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Abstract 

Rank-constrained spatial covariance matrix estimation (RCSCME) is a blind speech 
extraction method utilized under the condition that one-directional target speech and 
diffuse background noise are mixed. In this paper, we propose a new model extension 
of RCSCME. RCSCME simultaneously conducts both the deficient rank-1 component 
complementation of the diffuse noise spatial covariance matrix, which is incompletely 
estimated by preprocessing methods such as independent low-rank matrix analysis, 
and the estimation of the source model parameters. In the conventional RCSCME, 
between the two parameters constituting the deficient rank-1 component, only the 
scale is estimated, whereas the other parameter, the deficient basis, is fixed in advance; 
however, how to choose the fixed deficient basis is not unique. In the proposed 
RCSCME model, we also regard the deficient basis as a parameter to estimate. As the 
generative model of an observed signal, we utilized the super-Gaussian generalized 
Gaussian distribution, which achieves better separation performance than the Gauss-
ian distribution in the conventional RCSCME. Assuming the model, we derive new 
majorization-minimization (MM)- and majorization-equalization (ME)-algorithm-based 
update rules for the deficient basis. In particular, among innumerable ME-algorithm-
based update rules, we successfully find an ME-algorithm-based update rule with a 
mathematical proof supporting the fact that the step of the update rule is larger than 
that of the MM-algorithm-based update rule. We confirm that the proposed method 
outperforms conventional methods under several simulated noise conditions and a 
real noise condition.
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1 Introduction
Blind speech extraction (BSE) is a technique of extracting a target speech signal from 
observed noisy mixture signals without any prior information, e.g., spatial locations of 
the target speech, noise sources, or microphones. BSE can be interpreted as a particu-
lar case of blind source separation (BSS) [1]; BSS is a more widely applicable technique 
that separates not only the target source but also other sources. We focus on the BSE 
problem for the special case that an observed noisy mixture consists of directional target 
speech and diffuse background noise. BSE methods can be utilized for many applica-
tions, e.g., hearing aid systems and automatic speech recognition [2, 3].

For a determined or overdetermined case (number of microphones ≥ number of point 
sources), high-performance BSS methods such as frequency-domain independent com-
ponent analysis (FDICA)  [4–6], independent vector analysis [7, 8], and independent 
low-rank matrix analysis (ILRMA) [9–11] have been proposed. These methods assume 
that the frequency-wise acoustic path from each source to microphones can be modeled 
by a single time-invariant vector parameter, which is called the steering vector. In this 
model, the rank of a spatial covariance matrix (SCM) [12] becomes unity. Thus, hereaf-
ter, we call these BSS methods rank-1 methods. Under diffuse noise conditions, a direc-
tional target source cannot be cleanly separated by rank-1 methods in principle [2], and 
it is contaminated with a diffuse noise component remaining in the same direction. This 
is because steering vectors are not suitable for representing the nondirectional noise 
transmission.

As opposed to rank-1 methods, multichannel nonnegative matrix factorization 
(MNMF) [13–15] can represent nondirectional sources because MNMF utilizes a full-
rank SCM of each source. However, the estimation of the full-rank SCM has a huge 
computational cost and lacks robustness against the parameter initialization [9]. Hence, 
FastMNMF [16–18], which is a BSS method whose spatial model is more severely con-
strained than that of MNMF, has been proposed and achieves efficient optimization with 
lower computational cost. However, its BSS performance still depends on the parameter 
initialization. Since SCMs are assumed to be full-rank matrices in these models, we call 
these BSS methods full-rank methods.

To overcome the lack of representation ability of rank-1 methods and of robustness 
of full-rank methods, rank-constrained SCM estimation (RCSCME) [19] has been pro-
posed, which explicitly models a mixture of directional target speech and diffuse back-
ground noise. Figure 1 shows the process flow of RCSCME. First, a rank-1 method such 
as ILRMA is utilized as a preprocess of RCSCME. From the rank-1 method, M sepa-
rated signals are obtained; one includes target speech components contaminated with 

Fig. 1 Process flow of RCSCME
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diffuse noise in the same direction and the other M − 1 signals consist of the only diffuse 
noise components in other directions [2], where M is the number of microphones. From 
these signals, useful spatial parameters, i.e., the steering vector of the directional speech 
and the rank-(M − 1 ) component of the full-rank SCM of diffuse noise, are calculated. 
Subsequently, in the main part of RCSCME, both the deficient rank-1 component of 
the noise SCM and the source model parameters are estimated. Finally, the clean tar-
get speech signal can be obtained via multichannel Wiener filtering (MWF) constructed 
using the estimated spatial and source model parameters. Regarding speech extraction 
performance, it has been confirmed that RCSCME can outperform the above rank-1 
methods [19]. Since the estimation of the deficient rank-1 component is valid and the 
number of parameters to estimate in RCSCME is much smaller than that in conven-
tional full-rank methods, RCSCME also achieves better speech extraction performance 
than conventional full-rank methods.

