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1  Introduction
Array signal processing plays an important role in many areas. However, the regular 
uniform linear array has many disadvantages, such like limited degree-of-freedom and 
redundant physical sensors, results in a confinement of its applications, e.g., direction-
of-arrival (DOA) estimation and beamforming. Traditional spectrum estimations algo-
rithms like multiple signal classification (MUSIC) algorithm have been widely applied 
in DoA estimations [1]. However, the number of sources that can be resolved with a 
uniform linear array is less than the number of sensors in the array while applying the 
MUSIC algorithm. Many researchers have been done regarding to the nonlinear sensor 
array, aiming at a lower mutual coupling and a higher degree-of-freedom.

The Minimum-redundancy linear array was first proposed in [2] in order to minimize 
the number of redundant spacings present in the array. Co-Prime array was introduced 
in [3] where a co-prime pair of M and N sensors achieves O(MN) freedoms which can be 
exploited in beamforming and in direction of arrival estimation. In [4], the authors pro-
posed nested arrays, which can achieve O(N 2) degree of freedom with N physical sensors. 
Nested array has then been widely studied. In [5], nested array is applied to increase the 
capacity of multi-cell cooperative cellular networks. In [6], the authors studied nested and 
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co-prime-based underwater non-uniform sensor array networks (UWSANs) for under-
water DOA estimation. In [7], the authors use 2D nested array deployment to accomplish 
channel estimation in massive multi-input multi-output (MIMO) scenario. DOA estima-
tion is also studied over multiple dimensional nonlinear arrays, for example, in [8–10]. 
However, most of the array structures have certain disadvantages, i.e., Minimum Redun-
dancy Array (MRA) has no closed-form expressions for its array geometry, Co-prime array 
has holes in its difference co-array, Nested array has higher mutual coupling than Co-prime 
array and MRA [4].

The concept of co-array is introduced in [11, 12] for incoherent and coherent imag-
ing and aperture synthesis techniques. And the concept of sum co-array and difference 
co-array is then implemented in array geometries [13], as the difference co-array forms 
naturally in computation of the covariance matrix of the received signal at the sensor 
array.

DOA estimation for quasi-stationary signals was studied in [14] where a Khatri–Rao 
(KR) subspace-based MUSIC algorithm was implemented on uniform linear array. The 
proposed KR-MUSIC algorithm works on Khatri–Rao subspace instead of array mani-
fold matrix and therefore, allows array with N sensors handles up to 2N − 2 sources. This 
approach could also be implemented to nonlinear array since a well-designed sparse array 
could form a larger difference co-array compared to the uniform linear array. The authors 
of [15] proposed a nonlinear beamformer called convolutional beamforming algorithm 
(COBA) in their research to form B-mode images which is used in commercial medi-
cal ultrasound systems. This convolutional beamformer based on the convolution of the 
delayed RF signals prior to summation and sparse array structure shows a better resolu-
tion and contrast compares to the traditional delay and sum (DAS) beamformer. How-
ever, the authors research focused on sum co-array perspective, since the beam pattern 
of the convolutional beamformer depends on the sum co-array rather than the physical 
array and amplitude apodization is applied on the sum co-array for suppressing side lobes 
[16].

In this paper, we studied the sparse convolutional array structure in perspective of dif-
ference co-array and the approaches in DOA estimation. The sparse convolutional array 
is demonstrated in both one-dimension and two-dimension. The main purpose of imple-
menting this array structure is to reduce the number of physical sensors. By adding a dense 
set of sensors on two sides of the sparse sensors, the proposed array shows improved res-
olution while reminds small number of physical sensors. The KR product-based MUSIC 
algorithm [14] is implemented for the proposed sensor array for DOA estimation. The 
spectrum was illustrated, and the root mean square error (RMSE) was simulated. We then 
extended this array to two-dimensional case.

