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1 Introduction
Hyperspectral images (HSIs) data are acquired based on the radiance obtained by air-
borne or space-borne sensors, extracting information from objects or scenes on the 
earth surface. They contain rich spatial and spectral information, and have been widely 
used in numerous fields, e.g., terrain detection, environmental monitoring, biological 
diagnosis [1]. However, an HSI is always damaged by different noise because of photon 
effects, random errors in light counting, calibration errors and so on [2]. These degrada-
tions often damage the potential structure of an HSI and impede the subsequent tasks. 
Therefore, mixed noise removal in HSIs has become an essential and crucial step for 
further analysis and application.

In the past few decades, many different technologies have been developed for 
HSI denoising. The simplest and most intuitive idea is to denoise band-by-band. 
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Representative examples in single-band image denoising include the maximum noise 
fraction (MNF) transformation [3], the non-local means (NLMs) filter [4], the col-
laborative filtering of groups of similar patches (BM3D) [5]. The HSI cube can be also 
denoised by multi-band image denoising methods, including blocks-matching and 4D 
filtering (BM4D) [6], video denoising using separable 4-D non-local spatio-temporal 
transforms (VBM4D) [7], and multi-spectral principal component analysis (MSPCA-
BM3D) [8]. However, these methods only remove the spatial noise, and cannot take 
advantage of the correlation of all bands of HSI. Moreover, they introduce artifacts 
or distortions in restoration results. Hence, they are not able to provide satisfactory 
denoising results.

To achieve better denoising performance, spatial and spectral information needs to 
be considered comprehensively. Yuan et  al. [9] proposed a spectral and spatial adap-
tive total variation (TV) denoising method, which takes into account the spectral dif-
ference and the spatial difference simultaneously. Fu et al. used the spectral correlation 
and non-local spatial similarity of each band to learn an adaptive dictionary for HSI 
denoising [10]. Chen et al. [11] take advantage of the different characteristics of an HSI 
in both the spatial and spectral domains, and establish a maximum a posteriori (MAP) 
framework for HSI denoising. In addition, subspace-based methods are widely used to 
describe spectral correlation, and have achieved good results, including fast hyperspec-
tral denoising (FastHyDe) [12], global local factorization (GLF) [13], etc. Besides, the 2-D 
images at each band of an HSI have strong structural similarity, hence, a lot of methods 
utilizes the low-rank property along the adjacent spectral bands of the HSI. For instance, 
Zhang et al. [14] proposed a method based on low-rank matrix recovery (LRMR) for HSI 
restoration. Fan et al. built a 3-D low-rank tensor model to handle HSI denoising prob-
lem [15]. Zhang et al. [16] proposed a double low-rank matrix decomposition method 
for HSI denoising and destriping. To better restore the matrix, one can resort to [17–19], 
which can be used to recover the data and reveal its internal characteristics efficiently 
and effectively.

In addition, the deep learning methods represented by convolutional neural networks 
(CNNs) are also applied to HSI denoising problems, e.g., the HSI denoising method 
based on residual convolutional neural network (HSID-CNN) [20], the HSI single-
denoising CNN (HSI-SDeCNN) [21], etc. Despite these deep learning-based methods 
achieve the state-of-the-art performance, they are not necessarily robust. Besides, these 
methods do not fully explore the inner relationship of an HSI, either spectrally or spa-
tially. Hence, they cannot adapt to different data and noise types. When the type of noise 
in the test data becomes complex, the users should train the model from scratch, which 
is time-consuming.

In recent years, sparse representation has been favored for image denoising [22] and 
restoration [23]. Signals are usually approximated by a set of sparse atoms in a dictionary. 
This set of sparse atoms helps reduce the redundancy of the original high-dimensional, 
so that the information contained in the signal can be retrieved more easily. Sparse rep-
resentation has been applied to 2-D image denoising [24]. However, it usually faces dif-
ficulties for HSI denoising because it does not consider the correlation between bands 
and spatial pixels of HSI. To make full use of the characteristics of HSI’s spectral correla-
tion and spatial similarity, Ye et al. put forward a method for sparse representation using 
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non-local spectral-spatial structure [25]. Zhao et al. raised a model that combines sparse 
representation with low-rank constraints to solve the HSI restoration problem [26].