In this work, we extend the spatial model of the conventional RCSCME. In the conven-
tional RCSCME, the deficient rank-1 component of the diffuse noise SCM is represented 
by the scalar � ∈ R+ and the direction vector b ∈ C

M as �bbH . For explanation, we refer 
to � and b as the scale and the deficient basis of the deficient component, respectively. In 
the conventional RCSCME, the deficient basis b is fixed and only the scale � is estimated. 
However, this deficient basis is not unique; any vector outside the space spanned by col-
umn vectors of the rank-(M − 1 ) SCM is a possible candidate of the deficient basis. In 
the proposed method, we parameterize not only the scale but also the deficient basis 
itself to estimate the optimal full-rank noise SCM.

In many BSS methods, super-Gaussian distributions are often used as the generative 
model of an observed signal. For example, ILRMA based on the complex generalized 
Gaussian distribution (GGD) or the complex Student’s t distribution  [10, 11], MNMF 
based on the multivariate complex Student’s t distribution [15], and FastMNMF based 
on the multivariate complex Student’s t distribution  [18] have been proposed. The 
complex GGD and the complex Student’s t distribution are generalized versions of the 
complex Gaussian distribution and can represent many types of source. In the conven-
tional RCSCME, the multivariate complex GGD is utilized as the generative model of 
the observed signal and the super-Gaussian multivariate complex GGD achieves bet-
ter separation performance than the Gaussian distribution [19]. Then, in the proposed 
RCSCME model, we also use the super-Gaussian multivariate complex GGD as in the 
conventional RCSCME.

Assuming the GGD model, we derive new update rules of the deficient basis using 
auxiliary function techniques [20, 21] for the estimation. The proposed method is inter-
preted as the world’s first spatial model extension of the conventional RCSCME; this 
extension had been considered as a difficult vector optimization problem, but we solve 
the problem with two types of auxiliary function technique, namely, the majorization-
minimization (MM) algorithm [20] and majorization-equalization (ME) algorithm [21]. 
Whereas ME-algorithm-based update rules of scalar parameters are unique in many 
cases, those of vector parameters are innumerable. We find an ME-algorithm-based 
update rule of the deficient component. Additionally, we can successfully provide a 
mathematical proof supporting the fact that change in each target variable of the update 
rule is always larger than that of the MM-algorithm-based update rule. To the best of 
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our knowledge, regarding the scope of BSE methods, there has been no ME-algorithm-
based vector variable update rule that has such a proof. The proof is the mathematical 
contribution of this paper.

The rest of this paper is organized as follows. In Sect.  2, we explain auxiliary func-
tion techniques and the conventional RCSCME. In Sect. 3, we propose a new model and 
derive MM- and ME-algorithm-based update rules. Additionally, we provide the proof 
supporting the advantage of the proposed ME-algorithm-based update rule over the 
proposed MM-algorithm-based update rule. In Sect. 4, we show the results of the exper-
iments under simulated and real noise conditions. Finally, conclusions are presented in 
Sect. 5. Note that this paper is partially based on an international conference paper [22] 
we wrote. The major new contribution of this paper is that, whereas we derive an EM-
algorithm-based update rule with the generative model using the multivariate complex 
Gaussian distribution in [22], we derive other MM- and ME-algorithm-based update 
rules with the generative model using the GGD because it is difficult to apply the EM 
algorithm to the GGD. Furthermore, in this paper, we provide a new mathematical proof 
supporting the fact that the step of the ME-algorithm-based update rule is always larger 
than that of the MM-algorithm-based update rule. We also present experiments con-
ducted not only under simulated noise conditions but also a real noise condition.

2  Conventional RCSCME
2.1  Auxiliary function technique [20, 21]

In this section, we describe auxiliary function techniques, which are iterative optimi-
zation algorithms utilized in many BSS methods including the conventional RCSCME. 
Auxiliary function techniques are often used for the optimization problems that are dif-
ficult to solved directly.

We explain two types of auxiliary function technique, namely, the MM algorithm [20] 
and the ME algorithm [21]. Let � be a set of parameters of the objective function F  and 
consider the optimization problem min�F(�) . This technique uses the auxiliary func-
tion FU(�,�) that satisfies the following conditions: 

 (I) It holds that F(�) ≤ FU(�,�) for any � and �.
 (II) For any � , there exists � such that F(�) = FU(�,�) holds.

