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1  Introduction
Countless applications rely on wireless sensor networks of geographically dispersed 
sensors, e.g., target tracking [1], environment monitoring and radar network resource 
management [26, 37, 39]. In general, the sensors have limited computational resources 
and communication range, covering a small part of the region of interest (ROI) [33]. The 
neighbor sensors have overlap field of views (FoVs) so that they can cooperate in the 
common FoV for better tracking accuracy and system robustness. However, the limited 
power and wireless-bandwidth impose challenges [34–36]. On the one hand, the maneu-
vering target moves across the FoVs of different sensors, for which the target trajectory 
cannot be covered by the FoV of any single sensor. On the other hand, not all the nodes 
are used simultaneously due to (a) performance requirements (e.g., a small number of 
sensors is sufficient to achieve a desired tracking accuracy); and (b) the constrained 
computation and communication resources (e.g., only a small number of sensors can be 
activated at the same time). These two challenges motivate the problem of selecting only 
a small subset of the sensors for the measurement purpose. In this paper, we consider 
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the optimal selection of the subset, adapting to the position of the target in an online 
manner [23, 28].

1.1 � Related works

The sensor selection can be framed as a linear programming problem based on the par-
tially observable Markov decision process (POMDP) framework [2, 3, 7, 11]. POMDP 
allows the calculation of the optimal policy for choosing the desired actions despite 
some important information may not be observed. In this way, a decision-theoretic 
approach can be taken, leveraging the sensor nodes observations and the reward from 
following management actions to customize choices. Within the POMDP framework, 
the action space is usually infinite and continuous, but in practice, it is often assumed to 
be a finite set of actions.

Different methods have been proposed to solve the optimal policy problem. [9] formu-
lated the sensor selection in a Bayesian framework and estimated the information given 
by multi-sensor system for a given scene via a Bayes reasoning. [40] introduced several 
practically feasible measures of information utility. The main idea in these approaches 
was to select the sensors with the most useful information gain. In addition to infor-
mation metrics, the sensor selection has also been proposed on the base of some other 
performance indicators/function optimization [5, 21]. Remarkably, the posterior CRLB 
(PCRLB) was derived for the nonlinear filter in [30], which provided a theoretical per-
formance limit for a Bayesian estimator. It has attracted the interest of many researchers 
for sensor management, e.g., [12, 13, 22, 28, 29]. In particular, [12, 13, 22] focused on 
the measurement origin uncertainty and proposed the concept of information reduction 
factor to calculate the PCRLB with the false alarm while [8] investigated the detection 
probability less than unity 1. [20] applied the conditional PCRLB which is dependent on 
the actual observation data and adaptive to the particular realization of the system state.

Furthermore, different forms of the optimization problem have been proposed to solve 
the sensor selection problem. In [14], the sensor selection was formulated as a linear 
programming under linear measurement models and solved via convex optimization. [4] 
extended [14] to the nonlinear measurement models. Meanwhile, scholars paid atten-
tion to the researches on sensor selection under resource constraints. For instance, [10] 
defined the selection problem as a knapsack problem with the goal that guarantees a 
good performance at the price of low cost and proposed a heuristic algorithm based on 
a greedy strategy [24, 25]. Decomposed the joint resource allocation problem into sub-
problems and solved them by the Karush–Kuhn–Tuckers optimal conditions. The modi-
fied particle swarm optimization was utilized to solve the sensor scheduling in [38]. [27] 
relaxed the constrained resource allocation to an unconstrained Markov decision pro-
cess via Lagrangian relaxation.

However, all these bounds/approaches rely heavily on correct Markov-jump modeling 
of the target dynamics, which can hardly be met in the case of maneuvering target with 
little prior information about the target dynamics and the sensor statistics.

1.2 � Our contribution and paper organization

In this paper, we consider a sensor network consisting of bearing-only sensors where the 
bearing measurements are given by the direction of arrival (DOA) [15]. The proposed 
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method implements an efficient two-step process to obtain the optimal subset of the 
sensor nodes to be activated. In the first step, all sensors overlapping with the detection 
radius/FoV of the target are selected as the candidate set. Then, a specified number of 
nodes are extracted from that candidate set, satisfying the communication restrictions 
while achieving the optimal performance. Furthermore, the target tracking is decom-
posed into two modules. In the first module, the selected sensor nodes subset transfers 
their current moment measurements to the information fusion center. Then, the target 
location is estimated via the least squares (LS) method [31]. In the second module, we 
use the trajectory function of time(T-FoT) approach [17–19] to describe the movement 
of the target for tracking. Compared with most model-based filters, the data-driven 
T-FoT approach has the advantage of needing poor prior information about the target 
maneuvering and both process and measurement noises.