The HSI denoising problem can also be regarded as an inverse imaging problem. 
Therefore, the use of appropriate image priors for regularization is very important. As a 
recently widely-used prior, graph Laplacian regularization has been empirically proven 
useful in denoising [27, 28], sharpening [29], HSI unmixing [30, 31], etc. Extended to 
the denoising problem of HSI, Lu et al. [32] proposed a new HSI destriping method by 
considering the local flow pattern structure of HSI and adopting the method of graph 
regularization and low rank.

Although the methods described above can achieve good results, few methods view 
stripe noise as a separate component, hence most mixed noise removal methods cannot 
successfully remove stripe noise. The stripe noise has significant structural and direc-
tional characteristics, and the stripes occur periodically, leading to the low-rank prop-
erty. In this paper, we propose to add a low-rank constraint on the stripe noise to the 
HSI denoising method based on sparse representation and graph Laplacian regulariza-
tion. The contributions of this paper lie in that: 

1 We regard the stripe noise as an independent component, and use a nuclear norm to 
regularize the low-rank property of the stripe noise, thus resulting in satisfying de-
striping and denoising performance;

2 We use an iterative update algorithm to solve our proposed non-convex model, 
which helps us minimize the least square error to find the local optimal solution;

3 We conduct numerous experiments on the simulated and real data to find out the 
most appropriate parameters, and the experimental results demonstrate that the pro-
posed method outperforms many mainstream methods in both quantitative evalua-
tion indexes and visual effects.

The remainder of this paper is organized as follows: Sect. 2 introduces graph regularized 
non-negative matrix factorization and multi-task graph-regularized sparse non-nega-
tive matrix factorization related work. Section 3 proposes the model of our method and 
derives the solution process. The results of different methods on simulated data and real 
data are in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2  Related work
An HSI is a superposition of the same area images under different spectra. Hence, it has 
strong correlations between bands, which leads to information redundancy [33]. In this 
paper, we use matrix decomposition to reduce the redundancy [34]. Matrix decomposi-
tion helps us find the product of two or more low-dimensional data matrices to approxi-
mate the original high-dimensional data. Therefore, it can reduce the data dimension, 
thus decreasing the redundancy of HSI.

Because of its convenience and simplicity, the nonnegative matrix factorization (NMF) 
algorithm is proposed and widely applied in computer vision, document clustering, recom-
mendation system and other fields [35]. Different from sparse dictionary learning, the NMF 
requires that the original matrix, the corresponding bases and the coefficient matrix are 
nonnegative. Hence, it is more useful for nonnegative data such as images, because the pixel 
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intensity of an image is always nonnegative. However, it does not consider the geometric 
structure of the data. To address this issue, Cai et al. constructed an affinity graph to encode 
geometric information, and sought a matrix factorization that respects the structure of 
the graph [36]. The algorithm is called graph regularized nonnegative matrix factorization 
(GNMF). The objective function of GNMF is defined as:

where Z = [z1, z2, . . . , zN ] ∈ R
M×N  is the given data matrix. Each column of Z is a 

sample vector, and M represents the dimension of the vector, N  indicates the number 
of samples of the data. U ∈ {R+, 0}M×R means the basis of Z in the representation of 
NMF, and V = [v1, v2, . . . , vN ] ∈ {R+, 0}R×N (R ≪ N ) denotes the coefficient matrix. 
A N -node graph G is formed with {v1, v2, . . . , vN } the graph signals. W is the corre-
sponding adjacency matrix, and its element Wi,j is the edge weight between nodes vi 
and vj . µ is the regularization parameter that controls the regularization term. In (1), the 
second term usually represents the association between nodes [37], which can be further 
modified as follows:

where T r(·) stands for the trace of a matrix, D is a diagonal matrix in which 
Di,i = N

j=1Wi,j , and the graph Laplacian matrix is L = (D−W) ∈ R
N×N  , which is 

symmetric positive semidefinite [38]. Therefore, GNMF can be simplified to:

