fusion

We use the attention mechanism [28] to fuse shallow and deep features. In the feature 
fusion part (as shown in Fig.  3), firstly, we concatenate the shallow and deep features 
of phase and frequency to obtain the input of length L. Then, to get the weight of each 
feature, we will input the fully connected layer through the two activation functions for 
ReLU and Sigmoid. We use the ReLU activation function to enhance the nonlinearity 
and obtain the weight through Sigmoid. Finally, the input features are multiplied by the 
weights.

The attention fusion mechanism used in this paper uses the Sigmoid activation func-
tion instead of Softmax to obtain the weights because the primary purpose of the 
attention mechanism used in this paper is to suppress invalid features, not to find the 
optimal features. There is no need for each feature value in the shallow and deep layers 
to compete for weights. This is because the primary purpose of the attention mechanism 
used in this paper is to suppress the invalid features, not to find the optimal features. 
The attention fusion mechanism in this paper can automatically learn to give different 
weights to each feature value of the shallow and deep features. The features significantly 
impacting the classification result will be given a larger weight. In comparison, the fea-
tures that do not significantly affect the final classification will be given a smaller weight 
to improve the detection accuracy and generalization ability.

4.3.3 � DNN classifier

We use the attention mechanism to fuse shallow and deep features. In the feature fusion 
part (as shown in Fig. 3), firstly, we concatenate the shallow and deep features of phase 
and frequency to obtain the input of length L. Then, to get the weight of each feature, we 
will input the fully connected layer through the two activation functions for ReLU and 
Sigmoid. We use the ReLU activation function to enhance the nonlinearity and obtain 
the weight through Sigmoid. Finally, the input features are multiplied by the weights. 
Through automatic learning, we give different weights to each value of shallow and deep 
features. The features that have a significant impact on classification are given greater 
weights. In comparison, those that are ineffective in classification are given smaller 
weights to improve detection accuracy.
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5 � Experimental results and discussion
In this section, we will introduce the dataset, experimental setup, and experimental 
results. In order to verify the validity of our work, we designed five groups of experi-
ments to verify our contribution: (1) comparison of the method proposed in this paper 
with the state-of-the-art methods, (2) validation of the fitting coefficient feature, (3) vali-
dation of the feature matrix, (4) validation of the deep feature, and (5) validation of the 
attention mechanism.

5.1 � Dataset and experimental setup

In order to verify the effect of the proposed model on different datasets and prove the 
generalization ability of the proposed model, we use two different datasets as experi-
mental data. They are the classic dataset composed of three public datasets and the 
GAUDI-DI dataset we collected. The detailed information is shown in Table 1.

In Table 1, the classic dataset we used contains 500 audios and is a mixture of three 
public datasets, including Carioca, 1, 2, and New Spanish dataset (from two public Span-
ish language datasets AHUMADA and GAUDI). In order to verify the generalization 
ability of the model, we established a GAUDI-DI dataset containing 753 audios, selected 
251 original audios of about 20 s from the GAUDI dataset, and performed deletion and 
insertion tampering operations.

The experimental data are divided as shown in Table 2. When testing on the classical 
dataset, we divide the classical dataset into a training set, a validation set, and a test set 
with 319 audios in the training set, 80 audios in the validation set, and 101 audios in the 
test set. When testing with the GAUDI-DI dataset, we will use the classical dataset for 
training and the GAUDI-DI dataset for testing. The training and validation sets are from 
the classical dataset, with 400 audios in the training set, 100 audios in the validation set, 
and 753 audios in the test set.

All the experiments in this paper are based on the TensorFlow 2.0 deep learning 
framework and performed on NVIDIA GeForce GTX 1080Ti. The specific parameters 
used in the experiment are as follows: the loss function is binary cross-entropy, and the 

Table 1  Datasets used in the following experiments

Dataset Number of original audio Number of edited audio Data source

Classical 250 250 Carioca 1 dataset

Carioca 2 dataset

New Spanish dataset

GAUDI-DI 251 502 GAUDI dataset

Table 2  Training set, validation set, and testing set on the same dataset and across-dataset 
experiments

Dataset Training set Validation set Testing set

Same dataset testing on Classical 319 80 101

Cross-dataset testing on GAUDI-DI 400 (Classical) 100 (Classical) 753 (GAUDI-DI)
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optimizer uses Adam, epochs are 100, the batch size is 32, learning rate decay: initial 
learning rate is 0.001, Halve every 10 epochs.