Here, � is the set of auxiliary variables. Instead of the direct optimization of the objec-
tive function F(�) , � and � in the auxiliary function FU(�,�) are alternatively updated 
as follows. First, FU is minimized with respect to � as

where �(l) and �(l) are the sets of parameters and auxiliary variables after the lth itera-
tion, respectively. (1) is equivalent to the update to the set of auxiliary variables that sat-
isfy condition (II). Second, in the MM algorithm, � is updated as

(1)�(l+1) ← arg min
�

F
U(�(l),�),

(2)�(l+1) ← arg min
�

F
U(�,�(l+1)).
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On the other hand, in the ME algorithm, we discover a set of parameters �̃( �= �(l)) that 
satisfies

and instead of (2), � is updated as

The common advantage of the MM and ME algorithms is that the update rules guaran-
tee a monotonic nonincrease in the objective function [20, 21]. In many cases, we design 
the auxiliary function to be convex for each variable. In such cases, for scalar variables, 
the ME-algorithm-based update rule is unique and always takes a larger step in the vari-
able for each iteration than the MM-algorithm-based update rule, and the convergence 
of the ME algorithm is experimentally confirmed to be faster than that of the MM algo-
rithm  [21]. Note that if we design the nonconvex auxiliary function, the above-men-
tioned advantage is not always guaranteed.

2.2  Generative model and update rules of RCSCME [19]

In this section, we explain the conventional RCSCME. Let xij ∈ C
M be the observed 

M-channel vector obtained by a short-time Fourier transform (STFT), where 
i = 1, 2, . . . , I  and j = 1, 2, . . . , J  are the indices of frequency bins and time frames, 
respectively. The generative model of the observed signal xij is defined using the zero-
mean circularly symmetric multivariate GGD [11, 23] as

where 0 ∈ C
M is the zero vector, ρ ∈ R+ is the shape parameter of the GGD, 

R
(x)
ij ∈ C

M×M is the full-rank SCM of the observed signal, Ŵ(·) is the gamma function, 
and H denotes the Hermitian transpose. The GGD can have the properties of Gaussian 
( ρ = 2 ), super-Gaussian ( ρ < 2 ), and sub-Gaussian ( ρ > 2 ). In particular, we discuss the 
Gaussian and super-Gaussian cases (ρ ≤ 2) . The SCM of the observed signal R(x)

ij  is mod-
eled as the sum of the SCM of the directional target speech and that of diffuse noise as

where r(t)ij , r
(n)
ij ∈ R+ are the time-variant variances of the directional target speech and 

diffuse noise, respectively, a(t)i ∈ C
M is the steering vector of the target speech, i.e., 

the nt th vector among the steering vectors ai,1, . . . ,ai,M obtained by the preprocessing 
rank-1 method, with nt being the index of the directional target speech, and R(n)

i  is the 
full-rank SCM of diffuse noise.

For the directional target speech, since the power spectrogram of the speech signal 
has the property of sparsity, we assume that r(t)ij  follows the inverse gamma distribu-
tion as the prior:

(3)F
U(�̃,�(l+1)) = F

U(�(l),�(l+1)),

(4)�(l+1) ← �̃.

(5)p(xij; 0,R(x)
ij , ρ) =

Ŵ(1+M) exp −(xHij (R
(x)
ij )−1

xij)
ρ
2

πMŴ(1+ 2M
ρ
)detR

(x)
ij

,

(6)R
(x)
ij = r

(t)
ij a

(t)
i (a

(t)
i )H + r

(n)
ij R

(n)
i ,
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where α ∈ R+ is the shape parameter, and β ∈ R+ is the scale parameter. On the other 
hand, the full-rank SCM of diffuse noise R(n)

i  is modeled as

where R′(n)
i ∈ C

M×M is the rank-(M − 1) SCM calculated by the rank-1 method in 
advance as

Here, wi,m is the demixing filter estimated by the rank-1 method, ŷ(n)ij  is the sum of dif-
fuse noise components whose scales are modified by a projection-back operation [24], 
and T denotes the transpose. bi ∈ C

M in (8) is the deficient basis, which is introduced to 
make the SCM R(n)

i  full-rank, and �i ∈ R+ represents the scale of the deficient compo-
nent. In the conventional RCSCME, the deficient basis bi is fixed and only the scale �i 
is estimated. One possible candidate of the fixed vector bi is an eigenvector of the zero 
eigenvalue in R′(n)

i .
In the conventional RCSCME [19], the parameters �c = {r(t)ij , r

(n)
ij , �i} are estimated using 

maximum a posteriori estimation. The cost function is the following negative log posterior:

where const. includes the terms independent of �c.
The parameters are estimated by designing an auxiliary function of L and optimizing the 

auxiliary function as written in [19]. For the Gaussian or super-Gaussian case (ρ ≤ 2) , the 
update rules are derived as

(7)p(r
(t)
ij ;α,β) = βα

Ŵ(α)
(r

(t)
ij )−α−1 exp

(

− β

r
(t)
ij

)

,

(8)R
(n)
i = R

′(n)
i + �ibib

H
i ,

(9)R
′(n)
i = 1

J

∑

j

ŷ
(n)
ij (ŷ

(n)
ij )H,

(10)ŷ
(n)
ij = W

−1
i (wH

i,1xij , . . . ,w
H
i,nt−1xij , 0,w

H
i,nt+1xij , . . . ,w

H
i,Mxij)

T,

(11)Wi = (wi,1, . . . ,wi,m, . . . ,wi,M)H.