The GNMF algorithm can reveal the geometric relationship inside the high-dimensional 
data. Based on GNMF, Lei et al. developed this method to the denoising task of HSI, and 
proposed multi-task graph-regularized sparse nonnegative matrix factorization (MTG-
SNMF) [39]. In this methd, they added an ℓ1 norm to regularize the sparse noise, and the 
restoration model is as follows:

3  Method
3.1  Problem formulation

As mentioned above, HSI is usually affected by different noises. In this article, we assume 
that the noises are independent, and we have:

(1){U,V} = arg min
U,V

�Z−UV�2
F
+

µ

2

N
∑

i,j=1

∥

∥vi − vj
∥

∥

2
Wi,j ,

(2)

1

2

N
∑

i,j=1

∥

∥vi − vj
∥

∥

2

2
Wi,j =

N
∑

i=1

vTi viDii−
N
∑

i,j=1

vTi vjWi,j

= Tr(VDV
T )− Tr(VWV

T )

= Tr(VLVT ),

(3){U,V} = arg min
U,V

�Z−UV�2F + µT r(VLVT ),

(4){U,V} = arg min
U,V

�Z−UV�2F + ��V�1 + µTr(VLVT ).

(5)Y = X +N+ B+ S,
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where Y ∈ R
M×N×P is the observed HSI has M rows, N columns, and P bands, respec-

tively. X is the clean image, and the remaining variables represent the additive noise 
components. N represents the Gaussian noise, B denotes the sparse noise, and S indi-
cates the stripe noise. Given the observed noise data Y , we try to restore X from Y.

3.2  Proposed model

The sparse representation method can achieve the approximation of the recovered clean 
HSI. Additionally, the introduction of graph Laplacian regularization can describe the non-
local similarity of the entire HSI. Besides, the stripe noise has low-rank property, hence, we 
combine the constraint on the stripe noise with the MTGSNMF. The proposed HSI recon-
struction model is as follows:

where Y′ and S′ are auxiliary variables that represent Y and S . To make better use of 
the redundant information of HSI and the relevant characteristics between bands, we 
are inspired by NLMs [4] and divide the observed Y into a set of K overlapping full-
band blocks {Y1,Y2, . . . ,YK } . In addition, to simplify the representation of each graph 
node and facilitate subsequent calculations, each Yk ∈ R

m×m×P is then vectorized to 
Y
′
k ∈ R

m2P×1 , where m is the width and height of the block, P is the number of bands, 
Y
′ = [Y′

1,Y
′
2, . . . ,Y

′
K ] . S′ is obtained in the same way as Y′ , and Y′, S′ ∈ R

m2P×K  . 
Sb ∈ R

M×N is the 2-D stripe noise image at bth band, and S = [S1, S2, . . . , Sb, . . . , SP].
As the low-rank constraint is non-convex, solving the problem (6) is challenging. 

Therefore, we replace the low-rank constraint by the nuclear norm �·�∗ [40, 41], where 
�C�∗ = tr

√
CTC = tr

√

(U�VT )TU�VT = tr(�) , where � stands for the singular val-
ues of C. Thus, the reconstruction model is reformulated as:

where 
∥

∥Y
′ −UV − S

′∥
∥

2

F
 is the data fidelity item, which can help remove Gaussian noise 

through the �·�2
F
 norm constraint. ‖V‖1 is sparsity constraint item, which can ensure the 

sparseness of the coefficient matrix, and can also constrain the sparse noise. 
P
∑

b=1

�Sb�∗ is 

the constraint on stripe noise.
Furthermore, Tr(VLVT ) is a graph Laplacian regularizer which helps preserve the spatial 

relation. As mentioned above, the graph is formed by K nodes, and each node is equipped 
with a signal Y′

k . We implement the k-means clustering algorithm for the graph nodes, so 
that all nodes are divided into c classes [39]. The weight of the edge of any two nodes in the 
same category is assigned as 1, and the connection weight of any two nodes not in the same 
category is assigned as 0. So the edge weight is defined as:

The corresponding graph Laplacian matrix L is obtained by L = D−W.