The remainder of this chapter is organized as follows. In Sect. 2, we illustrate the Sparse 
Convolutional Array and the Extended Sparse Convolutional Array. The signal model based 
on difference co-array is discussed. In Sect. 3, we extend sparse convolutional array to two 
dimension. Numerical results and discussions are presented in Sect. 3. Finally, Sect.  4 con-
cludes the paper.
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2 � Methods
2.1 � Sparse convolutional array

2.1.1 � Basic array construction

Assume N is a non-prime integer, N = NANB where NA,NB ∈ N+ . A Sparse Convolu-
tional Array (NA,NB) can be present as the union of two sets of sensors:

while the sensors of UA and UB are located at

To further illustrate the sparse convolutional array, we first introduce the concept of dif-
ference co-array:

Definition 1  (Difference Co-array) Assume �vN is a sensor array with N sensors, its dif-
ference co-array is defined as the array with its sensors’ location given by

where �vn denotes the location of nth sensor of the original array. The elements of the 
difference co-array are not necessarily physical sensor, but still can benefit the DOA esti-
mation, as we will illustrate in later sections.

Figure  1 shows an example of the Sparse Convolutional Array of (3,  3) and the corre-
sponding difference co-array.

2.1.2 � Extended array construction

From Fig. 1, we can see that the regular sparse convolutional array has “hole” in its differ-
ence co-array. To perform a difference co-array that follows uniform linear array (ULA), we 
extend the sparse convolutional array as follow:

while

(1)U = UA ∪UB

(2)UA = {−(NA − 1), . . . , 0, . . . ,NA − 1},

(3)
UB = {−(NB − 1)NA, . . .− (NB − 1), 0,

(NB − 1), . . . , (NB − 1)NA},

(4)�vn − �vm, ∀m, n = 1, 2, . . . ,N .

(5)U = UA ∪ UB ∪ UC

(6)UA = {−(NA − 1), . . . , 0, . . . ,NA − 1},

(7)
UB = {−(NB − 1)NA, . . .− (NB − 1), 0,

(NB − 1), . . . , (NB − 1)NA},

(8)
UC = {−(N − 1), . . . ,−(N − NA),

N − NA, . . . ,N − 1}
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Figure 2 shows an example of an extended sparse convolutional array of (3, 3) and the 
corresponding difference co-array. We can see from the figure that its difference co-
array is a hole-free uniform linear array.
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Fig. 1  Sparse convolutional array of (3, 3)
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Fig. 2  Extended sparse convolutional array of (3, 3)
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For a physical sensor array, the number of virtual sensors in its difference co-array 
directly decides the distinct values of the cross-correlation terms in its received signal’s 
covariance matrix [4]. Therefore, we illustrate the number of virtual sensors in the differ-
ence co-array as follow.

Lemma 2.1  The difference co-array of an extended sparse convolutional array (NA,NB) 
is a uniform linear array of 4N − 3 virtual sensors where N = NANB.

1 � Proof
The leftmost virtual sensor is performed by the leftmost and rightmost sensors −(N − 1) 
and (N − 1) in UC , which is −2(N − 1) . Similarly, we have the rightmost virtual sensor 
which is 2(N − 1) . It is easy to obtain the elements between the leftmost and rightmost 
sensors are dense.

Therefore, the number of virtual sensors in the difference co-array can be calculated as

For example, in order to perform a uniform linear difference co-array of 33 virtual sen-
sors, an extended sparse convolutional array needs 13 physical sensors.�  �

2.1.3 � Signal model

In array signal processing, while calculating the autocorrelation matrix of the received 
signal, the difference co-array could be formed naturally [17].

Consider a sparse convolutional array U(NA,NB) with N = NANB sensors placed on a 
linear grid. The steering vector of this array is of size N × 1:

where di is the location of the ith sensor.
Assume M narrow-band sources are impinging on this array, the array manifold matrix 

is of size N ×M and can be written as follow:

where a(θj) is the steering vector corresponding to the direction θj from the jth source.
The received signal x[k] of the sensor array can then be formulated as

where s[k] = [s1(k), s2(k), . . . , sM(k)]T is the M × 1 source signal vector and n[k] is the 
additive white Gaussian noise with power σ 2

n .
Assume the sources are uncorrelated with each other, the autocorrelation matrix of 

s[k] is diagonal. Therefore, we have

(9)
Nvir = 2 ∗ [2(N − 1)] + 1

= 4N − 3

(10)a(θj) = [ej(2π/�)d1 sin θj , ej(2π/�)d2 sin θj , . . . , ej(2π/�)dN sin θj ]T

(11)A = [a(θ1), a(θ2), . . . , a(θM)]

(12)x[k] = As[k] + n[k]
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where {σ 2
j , j = 1, 2, . . . ,M} is the corresponding power of the jth source.