The main contributions of this work can be summarized as follows:

•	 We consider the challenging scenario in which the target is non-cooperative and 
moves with completely unknown maneuvering.

•	 We extend the POMDP framework to the T-FoT tracking approach, where the target 
localization is determined by a LS estimator. This T-FoT approach allows accommo-
dating missing knowledge about the target dynamics and the background noises.

•	 The CRLB of the target localization mean error with regard to DOA sensors is used 
as the objective function for sensor selection. We propose two CRLB-based strate-
gies: one is to select a fixed number of sensor nodes to fulfill the bandwidth con-
straint, and the other is to active as few sensor nodes as possible while meeting the 
CRLB constraint.

The rest part of this paper is organized as follows. The system model we consider is 
introduced in Sect.  2. The two proposed sensor selection approaches and simulation 
study are given in Sects. 3 and 4, respectively. The paper is concluded in Sect. 5.

2 � System model
2.1 � Measurement model

The measurement model of the passive DOA sensor can be written by

where (xk , yk) is the position of the target at time k , (xik , y
i
k) is the coordinate position of 

sensor i and vik is assumed as zero-mean Gaussian, vik ∼ N 0,Ri
k .

Hereafter, the measurement noise of each sensor is irrelevant to that of the rest sen-
sors. The measurements from all activated/selected sensors at time k may be collected as 
Zk = [zik ]

n
i=1.

2.2 � Target localization using DOA

A typical scenario of DOA target localization is shown in Fig. 1. In this section, we drop 
the time subscript k for simplicity. Denote the target position angle relative to sensor i by 
θ ik for which we have

(1)zik = tan−1

(

yk − yik

xk − xik

)

+ vik
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Denoting Bi
k =

[

sin θ ik ,− cos θ ik
]

,Xk = [xk , yk ]
T,Mi

k =
[

xik sin θ
i
k − yik cos θ

i
k

]

 , Eq. (2) 
can be rewritten in short

The estimation of the target localization using the LS method [32] can be calculated 
from Bi

k ,M
i
k as follows

Here, n ≥ 2 is needed to satisfy the positive definiteness of the matrix.

2.3 � Target movement modeling by T‑FoT

The performance of the standard state-space model depends on how well the Markov model 
matches the true target dynamics. For the non-cooperative maneuvering target, it is practi-
cally impossible to precisely identify the time-varying motion by a Markov-jump model. To 
address this challenge, we apply the T-FoT approach [17–19] for target tracking which is free 
of Markov-jump modeling. Decomposing the real target trajectory f(t) in each coordinate � 
(e.g., x-position, y-position), the polynomial T-FoT method fits the motion model as follows

where t ∈ R+ indicates the continuous time, k = 1, 2, ..., denotes the discrete time-
instant, f �(t) denote the target trajectory in � dimension, F�

k (t;C
�

k ) is the corresponding 
T-FoT with parameter set C�

k  , and e�k(t) denotes the fitting error in regard to f �(t).
The polynomial T-FoT of order γ can be written as

for which the parameter set is C�

k � [c�k ,0, c
�

k ,1, . . . , c
�

k ,γ ].

(2)tan θ ik =
yk − yik

xk − xik
.

(3)Bi
kXk = Mi

k i = 1, 2, · · · , n.

(4)X̂k = [x̂k , ŷk ]
T
=

[

n
∑

i=1

(Bi
k)

TBi
k

]−1[ n
∑

i=1

(Bi
k)

TMi
k

]

.

(5)f �(t) = F�

k (t;C
�

k )+ e�k(t)

(6)F�

k (t;C
�

k ) = c�k ,0 + c�k ,1t + ...+ c�k ,γ t
γ

Fig. 1  The observations from bearing-only sensors
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The order of the polynomial determines the complexity of the model. For the typical 
motion models such as constant velocity (CV) and constant acceleration (CA) models, i.e., 
∂fCV(t)

∂t = constant , ∂
2fCA(t)

∂2t
= constant . In practical applications, the sliding time-window 

fitting using the second-order polynomial is applicable to most smooth trajectories. The 
2-D T-FoT can be described as

3 � Methods
In this section, we describe the improved sensor selection methods. We formulate the 
sensor selection problem as a POMDP framework in conjunction with the CRLB of the 
target localization mean error for tackling the problem that the observers (e.g., sensor 
nodes) cannot reliably identify the underlying actual target states. Our method extends 
the POMDP framework by integrating the T-FoT approach to address the unknown tar-
get dynamic model.