(6)arg min
U,V,S

∥

∥Y
′ −UV − S

′∥
∥

2

F
+ ��V�1 + µTr(VLVT )+ β

P
∑

b=1

rank(Sb),

(7)arg min
U,V,S

∥

∥Y
′ −UV − S

′∥
∥

2

F
+ ��V�1 + µTr(VLVT )+ β

P
∑

b=1

�Sb�∗,

(8)Wi,j =
{

1, Y′
i and Y

′
j are in the same cluster,

0, otherwise.
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Moreover, � , µ , β are the regularization parameters. � controls the sparseness, and µ 
dominates the strength of graph regularization, and β regulates the stripe low-rank regu-
larizer. Finally, We need to optimize three variables in the objective function, which are 
U , V and S . Next, we use the alternate minimization strategy to solve the problem. The 
optimization process is as follows.

3.3  Optimization procedure

The objective function in (7) is non-convex, so it is difficult to find a global minimum. 
The product UV of two random variables U and V between 0 and 1 is a rough approxi-
mation of the original observation matrix Y′ ∈ R

m2P×K  . Therefore, to solve U and V , we 
use an iterative update algorithm that minimize the least square error to find the local 
optimal solution [42]. In addition, for solving the stripe component S , we convert the 
2-D data matrix recovered from UV into a 3-D matrix. Then, we use the low-rank con-
straint band by band for the recovered HSI, and use the soft threshold operation for the 
singular value [43]. For the convenience of description, let

To find the minimum value of L , firstly, we should obtain the partial derivatives of L 
w.r.t. U and V respectively:

where the Laplacian matrix L satisfies L = D−W , so ∂L
∂V

 can be transformed into:

Utilizing KKT conditions U ⊙ ∂L
∂U

= 0 and V ⊙ ∂L
∂V

= 0 , where ⊙ represents the multi-
plication of the corresponding elements of the matrix, we can get the following equation 
w.r.t. U and V:

The above equation will result in the following update rules of U and V , the proof of this 
rule can refer to theorem 1 in GNMF [36].

(9)L =
∥
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′ −UV − S
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+ ��V�1 + µTr(VLVT )+ β

P
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T
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S
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Y
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Upon obtaining U and V according to (13), we convert UV to a 3-D matrix E , which 
is the approximation of the denoised image. The stripe component S is solved band by 
band. We use the augmented Lagrange multiplier (ALM) method [44] as follows:

It is a low-rank matrix approximation (LRMA) problem and solve it through the soft 
threshold operation of SVD [43]. Thus, we have the following update rules:

where ρ is the penalty factor, Y S
b  is the Lagrange multiplier. 

∑

rii is the diagonal element 
of the singular valuematrix 

∑

r = diag(σi(1 < i < r)) , shrink_L∗(·) is the soft threshold 
operation, r is the upper limit of the low-rank matrix.

Finally, the Lagrange multiplier can be updated in parallel:

The proposed algorithm for HSI denoising, termed SRGLR, is summarized in 
Algorithm 1.

4  Experiments
4.1  Experimental setup

For the simulated experiments, the Pavia City Center dataset and the Washington 
DC Mall dataset are used for clean HSI. The Pavia City Center dataset is collected by 
the reflection optical system imaging spectrometer (ROSIS-03), and we choose a 
200× 200× 80 sub-image. Washington DC Mall dataset is obtained from a hyperspec-
tral digital image (HYDICE) sensor in a shopping mall in Washington, and the size is 
selected 256× 256× 80.