The autocorrelation matrix in (13) is then vectorized to perform the following vector

Adiff = A∗ ⊙ A is a (N ∗ N )×M matrix with ⊙ denotes the column-wise Khatri–Rao 
product [18], where the distinct columns of A∗ ⊙ A equal the Kronecker product of the 
corresponding columns of A∗ and A , that is

Hence, the element in the jth column of Adiff  is given by

(16) suggests that Adiff  could be treated as a manifold matrix of a new virtual array, with 
the sensors located at

We can obtain from the definition of difference co-array that this new sensor array is 
exactly the difference co-array of the original sparse convolutional array [12].

Hence, by comparing (14) with (12), we can say that vector z in (14) could be treated 
as the received signal at this new virtual array, where p = [σ 2

1 , σ
2
2 , . . . , σ

2
M]T is the corre-

sponding M × 1 source signal vector. The equivalent (N ∗ N )× 1 noise vector becomes 
σ 2
n

−→
1 n , where �1n = [eT1 , e

T
2 , . . . , e

T
N ]

T , with ei being a N × 1 vector which has 1 in its ith 
entry and 0 elsewhere.

Therefore, we can accomplish the DOA estimation to the data in (14) and work with 
the new virtual array instead of the original physical array. A Khatri–Rao product-based 
MUSIC algorithm can be applied to do so, as discussed in [14].

2.2 � 2D sparse convolutional array

2.2.1 � Array construction

Assume N is non-prime integer, N = NANB where NA,NB ∈ N+ . A 2− D Sparse Con-
volutional Array (NA,NB) can be present as follow,

(13)

Rxx = E xxH

= ARssA
H + σ 2

n I

= A

σ 2
1

σ 2
2

. . .

σ 2
M

AH + σ 2
n I

(14)

�z = vec(Rxx)

= vec





M
�

j=1

σ 2
j

�

a
�

θj
�

aH
�

θj
��



+ σ 2
n

−→
1 n

= Adiff p+ σ 2
n

−→
1 n

(15)a∗(θj)⊙ a(θj)

(16)
e−j(2π/�)dp sin θj ∗ ej(2π/�)dq sin θj = ej(2π/�)(dq−dp) sin θj ,

1 ≤ p, q ≤ N

(17){�vq − �vp,∀�vq , �vp ∈ U}
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while

+
Similarly, we have 2D extended sparse convolutional array:

while

Figure 3 shows an example of a 2D Extended Sparse Convolutional Array of (2, 3), and 
Fig. 4 shows the corresponding difference co-array.

The number of virtual sensors in the difference co-array for the 2D extended sparse 
convolutional array is illustrated as follow:

(18)U = UA ∪UB,

(19)UA = {(x, y), x, y ∈ {−(NA − 1), . . . , 0, . . . ,NA − 1}},

(20)
UB = {(x, y), x, y ∈{−(NB − 1)NA, . . .− (NB − 1),

0, (NB − 1), . . . , (NB − 1)NA}},

(21)U = UA ∪ UB ∪UC ,

(22)UA = {(x, y), x, y ∈ {−(NA − 1), . . . , 0, . . . ,NA − 1}},

(23)
UB = {(x, y), x, y ∈{−(NB − 1)NA, . . .− (NB − 1),

0, (NB − 1), . . . , (NB − 1)NA}},

(24)
UC = {(x, y), x, y ∈{−(N − 1), . . . ,−(N − NA),

N − NA, . . . ,N − 1}}
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Fig. 3  2D extended sparse conv array of (2, 3)
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Lemma 3.1  The difference co-array of a 2D Extended Sparse Convolutional Array con-
tains a uniform rectangular array of (4N − 2NA − 1)2 virtual sensors.

1 � Proof
It is obvious that the virtual sensors on the outline of the rectangular area are performed 
by the sensors on the outline of UB and UC . Hence, the outline of the rectangular area is 
x = ±(N − 1)+ (NB − 1)NA and y = ±(N − 1)+ (NB − 1)NA.