3.1 � POMDP framework based on T‑FoT

The core idea of the POMDP is choosing the optimal selection command via minimizing 
the cost function or maximizing the reward function. At the time step k, the POMDP 
can be defined as

where S is a finite set of the sensor selection commands, Zs is a finite set of the observa-
tions under the commands set S, g(·|Xk , s) is the measurement model conditioned on the 
command s ∈ S and the target state, F(·;Ck) is the estimated T-FoT at time k, µ(s; ·) is 
the objective function by executing an action command s ∈ S.

In the core of our POMDP framework, the objective function µ(s; ·) is defined as 
the CRLB ulb(sk; X̂k+1) of the pseudo-localization error of the target conditioned on 
the measurements from the activated sensors, which in turn depends on the selection 
command s (see Sect.  3.2). Here, the estimated/predicted state X̂k+1 = F(k + 1;Ck) 
is obtained from the estimated T-FoT [19] rather than by a Markov-jump model (see 
Sect. 3.3) which is indispensable prior information in traditional methods. This leads to 
the key difference of our approach with existing POMDP approaches [6, 16].

Typically, the sensor selection needs to meet a specific constraint. In this paper, we 
consider two practical constraints, i.e., the number of sensors to be selected is deter-
ministic, or the sensors selected correspond to a deterministic CRLB with the minimum 
number of sensors. For these two cases, the optimal selection command is given by (9) 
and (10), respectively.

(7)
�

x(t)
y(t)

�

=

�

cxk ,0 cxk ,1 cxk ,2
c
y
k ,0 c

y
k ,1 c

y
k ,2

�





1
t

t2



+

�

exk
e
y
k

�

.

(8)ψ = {S, F(·;Ck),Z
s, g(·|Xk , s),µ(s; ·)}

(9)
s
∗
k
= arg min

sk∈Sk

ulb(sk ; X̂k+1)

s.t.
∣

∣s
∗
k

∣

∣ = ns
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where Sk ⊆ S denotes the candidate sensor set at time k, |s∗k | denotes the number of 
selected sensors, ns is the specified number of sensors to be selected.

where Tlb is the required CRLB such that the selected sensors can meet.

3.2 � CRLB with regard to DOA

The CRLB provides the lower bound of the variance of unbiased estimators of a deter-
ministic parameter under specific measurement conditions, which can be used to evalu-
ate the detection capability of different sensor node subsets.

For an unbiased estimator X̂k(Zk) of a parameter vector Xk based on the measurement 
vector Zk , the CRLB for the error covariance matrix is defined to be the inverse of the 
Fisher Information Matrix (FIM), denoted by J, as follows

where E denotes the mean value of the content and the inequality (11) means that the 
difference ulb(X̂k)− J−1

k  is positive semi-definite.
Now, consider the predicted target state X̂k = F(k;Ck−1) obtained from the estimated 

T-FoT, a n-sensor extension of the DOA measurement function as in Eq. (1) is

where

Under the premise that z1k , · · · , z
n
k  are conditionally independent of each other, the PDF 

of the collected measurements Zk =
[

zik
]n

i=1
∼ N (θ ,Rk) can be expressed as

where θ is the mean value of measurements � and Rk = diag(R1
k ,R

2
k , . . . ,R

n
k ).

Then, compute the second-order derivatives of the logarithm of the measurement PDF 
with respect to X̂k

Substitute Eqs. (14) to (15), the FIM based on DOA measurements J (X̂k) can be shown 
as follows

(10)
s
∗
k
= arg min

sk∈Sk

|sk |

s.t.ulb(sk ; X̂k+1) ≤ Tlb

(11)E{[X̂k(Zk)− Xk ][X̂k(Zk)− Xk ]
T} ≥ J−1

k � ulb(X̂k)

(12)Ẑk = H(X̂k)+ Vk

(13)H(X̂k) =

















tan−1
�

ŷk−y1
x̂k−x1

�

tan−1
�

ŷk−y2
x̂k−x2

�

...

tan−1
�

ŷk−yn
x̂k−xn

�

















� �.

(14)p(Zk) =
1

(2π)n/2|Rk |
n/2

exp

[

−
(Zk − θ)TR−1

k (Zk − θ)

2

]

(15)J (X̂k) � E

{

∂2 log p(Zk)

∂X̂k∂X̂k
T

}

.