(14)

Sb = arg min
Sb

P
�
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�

β�Sb�∗ + Y S
b · (Yb − Eb − Sb)+

ρ

2
�Yb − Eb − Sb�2F

�
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P
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ρ
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�

�
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�

�
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Y S
b

ρ

�

�

�

�

�

2

F



,

(15)



















Sb = U(shrink_L∗(�r ,
β
ρ
))V ∗

SVD(Yb − Eb +
Y S
b
ρ
) = U�V ∗

shrink_L∗(�r ,
β
ρ
) = diag{max(�rii − β

ρ
, 0)}

�r = diag(σi(1 < i < r))

(16)Y S
b = Y S

b + ρ · (Yb − Eb − Sb).
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For real data experiments, we use the Indian Pines dataset and the Gaofen (GF-
5) Shanghai dataset. The Indian Pines dataset data is captured by the Airborne Visual 
Infrared Imaging Spectrometer (AVIRIS) and has 145× 145 pixels and 220 channels, 
The GF-5 Shanghai dataset is acquired by the advanced Hyperspectral Imager (AHSI) 
in GF-5 satellite. A subimage with the size of 300× 300× 155 is selected. The two real 
datasets are severely degraded by various noises at some bands.

To evaluate the performance, we use the peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM). The PSNR measures the quality of the restored image based on 
the mean square error, and the SSIM computes the similarity between the target image 
and the reference image. The higher PSNR and SSIM, the better the denoised image. 
Besides, to further objectively evaluate the recovery results, we introduce the spectral 
angle mapper (SAM). The SAM calculates the spectral similarity based on the angle dif-
ference between the restored HSI and the noise-free HSI spectral vector. The smaller 
the SAM, the more similar the recovery image is to the original image. To reflect the 
overall recovery quality among all bands, we use the mean PSNR (MPSNR), mean SSIM 
(MSSIM), and mean SAM (MSAM).

To testify the effectivness of our method in both simulated and real data condition, 
we conduct a serious of comparative experiments with six classical or state-of-the-art 
model-based denoising methods and a deep learning method : BM4D [6], low-rank 
matrix recovery (LRMR) [14], the noise-adjusted iterative low-rank matrix approxi-
mation (NAILRMA) [45], spatial-spectral total variation regularized local low-rank 
matrix recovery (LLRGTV) [46], multi-task graph-regularized sparse non-negative 
matrix factorization (MTGSNMF) [39], stripe spectral low-rank and spatial-spectral 
TV regularization (SSTVSSLR) [44], and HSI-SDeCNN [21]. Since the pre-trained HSI-
DeCNN model provided by the authors only considers the Gaussian noise. To be fair, we 
retrained the network by adding the salt and pepper noise and stripe noise to the train-
ing and validation data. After 56.7 hours of training, the best training model is obtained.1

Before denoising, to converge to the local optimal solution more efficiently, we nor-
malized the HSI data to [0,1] by dividing the maximum value of the HSI data cube. 
Besides, we randomly select 30% of the band to simulate stripe noise. Empirically, we 
set the penalty parameter as � = 10 , µ = 10 , β = 5 , and the initial block size is 4 × 4 , 
and the step size in both the horizontal and vertical directions is 2. Finally, the thresh-
old of stopping criterion and the max number of iterations are set to be ε = 10−6 and 
Imax = 300 , respectively. To simulate different noisy cases, we consider using the follow-
ing different levels of noise types:

Case 1 We add Gaussian noise with standard variance σ = 0.05 and salt and pepper 
noise with the percentage of o = 0.01. Besides, the intensity of the stripe noise is v = 
0.075. For the percentage of stripe noise, we use an increasing value r = 0.3 (Case 1.1), r 
= 0.5 (Case 1.2), and r = 0.7 (Case 1.3), respectively.

Case 2 Gaussian noise and salt and pepper noise are the same as Case 1. The stripe 
noise with the percentage of r = 0.3 and the intensity range from v = 0.05 (Case 2.1) to v 
= 0.1 (Case 2.2).