Therefore, the number of virtual sensors in the rectangular area can be calculated as

Notice that we ignored some virtual sensors out of the rectangular area to simplify the 
calculations. �

2.2.2 � Signal model

Similar to the signal model in 1D case, we can construct the signal model for 2D 
Extended sparse convolutional array.

Consider a 2D extended sparse convolutional array U(NA,NB).
Assume there are M uncorrelated narrow-band sources where (θj ,φj) denotes the 

direction of the jth source and σj denotes the corresponding power. The signal received 
at the sensor array can be formulated as follow:

(25)

Nvir = (2 ∗ [(N − 1)+ (NB − 1)NA] + 1)2

= (2 ∗ [N − 1+ NBNA − NA] + 1)2

= (2 ∗ [N − 1+ N − NA] + 1)2

= (4N − 2NA − 1)2
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Fig. 4  Difference co-array of the (2, 3) 2D extended sparse conv array
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where s[k] = [s1(k), s2(k), . . . , sM(k)]T is the M × 1 source signal vector and n[k] is the 
additive white Gaussian noise with power σ 2

n  . AUA,AUB,AUC are the corresponding array 
manifold matrix for UA , UB and UC , and the entries of A are given by

where xi, yi is the coordinate of the ith sensor.
Similarly, the sources are assumed to be uncorrelated with each other, the autocorrelation 

matrix of s[k] is then diagonal, we have

Similar to the signal model of the 1D array, by vectorizing the autocorrelation matrix 
Rxx , the “received” signal of the virtual sensor array can be formulated as:

where

is the array manifold matrix of the new virtual array, whose sensors coordinate is given 
by

Similarly, vector z in (29) could be treated as the received signal at this new virtual array. 
p = [σ 2

1 , σ
2
2 , . . . , σ

2
M]T is the corresponding M × 1 source signal vector and σ 2

n

−→
1 n is the 

corresponding noise vector.
Hence, by implementing MUSIC algorithm, the 2D DOA could be estimated.

(26)

x[k] = As[k] + n[k]

A =





AUA

AUB

AUC





(27)
[A]i,j = ej(2π/�) sin φj[cos θj sin θj][xiyi]

T

(xi, yi) ∈ U

(28)

Rxx = E
�

xxH
�

= ARssA
H + σ 2

n I

= A











σ 2
1

σ 2
2

. . .

σ 2
M











AH + σ 2
n I

(29)
z = vec(Rxx)

= Adiff p+ σ 2
n1n

(30)

Adiff = A∗ ⊙ A

=





AUA

AUB

AUC





∗

⊙





AUA

AUB

AUC





(31){(xp − xq , yp − yq),∀(xp, yp), (xq , yq) ∈ U}
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3 � Numerical results
3.1 � Sparse convolutional array

According to the proposed signal model, we then performed Monte Carlo simulations 
on different sensor arrays. An extended Sparse Convolutional Array (3, 3) as shown in 
Fig. 2 and a Sparse Convolutional Array (3, 5) are constructed so that the total number 
of the physical sensors are identical. As a comparison, a nested array is performed, as 
illustrated in [4]. A uniform linear array is also constructed and simulated as a base-
line. Both sensor arrays have 13 physical sensors in their grid. The sources are located at 
[−45,−27,−9, 18, 36, 54]degrees , while the SNR = 0dB , and the number of snapshots is 
500.

Figure 5 shows the MUSIC spectrum of the extended sparse convolutional array and 
sparse convolutional array versus the nested array and uniform linear array. We can 
obtain from the figure that both four sensor arrays are able to indicate the 6 sources. The 
uniform linear array has the highest normalized spectrum in dB, meanwhile the sparse 
convolutional array performs closely to the nested array, and both arrays have lower 
spectrum compared to the uniform linear array. The proposed extended sparse convolu-
tional array shows the lowest spectrum compared to all the other three arrays.

In order to demonstrate the proposed array’s ability of detecting closely spaced 
sources, we then performed the simulation of two pairs of closely placed sources which 
locate at [−42.3,−39.6, 27.9, 30.6] degrees. And the MUSIC spectrum of the four arrays 
is plotted in Fig. 6. The result shows that while ULA failed to resolve the two pairs of 
closely spaced sources, both Nested Array and the two proposed arrays can success-
fully distinguish the four sources. The performance of the proposed sparse convolutional 
array and nested array is very close. And the extended sparse convolutional array again 
shows its lower spectrum compared to the Nested Array.