Page 7 of 14Liu et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:72 	

Expand the H(X̂k) and take the first-order partial derivative of X̂k

where (xski , y
sk
i ) are the position coordinates of sensor i in the sensor set selected by com-

mand sk , di =
√

(x̂k − x
sk
i )

2
+ (yk − y

sk
i )

2 is the distance between the sensor and target. 
Thus, J (X̂k) can be computed as

Finally, the CRLB is given as

3.3 � T‑FoT for tracking and prediction

As we mentioned before, the T-FoT fits the time series measurements in a sliding 
time-window up to the current time k denoted as [k ′, k] � {k ′, k ′ + 1, ..., k} , where 
k ′ = max (1, k − T ) , T is the length of the time-window. Disregarding false and missing 
data issues temporally here, the parameter of T-FoT at time k can be estimated in the LS 
sense

Xt denotes the position of the target at time t, where the Mahalanobis distance is used, 
i.e.,

where X̂t denotes the estimates of the target state at time t and the fitting error is given 
as et = Xt − X̂t and 

∑

et
 is the covariance of the fitting error, c.f., (5).

3.4 � Algorithm summary

In summary, the proposed sensor selection algorithm can be summarized as Algo-
rithm 1. Based on the POMDP framework, the interaction of the tracked target with 

(16)J (X̂k) =

[

∂H(X̂k)

∂X̂k

]T

R−1
k

[

∂H(X̂k)

∂X̂k

]

.

(17)
�

∂H(X̂k)

∂X̂k

�

=



















−
ŷk−y

sk
1

d21

x̂k−x
sk
1

d21

−
ŷk−y

sk
2

d22

x̂k−x
sk
2

d22
...

...

−
ŷk−y

sk
n

d2n

x̂k−x
sk
n

d2n



















(18)J (X̂k) =









n
�

i=1

(x̂k−x
sk
i )2

Rikd
4
i

n
�

i=1

−(x̂k−x
sk
i )(ŷk−y

sk
i )

Rikd
4
i

n
�

i=1

−(ŷk−y
sk
i )(x̂k−x

sk
i )

Rikd
4
i

n
�

i=1

(ŷk−y
sk
i )2

Rikd
4
i









�

�

Jxx Jxy
Jyx Jyy

�

.

(19)ulb(X̂k) =
Jyy + Jxx

JxxJyy − JxyJyx
.

(20)Ĉk = arg min
C

k
∑

t=k ′

�Xt − Fk(t;C)�
2
∑−1

et

.

(21)
∥

∥

∥
Xt − X̂t

∥

∥

∥

2

∑−1
et

= (Xt − X̂t)
T
∑−1

et
(Xt − X̂t)
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the sensor selection strategy can be described as the following three steps (see also 
Fig. 2): 

1	 At any time step k, the estimated T-FoT has parameters Ck which can be used to pre-
dict the target state X̂k+1 = F(k + 1;Ck) for time k + 1.

2	 The sensor network perceives pseudo-observations Ẑk+1 through the known sto-
chastic observation model g(·|Xk , sk) and the predicted target state X̂k+1 . This will 
result in the expression of objective function ulb(sk; X̂k+1).

3	 Find the optimal selection command s∗k from the candidate set Sk ⊆ S by optimizing 
the objective function ulb(sk; X̂k+1) with respect to the potential constraints. Here, 
the candidate set can be defined as the subset of all sensors that lie within a limited 
distance to the target.

Fig. 2  POMDP-based sensor selection using the T-FoT approach
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4 � Results and discussion
In this section, we will exhibit simulations to validate the effectiveness of the proposed 
methods. First, we will go over the environment setup of the simulation. Then, depend-
ing on the simulations, we will have some related discussions.

4.1 � Simulation setup

We consider 100 DOA sensors of which 50 use Ri
k = (π/180)2rad2 and the other 50 use 

Ri
k = (π/360)2rad2 , which are uniformly distributed over the ROI whose size is 

3500m× 2500m and are marked in different colors in Fig. 3. The yellow circle indicates 
the range of the sensor node detection and the pink circle indicates the range of sensor 
node communication. These 100 sensors are independent with each other. The position 
of the target starting point is [500m, 500m] . In x coordinate, the state of the target 
evolves according to a CV model. A maneuvering model with accelerations of 10m/s2 
and −10m/s2 in the first and second stages, respectively, prescribes the target dynamics 
in y coordinate. Our approach uses the first-order polynomial T-FoT in x-dimension and 
second order in y-dimension. The parameters Cx

k ,C
y
k are calculated by Eq. (20) over the 

time-window [k ′, k] , where k ′ = max(1, k − T ) , T = 10 is the length of the time-window. 
The following model transition probability matrix is used in the Interactive multiple 

model extended Kalman filtering (IMM-EKF) algorithm: � =

[

0.9 0.1
0.1 0.9

]

 with the prior 

model probabilities given by [1, 0]T.
Our simulations, which are performed for 100 Monte Carlo runs, are based on Python 

(3.9.7) implementations using an Intel(R) Core(TM) i7-10700 CPU.