1 The training process is performed in MATLAB (R2018b) on the computing platform with an Intel Core I7-8700 CPU 
and a 16GB RAM.
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4.2  Simulated experimental results

Figures 1 and 2 shows the denoising results of different methods under Case 1.3 for the 
fourth band of the Pavia City Center image and Case 2.2 for the second band of Washing-
ton DC Mall image, respectively. In the two figures, the first row represents the restored 
image, and the second row indicates the locally enlarged detail region. Figures 1a, b and 
2a, b separately displays the original noiseless image and the noisy image. Figures 1c–i 
and 2c–i are restored images by using different denoising methods. Figures 1j and 2j are 
the results of our proposed method. Through visual analysis and comparison, we can see 
that BM4D cannot remove stripe noise and salt and pepper noise, and this is because the 
BM4D ignores the correlation amongst the bands. NAIRLMA only considers Gaussian 
noise, so the output effects are not ideal. The LRMR, LLRGTV, MTGSNMF and HSI-
SDeCNN can remove Gaussian noise and salt and pepper noise, but they fails in remov-
ing stripe noise. Though SSTVSSLR removes mixed noise very well, in some areas, such 
as the enlarged image of Fig. 1, it either enhances or decays the bright points at the top 
of the image, while our method can present better results in detail preservation and 
mixed noise removal.

Figures 3 and 4 display the vertical average profile that corresponds to Figs. 1 and 2. 
The horizontal axis represents the number of columns, and the vertical axis indicates the 

Fig. 1 The Pavia City Center image (4th band) [top] and zoom-in image [bottom] before and after denoising 
in Case 1.3 with σ = 0.05 and o = 0.01, r = 0.7, v = 0.075. a Original image; b Noisy image; the denoising 
results obtained by c BM4D; d LRMR; e NAILRMA; f LLRGTV; g MTGSNMF; h SSTVSSLR; i HSI-SDeCNN; j SRGLR 
(proposed)
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mean gray-level or digital number (DN) of each column. The green, red, and blue curves 
represent the mean DN of the clean, noisy and restored images, respectively. Note that 
the more similarity between the blue and green curves, the better the denoising effect. 

Fig. 2 The Washington DC Mall image (2nd band) [top] and zoom-in image [bottom] before and after 
denoising in Case 2.2 with σ = 0.05 and o = 0.01, r = 0.3, v = 0.1. a Original image; b Noisy image; 
the denoising results obtained by c BM4D; d LRMR; e NAILRMA; f LLRGTV; g MTGSNMF; h SSTVSSLR; i 
HSI-SDeCNN; j SRGLR (proposed)

Fig. 3 Vertical mean profiles of band 4 in the Pavia City Center image a Original image; b Noisy image; 
before and after denoising via the different methods: c BM4D; d LRMR; e NAILRMA; f LLRGTV; g MTGSNMF; h 
SSTVSSLR; i HSI-SDeCNN; j SRGLR (proposed). The green, red, and blue curves represent the mean DN of the 
clean, noisy and restored images, respectively
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Figures 3b–i and 4b–i show the mean DN of the denoised images using different meth-
ods and their comparisons with the ground-truth. Obviously, the results obtained by 
BM4D, LRMR, NAILRMA, LLRGTV, and MTGSNMF are similar to the original noisy 
image (red curve). This is because the 4th band of the Pavia dataset has strong stripe 
noise, while stripes significantly impact the mean DN. None of the above six methods 
can remove stripe noise, so the restored mean DN curve is almost equivalent to the 
noisy curve. Compared with the above model-based methods, HSI-SDeCNN can pro-
vide a slightly better visual performance. However, it fails to preserve the details and to 
remove some stripe noise. SSTVSSLR and our method perform well on both types of 
data, which demonstrates that the low-rank constraint on the stripe is an essential term 
to remove the stripe noise. In addition, the curve obtained by our method is closer to the 
original clean HSI curve, which further illustrates the advantages of our method.

Figure  5 shows the PSNR and SSIM of each band of the Pavia City Center in Case 
1.3 and the Washington DC Mall dataset in Case 2.2. As can be seen from the figure, 
our method can generate the highest PSNR and SSIM in some bands. In addition, our 
method can bring comparatively stable denoising results for each band. In other words, 
we can see that the curves of some methods have serious sawtooth phenomena, which 
seriously limits the overall assessment index, while our approach can result in a better 
overall effect by giving relatively smooth and steady curves.