5.2 � Comparison of the proposed method with the state‑of‑the‑art methods

In this experiment, we compared the proposed method in this paper with four baseline 
methods to verify the effectiveness of the proposed method. The comparison experi-
ments are performed on the same dataset, where F0 features and SVM classifier are 
applied in [24], F1 features and SVM classifier are used in [23], Ff  features and SVM clas-
sifier are employed in [22], and F0 , F1 , and Ff  features are fused, and SVM classifier is 
also utilized in [16]. While F0 features and F1 features are related to phase features, Ff  
features are related to frequency features, and their extraction details are in Sects. 4.1 
and 4.2.

As shown in Table 3, the accuracy and F1-score of the proposed method on Classical 
dataset and GAUDI-DI dataset are higher than the four baseline methods. The best per-
formance among the traditional methods is the one using feature fusion in [16]. Further, 
the method in this paper improved accuracy by 2–3.3% and F1-score by 1.5–9% on both 
datasets compared to [16]. This shows that the proposed method obtains the advantage 
of fused features along with better feature characterization.

It can be seen that all methods perform better on Classical dataset test than on 
GAUDI-DI dataset. The main reason for this is that the test on GAUDI-DI dataset uses 
cross-dataset detection, which means the training model is trained with data from Clas-
sical dataset and tested with data from GAUDI-DI dataset. The main purpose is to per-
form generalization performance tests. The experimental results show that although 
the performance of the proposed method is degraded on the cross-dataset test, it still 
obtains a good performance, which indicates that the proposed method in this paper has 
a good generalization performance.

Meanwhile, it can be seen from Table 3 that the accuracy of the frequency feature is 
significantly lower than that of the phase feature in both experiments. This is because 
the length of the instantaneous frequency sequence obtained by Hilbert transform is 
about 18 times that of the phase sequence obtained by DFT transform. (The frequency 
length of 35 s audio is 37,281, and the phase length is 2055.) Tampering detection only 
by the average value of ENF sequence variation has excessive information loss. The pro-
posed method has less information loss of deep features obtained through neural net-
works, and the fusion of ENF phase and frequency, shallow and deep features improves 
the detection accuracy and generalization ability.

Table 3  Comparison with the state-of-the-art methods

Methods Classical dataset GAUDI-DI dataset

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Nicolalde et al. [24] 92.08 92.54 83.53 78.84

Nicolalde et al. [23] 94.06 95.44 83.67 78.90

Esquef et al. [22] 83.17 82.11 79.02 74.18

Wang et al. [16] 95.05 95.41 84.99 79.14

Our method 97.03 96.91 88.31 88.17
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5.3 � Validation of fitting coefficient features

In this section, we conduct experiments to verify the validity of the fitted coefficient 
feature, which is a key part of performing deep feature representation learning. The fit-
ting coefficients contain global information of the phase and instantaneous frequency 
series. The reshape operation of the feature matrix in the deep feature leads to the loss of 
the general information, so the fitting coefficients are used to compensate for the global 
information of the deep feature. We fit the ENF phase and frequency series by the Sum 
of Sines function in MATLAB fitting toolbox, and the number of Sum of Sines function 
is verified in this section, and the classifiers are SVM, random forest, and XGBoost. The 
results are shown in Table 4.

Table 4 shows the results of the experiments on both datasets with the fitted coeffi-
cients extracted by fitting with 3–8 Sum of Sines functions. When the detection accuracy 
was verified on Classical, the highest detection accuracy of the instantaneous frequency 
f ′ was 92.08% (8 Sum of Sines functions, SVM method). The highest detection accuracy 
of the phase φ was 91.09% (3 Sum of Sines functions, XGBoost method). The highest 
detection accuracy of transient frequency F was 86.85% (5 Sum of Sines functions, Ran-
dom Forest (RF) method). The highest detection accuracy of phase φ was 82.74% (6 Sum 
of Sines functions, Random Forest method) when the generalization ability was verified 
on GAUDI-DI. Since our fitted coefficient features are used as global information com-
pensation for deeper features, the purpose is to obtain higher model generalization abil-
ity. The accuracy of 86.59% was also obtained with 6 Sum of Sines functions when the 
generalization ability was verified GAUDI. Therefore, the fitted narrative of the 6 Sum of 
Sines function selected in this paper is used to compensate for the global information of 
the deep features.

The fitted coefficient feature has low dimensionality, less computation, and better 
detection accuracy. Furthermore, it can reduce the ENF phase and instantaneous fre-
quency sequences of different lengths to the same dimension, which is convenient for 
automated detection. Therefore, the ENF phase and instantaneous frequency sequences 
can be downscaled by using the fitting coefficient feature, and the global information of 
the ENF phase and instantaneous frequency can be obtained with less computation.