4.2 � Fixed number of sensor selection

In this simulation, the optimization goal for the sensor selection is given as in Eq. (9) 
with ns = 3.

As shown in Fig. 3, the optimal subset of sensors online selected by the proposed algo-
rithm is reasonably, evenly distributed around the target. The tracking accuracy depends 
not only on the measurement precision but also on the position of the sensor nodes with 
relative to that of the target. In particular, when two sensor nodes and the target are in 
a straight line, the accuracy is the poorest. In the case shown in Fig. 3b where two of 
the nearest sensor nodes and the target are in the same line, the optimal CRLB-based 

Fig. 3  Optimal three sensors selected during tracking by the T-FoT approach
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selection is given by the three sensor nodes distributed around the target with insignifi-
cant measurement noise.

The root mean square errors (RMSEs) of both T-FoT and IMM-EKF trackers against 
time using either CRLB and random sensor selection algorithms are given in Fig. 4. The 
average RMSEs and computing times are given in Table 1. The results clearly show that 
the CRLB-based sensor selection algorithm performs better than the random sensor 
selection algorithm in terms of tracking accuracy, at the price of higher computational 
burden. Meanwhile, the performance of the T-FoT is better than that of the IMM-EKF 
when utilizing the CRLB selection algorithm but they perform similar in the case of ran-
dom sensor selection.

4.3 � Adaptive number of sensor selection

We now consider the case for activating as few sensor nodes as possible while still meet 
the CRLB threshold requirement, corresponding to (10), using the same group of sen-
sors as in the last simulation. To this end, a greedy algorithm is used to find the opti-
mal sensor subset: First, an optimal subset of ns sensors is selected as has been done in 
solving (9). If the corresponding CRLB exceeds Tlb , we increase gradually the number of 
sensors to be selected and to resolve (9) until the CRLB becomes lower than Tlb when 
the minimum, optimal sensor subset is obtained. This can be referred to as the adaptive 
number of sensor selection because the numbers of sensors to be selected are different 
at different times.

Here, we use the threshold Tlb = 5m2 . The RMSEs of both T-FoT and IMM-EKF 
trackers against time using CRLB (fixed number or adaptive number of sensors) 
or random sensor selection algorithms are given in Fig.  5. The number of sensors 
against time in the adaptive number of sensor selection using T-FoT approach in 

Fig. 4  RMSEs of different estimators against time

Table 1  Average Performance of Different Estimators

CRLB-based selection Random selection

T-FoT IMM-EKF T-FoT IMM-EKF

Average RMSE (m) 1.82 2.51 4.84 4.75

Average computing time (s) 0.23 0.24 0.07 0.09
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one Monte Carlo run and the average number of 100 Monte Carlo runs are given in 
Fig. 6. The average RMSEs and computing times for all methods are given in Table 2. 
These results show that: 

1	 The adaptive number of sensor selection outperforms the fixed number of sensor 
selection whether it is based on CRLB or random. In addition, the performance of 
the IMM-EKF method in tracking accuracy improves more significantly than the 
T-FoT method by using the adaptive number of sensor selection but is still under-
performed as compared with the T-FoT.

2	 The computing time used by the adaptive number of sensor selection does not rise 
significantly as compared to the fixed number of sensor selection.

3	 It is necessary to note that the average MSE of the T-FoT estimator is smaller than 
the CRLB threshold because the latter is based on the current information only while 
the T-FoT estimator utilizes all information in the time-window.

In summary, the proposed sensor selection approaches, using whether fixed num-
ber or adaptive number of sensors, perform well with the T-FoT approach despite 
the target maneuvering. Both the fixed and adaptive number of sensor selection 
approaches improve the tracking performance with acceptable computation cost.

Fig. 5  RMSEs of different estimators against time

Fig. 6  The number of sensors selected in adaptive number of sensor selection
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5 � Conclusion
In this paper, we consider the scenario for tracking a non-cooperative maneuvering 
target using a limited power and wireless-bandwidth network which consists of bear-
ing-only passive sensors.

Our approach integrates the T-FoT method into the POMDP framework and mini-
mizes the CRLB of the target localization mean error. We design two sensor selection 
strategies: one that selects a fixed number of sensors minimizes the CRLB to achieve 
satisfactory target tracking with the bandwidth constraint, and the other selects as 
few sensors as possible under a CRLB constraint. The simulation results confirm the 
effectiveness of the approach. A potential direction of our future work is to address 
the multi-target tracking problem.
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