Table 1 shows the MPSNR, MSSIM and MSAM of different methods for the Pavia City 
Center dataset and Washington DC Mall dataset in both noisy cases, i.e., Case 1 and 

Fig. 4 Vertical mean profiles of band 2 in the Washington DC Mall image a Original image; b Noisy image; 
before and after denoising via the different methods: c BM4D; d LRMR; e NAILRMA; f LLRGTV; g MTGSNMF; h 
SSTVSSLR; i HSI-SDeCNN; j SRGLR (proposed). The green, red, and blue curves represent the mean DN of the 
clean, noisy and restored images, respectively

Fig. 5 PSNR value and SSIM values of each band in the Pavia City Center image a, b and the Washington DC 
Mall image c, d with Case 1.3 and Case 2.2
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Case 2. The optimal indexes are shown in bold. From the table, we can see our method 
achieves the highest MPSNR, the largest MSSIM, and the lowest MSAM in most cases. 
Moreover, in terms of the indexes, our method behaves more excellent than other meth-
ods when increasing the percentage and intensity of stripe noise. The above experiments 
demonstrate the effectiveness of the proposed method in simulated cases.

4.3  Real noisy data experimental results

Figure 6 depicts the result on the Indian Pines dataset. Figure 6a displays the original 
noisy image at band 219, and Fig. 6b–i show the denoising results gained by different 
methods. We can see from Fig. 6b that BM4D cannot remove mixed noise. As shown 
in Fig.  6c, d, LRMR and NAIRLMA can deduct a certain amount of noise, but there 
still remains significant noise. In Fig. 6e, LLRGTV produces artifacts in a local area. In 
Fig.  6f, MTGSNMF brings too smooth a result and filters the details of the image. In 
Fig. 6h, HSI-DeCNN has obvious stripes in local areas and generates chessboard arti-
facts. Through visual comparison, SSTVSSLR and our proposed method have better 
visual effects.

Figure 7a is the image of the GF-5 Shanghai dataset at band 155. As shown in Fig. 7a, 
the image is seriously corrupted by Gaussian noise, impulse noise, dense stripe noise 
and dead lines. Comparing the detailed views from denoising images of different meth-
ods, BM4D and LRMR still contain heavy stripe noise, deadlines and some sparse 
noise. NAIRLMA, LLRGTV, MTGSNMF and HSI-DeCNN behave better but can not 
fully remove the stripe noise and dead lines. SSTVSSLR performs better than the above 
methods, but in the lower left and upper right corner, there is still some noise left. In the 
end, our proposed method delivers the best visual effect.

In addition, we provide the vertical average profile of the 155th band in the GF-5 
Shanghai dataset before and after denoising. We can see from Fig. 8a that the original 
data is severely affected by various types of noises, and the mean DN curve fluctuates 
rapidly. Figure  8b–i show the mean DN curves after denoising by different methods. 
From the results, BM4D and LRMR barely generate any changes compared with the 
original noisy curve. The left methods can suppress the noise more or less, but SSTVS-
SLR, HSI-DeCNN and our method can bring a better result with the smoother curve. 
Compared with other methods, our method can get the best effect both in the global and 
in the local details. This result further proves the superiority of the proposed method.

4.4  Discussion

The adjustment of the parameters is essential for the denoising task. In this paper, there 
are three parameters that need adjusting, i.e., � , µ , β . � controls the regularization of the 
salt and pepper noise. µ is a graph Laplacian regularization parameter. β is the param-
eter for stripe noise. Figure 9 shows the changes of the MPSNR value on the Pavia City 
Center data and the Washington DC Mall data under Case 1 and Case 2 by using differ-
ent parameters along the three coordinate axes.