Table 4  Detection accuracy of fitting coefficient features (%)

Bold means the best performance of tampering detection in the same experimental setting

Feature Classifier Dataset 3 Sines 4 Sines 5 Sines 6 Sines 7 Sines 8 Sines

Proposed feature f ′ SVM Classical 79.21 79.21 82.18 88.12 88.12 91.09
GAUDI-DI 77.29 79.28 86.19 86.59 86.32 83.40

RF Classical 87.13 85.15 83.17 86.14 87.13 92.08
GAUDI-DI 83.27 82.74 86.85 86.59 85.13 86.59

XGBoost Classical 88.12 88.12 84.16 89.11 87.13 90.10
GAUDI-DI 76.49 80.08 81.67 80.48 86.32 85.92

Proposed feature φ SVM Classical 86.14 78.22 86.14 80.20 81.19 79.21

GAUDI-DI 77.95 75.83 73.04 74.63 73.71 74.50

RF Classical 90.10 89.11 90.10 90.10 89.11 90.10

GAUDI-DI 79.42 79.68 80.08 82.74 82.60 81.14

XGBoost Classical 91.09 89.11 90.10 87.13 86.14 88.12

GAUDI-DI 80.61 77.29 79.55 80.48 81.01 81.41
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5.4 � Validation of feature matrix Fm×m , Pn×n

In this section, the feature matrix Fm×m,Pn×n obtained in Sect.  4.2.2 is validated. The 
model we used is the DNN classifier added after the last convolution block 3. The exper-
imental results are shown in Table 5.

Table  5 shows the experimental results of the feature matrix Fm×m on classical and 
GAUDI-DI. The table shows that the frequency feature matrix achieves an accuracy of 
93.07% on classical, which is significantly higher than the 83.17% obtained for the fre-
quency shallow feature Ff  and 92.08% for the frequency fitting coefficient. The phase 
feature matrix Pn×n also has a detection of 91.09% and 77.69%. The frequency feature 
matrix is much larger than the phase feature matrix, and more information about the 
difference between real audio and tampered audio is obtained from the ENF frequencies 
through the convolutional neural network training. The detection accuracy can be fur-
ther improved by fully utilizing the ENF information through the neural network.

5.5 � Validation of deep features

This part will verify the validity of frequency and phase depth features, as shown in Fig. 3 
(feature 2, feature 3). After the deep features, we perform classification by DNN classi-
fier (two fully connected layers and one dropout layer with 1024, 256 neurons, Dropout 
rate =  0.2, and finally one Softmax layer). Meanwhile, we conducted deep phase and 
frequency feature fusion experiments to splice the deep features and then classify them 
with DNN. The experimental results are shown in following Table 6.

Table 6 shows the classification effect of deep features. It can be seen that the detec-
tion effect of frequency deep features on the two datasets is 94.06% and 84.46%, respec-
tively, which is significantly better than that of frequency shallow features. The detection 
effect of deep phase features is comparable to that of shallow features. In addition, the 
accuracy of deep phase feature fusion is higher than that of single features, further dem-
onstrating the role of feature fusion in audio tampering detection. Compared with the 

Table 5  Detection performance of feature matrix Fm×m , Pn×n

Bold means the best performance of tampering detection in the same experimental setting

Feature matrix Classical dataset GAUDI-DI dataset

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Fm×m 93.07 93.73 79.55 78.33
Pn×n 91.09 91.28 77.69 76.15

Table 6  Detection performance of deep feature

Bold means the best performance of tampering detection in the same experimental setting

Deep feature Classical dataset GAUDI-DI dataset

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

Frequency deep features 94.06 94.32 84.46 81.12

Phase deep features 86.14 85.21 78.88 75.28

Deep features fusion 95.05 95.36 86.96 83.19
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shallow feature F01f  , the deep feature fusion has higher accuracy on the GAUDI-DI data-
set, indicating that the deep feature has higher generalization ability.

Also, we found that the shallow phase features outperformed the frequency features 
for classification, while the deep features outperformed the frequency features for clas-
sification (as shown in Fig. 4). When the detection accuracy is verified on Classical and 
the generalization ability is verified on GAUDI-DI, the phase F1 of the shallow features 
outperforms the frequency feature Ff  . The reason for the different behaviours of the two 
curves in Fig. 4 is that the data source of Classical dataset is relatively single, while the 
GAUDI-DI dataset has a more complex data source, resulting in a higher accuracy on 
Classical dataset.

In contrast, in the deep features, the frequency feature matrix Fm×m outperforms the 
phase feature matrix Pn×n , and the deep frequency features outperform the deep phase 
features. It can be judged that shallow features and deep features contain different infor-
mation, and they are complementary. We use the neural network to obtain more details 
from the ENF, while the shallow features reflect the discontinuity information of the 
ENF. Therefore, we can further use the complementary characteristics of shallow and 
deep features to improve the model’s classification accuracy and generalization ability.