In the next simulations, we evaluated the performance over various SNR and number 
of snapshots in terms of RMSE. Since the Extended Sparse Convolutional Array shows 
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a stably better performance than the Sparse Convolutional Array, only Extended Sparse 
Convolutional Array is considered in the following simulation. The extended sparse con-
volutional array, nested array and uniform linear array are constructed. Both arrays have 
13 physical sensors in their grid, and 8 sources are generated with random locations.

Figure  7 shows the RMSE versus number of snapshots, while SNR = 0 dB. We can 
obtain from the figure that the RMSE drops for both arrays as the number of snapshots 
increases, since a larger number of snapshots gives a better approximation of the signal 
covariance matrix. While the uniform linear array has the highest RMSE in all snapshots 
range, the proposed extended sparse convolutional array shows its strictly lower RMSE 
compared to the nested array.
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Fig. 6  MUSIC spectrum of the three arrays with closely spaced sources, SNR = 0 dB, snapshots = 500
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In Fig.  8, the RMSE is plotted versus SNR, while snapshots = 500. The simulation 
result shows that the RMSE drops for both arrays as the SNR increases, which is as 
expected. The RMSE of the proposed Extended Sparse Convolutional Array is slightly 
lower than the RMSE of the nested array, and both two arrays show much better perfor-
mance than the uniform linear array.

Therefore, we can conclude that the proposed Extended Sparse Convolutional Array 
has better performance compared to the nested array and the uniform linear array.

3.2 � 2D sparse convolutional array

We then demonstrated the 2D MUSIC spectrum of the 2D extended sparse convolu-
tional array. With a (2,  3) configuration, the array has 45 physical sensors. 10 sources 
were generated with random azimuth and elevation angles, while the SNR = 10 dB, and 
number of snapshots is 1000. The 2D MUSIC spectrum of the 2D extended sparse con-
volutional array is plotted in Fig. 9.

The next simulations consider the performance over various SNR for 2D Extended 
Sparse Convolutional Array. As a comparison, a 2D nested array is constructed, which 
has 9 sensors in its dense array and 34 sensors in the sparse array, raise a total of 43 
physical sensors.

In Fig. 10, the RMSE is plotted versus SNR. As the SNR increases, the RMSE drops for 
both arrays decrease. And the RMSE of the proposed 2D extended sparse convolutional 
array is strictly lower than the 2D nested array, raise.

4 � Conclusion and discussion
In this paper, we have illustrated the Sparse Convolutional Array from the difference 
co-array point of view. The proposed Sparse Convolutional Array is a union of three 
groups of physical sensors. We first illustrated the 1D sparse convolutional array and 
extended sparse convolutional array. By adding sensors on two sides instead of the 
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center, the proposed array shows improved performance while reminds few physical 
sensors. The signal model has been illustrated, and the simulation results of DOA esti-
mation are provided with MUSIC algorithm implemented. The results indicate that 
the proposed Sparse Convolutional Array can successfully detect the sources, even 
when the sources are placed at a close distance. The proposed sensor array shows bet-
ter performance in terms of RMSE compared to Nested Array and Uniform Linear 
Array. We then introduced the structure of 2D extended sparse convolutional array 
and its signal mode. The 2D MUSIC spectrum was demonstrated, and the RMSE is 
simulated and compared.

As for the future work, mutual coupling is considered to be demonstrated since 
it reflects the electromagnetic interaction between the sensors in an array. Mutual 

Fig. 9  2D MUSIC spectrum of the extended sparse conv array (2, 3), SNR = 10 dB, snapshots = 1000
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Fig. 10  RMSE versus SNR for 2D DOA estimation, snapshots = 1000
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coupling changes the current magnitude, phase, and distribution on each sensor ele-
ments from their free-space value [19].

Many researchers have been done regarding to the modeling of mutual coupling, 
for example [20–22]. In [21], the author shows that with a proper mutual coupling 
model, the performance could be improved. In the proposed Extended Sparse Con-
volutional Array, the physical sensors are more distributed. Hence, we are expecting 
a more obvious improvement compared to the uniform linear array or nested array.
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