As mentioned in Sect.3.3, it is not easy to find the global optimal solution of the cost 
function (7) because it is not a convex optimization problem. This is the reason that we 
can barely see a convergence point in Fig. 9 but several local maximums. Therefore, we 
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choose the optimal local solution as our solution goal. According to a trade-off between 
the experimental results under different noise conditions and data, the optimal param-
eters are finally set to be: � = 10 , µ = 10 , β = 5 . As the above experimental results dem-
onstrate, the selected parameters are robust to various noise conditions and distinct 
data.

5  Conclusions
Concentrating on the high-dimensional and particular geometric structure of the HSIs, 
in this paper, we propose a sparse representation and graph Laplacian regularization 
(SRGLR) method to solve the destriping and denoising problem. By analyzing the prop-
erties of the mixed noise, we combine a graph Laplacian regularization, sparse represen-
tation, and low-rank term to construct our denoising model. The sparse representation 

Fig. 6 Band 219 of the Indian Pines dataset before and after denoising via the different methods: a Original 
image; b BM4D; c LRMR; d NAILRMA; e LLRGTV; f MTGSNMF; g SSTVSSLR; h HSI-SDeCNN; i SRGLR (proposed)

Fig. 7 Band 155 of the GF-5 Shanghai image before and after denoising via the different methods: a Original 
image; b BM4D; c LRMR; d NAILRMA; e LLRGTV; f MTGSNMF; g SSTVSSLR; h HSI-SDeCNN; i SRGLR (proposed)
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ensures the approximation of the restored image, and the graph Laplacian regularization 
term enhances the non-local similarity of HSI. In addition, the low-rank constraint helps 
remove the stripe noise, and the sparse regularizer eliminates the sparse noise. To solve 
the proposed model, an iterative algorithm of local minimum is used to recover the final 
restored image. Finally, simulation experiments and real experimental results show that 
our method has certain advantages in removing mixed noise. In future, we will consider 
the removal of more complex mixed noise such as deadlines, dead-zones, poisson noise, 
etc.

Abbreviations
HSI   Hyperspectral image
MNF   Maximum noise fraction
NL-means   Non-local means
BM3D   Collaborative filtering of groups of similar patches
BM4D   Blocks-matching and 4D filtering
VBM-4D   Video denoising using separable 4-D non-local spatiotemporal transforms
TV   Total variation

Fig. 8 Vertical mean profiles of band 155 in the GF-5 Shanghai image before and after denoising via the 
different methods: a Original image; b BM4D; c LRMR; d NAILRMA; e LLRGTV; f MTGSNMF; g SSTVSSLR; 
h HSI-SDeCNN; i SRGLR (proposed). The red and blue curves represent the mean DN of the original and 
restored images, respectively

Fig. 9 Change in the MPSNR values of Proposed method for the Pavia City Center image (top) and the 
Washington DC Mall image (bottom) by varying parameters � , µ and β . The data were corrupted by the noise 
simulated in Case 1 and Case 2 with σ = 0.05 and o = 0.01: a, f r = 0.3, v = 0.075; b, g r = 0.5, v = 0.075; c, h r 
= 0.7, v = 0.075; d, i r = 0.3, v = 0.05; e, j r = 0.3, v = 0.1;
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MAP   Maximum a posteriori
FastHyDe   Fast hyperspectral denoising
GLF   Global local factorization
LRMR   Low-rank matrix recovery
CNNs   Convolutional neural networks
HSI-SDeCNN  HSI single-denoising CNN
NMF   Nonnegative matrix factorization
GNMF   Graph regularized nonnegative matrix factorization
MTGSNMF   Multi-task graph-regularized sparse nonnegative matrix factorization
NAILRMA   Noise-adjusted iterative low-rank matrix approximation
LLRGTV   Spatial-spectral total variation regularized local low-rank matrix recovery
SSTVSSLR   Stripe spectral low-rank and spatial-spectral TV regularization
SRGLR   Sparse representation and graph Laplacian regularization
ALM   Augmented Lagrange multiplier
LRMA   Low-rank matrix approximation
PSNR   Peak signalto-noise ratio
SSIM   Structural similarity
SAM   Spectral angle mapper
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