5.6 � Validation of the fusion of shallow and deep features

In this part, the shallow and deep feature fusion methods proposed in this paper (as 
shown in Fig. 3) are tested. The experimental variables are the final dropout rate and the 
use of the attention mechanism for feature fusion. The experimental results are shown in 
following Table 7.

Table 7 shows the experimental results of this paper with feature fusion as the exper-
imental variable. The table shows that the experimental results on two different data-
sets show that the proposed method achieves the highest detection accuracy and model 
generalization ability at dropout rate = 0.2. The feature fusion with attention is better 
than the mechanism without attention. The model generalization ability of the pro-
posed method is significantly better than that of the method in [16]. The fusion of shal-
low and deep level features by the attention mechanism allows the full exploitation of 
the ENF phase and instantaneous frequency features. The complementary nature of the 
features at different levels is exploited to more accurately characterize the changes in 

Fig. 4  Accuracy of phase and frequency features, shallow features ( F1 , Ff  ), fitting coefficient ( Pcoe , Fcoe ), input 
of the convolutional ( Pn×n , Fm×m ), deep phase and frequency features
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inconsistency produced by tampering operations to natural digital audio. The attention 
mechanism in this paper can automatically learn can give different weights to each fea-
ture value of shallow and deep features. The features significantly impacting the clas-
sification result will be given a larger weight. In comparison, the features that have an 
insignificant effect on the final classification will be given a smaller weight to improve 
the detection accuracy and generalization ability.

5.7 � Discussion

In this section, we conducted five sets of experiments. In experiment 1 (comparison of 
the proposed method with the state-of-the-art methods), we concluded that the pro-
posed method is better than the state-of-the-art method in [16], and the model gen-
eralization ability is significantly better than the baseline methods; in experiment 
2 (validation of the fitting coefficient features), we concluded that for the duration of 
the audio to be measured is 9–35 s, the global information compensation as the deep 
features; in experiment 3 (validation of feature matrix Fm×m , Pn×n ) and experiment 4 
(validation of deep features), we verify the validity of the deep features proposed in this 
paper; in experiment 5 (validation of the fusion of shallow and deep features), we verify 
the effectiveness of feature selection by attention mechanism in this paper.

The results show that: (1) Through the fusion of ENF phase and frequency features, 
audio tampering detection can achieve higher detection accuracy by using different 
information contained in the ENF phase and frequency in audio. (2) The shallow features 
contain ENF discontinuity information, while the deep features obtained by the deep 
learning method contain more ENF details. The complementary feature of the shallow 
features and the deep features can make the tampering detection method have higher 
accuracy and generalization ability. (3) The attention mechanism was used for feature 
fusion, and different weights were assigned to each feature value to suppress invalid fea-
tures, which further improved the model’s performance.

6 � Conclusion
This paper proposes an audio tampering detection method based on the fusion of 
shallow and deep features. Firstly, the phase and instantaneous frequency characteris-
tics of ENF in audio were obtained by DFT and Hilbert transform. Then, we obtained 

Table 7  Detection performance of fusion method

Bold means the best performance of tampering detection in the same experimental setting

Fusion method Classical dataset GAUDI-DI dataset Dropout rate

Accuracy (%) F1-score (%) Accuracy (%) F1-score (%)

With attention 95.05 95.41 87.92 87.71 0

96.04 96.12 87.78 87.46 0.1

97.03 96.91 88.31 88.17 0.2

96.04 96.12 87.65 87.32 0.3

Without attention 94.06 94.33 87.38 87.13 0

95.05 95.41 88.05 87.82 0.1

95.05 95.41 87.92 87.75 0.2

95.05 95.41 87.25 87.06 0.3
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the shallow layer characteristics reflecting ENF discontinuity through calculation and 
obtained the deep phase and frequency characteristics through the neural network. 
Finally, the attention mechanism is used for feature fusion. After dimensionality reduc-
tion, the Softmax classifier is used for classification to detect the edited audio. By fusing 
shallow and deep features, the complementarity of features at different levels is exploited 
to more accurately describe the changes in inconsistency produced by tampering opera-
tions to raw digital audio. Further, attention is used to fuse phase features and frequency 
features to obtain rich information from audio ENF for tampering detection classifica-
tion tasks through automatic learning to improve detection accuracy and model gener-
alization. Experimental results show that the proposed method has higher recognition 
accuracy and generalization ability. Future work will focus on more robust audio tam-
pering detection methods. In addition, detection methods will be designed to locate the 
location of the audio tamper.
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