(12)

L(�c) =
∑

i,j

[

(xHij (R
(x)
ij )−1

xij)
ρ
2 + log detR

(x)
ij

+ (α + 1) log r
(t)
ij + β

r
(t)
ij

]

+ const.,

(13)r
(t)
ij ← r

(t)
ij







κij|xHij (R
(x)
ij )−1a

(t)
i |2 + β

(r
(t)
ij )2

(a
(t)
i )H(R

(x)
ij )−1a

(t)
i + α+1

r
(t)
ij







q

,

(14)r
(n)
ij ← r

(n)
ij

(

κijx
H
ij (R

(x)
ij )−1

R
(n)
i (R

(x)
ij )−1xij

tr((R
(x)
ij )−1R

(n)
i )

)q

,
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where q equals 1/2 for the MM-algorithm-based update rules and 1 for the ME-algo-
rithm-based update rules, and

It can be seen from (13)–(15) that the ME-algorithm-based update rules take larger 
steps in each iteration than the MM-algorithm-based update rules because q is larger in 
the ME-algorithm-based update rules than in the MM-algorithm-based update rules. It 
is experimentally confirmed in [19] that the ME-algorithm-based update rules achieve 
faster convergence than the MM-algorithm-based update rules.

3  Proposed basis‑optimizing RCSCME
3.1  Motivation

In the conventional RCSCME, for spatial parameters, the deficient basis bi is fixed and 
only the scale �i is estimated. However, how to choose the fixed deficient basis is not 
unique because the possible candidate of the deficient basis is any complex vector that is 
not included in the (M − 1)-dimensional hyperplane spanned by column vectors of R′(n)

i  . 
In this work, we propose a new optimization scheme of RCSCME, the basis-optimizing 
RCSCME, whereas we call the conventional RCSCME the fixed-basis RCSCME. The the-
oretical assumptions of the proposed basis-optimizing RCSCME are the same as that of 
the fixed-basis RCSCME and are as follows [19]:

• Target speech source
• spatial assumption: one point source
• statistical assumption: a sparse power spectrogram

• Noise
• spatial assumption: diffuse source

These assumptions are valid in many acoustic applications such as hearing aid systems 
and automatic speech recognition [2, 3]. The proposed basis-optimizing RCSCME esti-
mates not only the scale but also the deficient basis itself. From the scale ambiguity 
between the scale and the deficient basis, it is natural for the propos6ed basis-optimizing 
RCSCME to parameterize the deficient basis and the scale with one variable simultane-
ously as

where ci ∈ C
M is the vector parameter that represents the deficient component in 

R
′(n)
i  . That is, we regard 

√
�ibi in the fixed-basis RCSCME as ci in the basis-optimizing 

RCSCME. We model r(t)ij  and r(n)ij  in the same manner as in the conventional fixed-basis 
RCSCME.

(15)�i ← �i

(
∑

j κijr
(n)
ij |bHi (R

(x)
ij )−1xij|2

∑

j r
(n)
ij bHi (R

(x)
ij )−1bi

)q

,

(16)κij =
ρ

2(xHij (R
(x)
ij )−1xij)

1− ρ
2

.

(17)R
(n)
i = R

′(n)
i + cic

H
i ,
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We apply the MM and ME algorithms to the estimation of the deficient basis. To derive 
MM-algorithm-based update rules, there remains a difficult vector optimization prob-
lem to minimize the auxiliary function. In addition, applying the ME algorithm to the 
vector parameter has a difficulty different from the case of applying the MM algorithm; 
the possible candidates of the ME-algorithm-based update rule of a vector parameter are 
innumerable because the problem finding an ME-algorithm-based update rule has only 
one equation but M variables. There can be ME-algorithm-based update rules whose 
steps are unfortunately smaller than the step of the MM-algorithm-based update rule, 
i.e., such an inappropriate ME algorithm updates the parameters only around the neigh-
borhoods of the pre-update vector parameter, which result in slow convergence. In this 
paper, we find a specific ME-algorithm-based update rule of the deficient component 
and provide a mathematical proof supporting the fact that the step of the update rule is 
always larger than that of the MM-algorithm-based update rule.

3.2  Design of auxiliary function and derivation of MM‑algorithm‑based update rule 

for deficient component

In the proposed basis-optimizing RCSCME, we estimate �p = {r(t)ij , r
(n)
ij , ci} . The nega-

tive log posterior L(�p) is the same formula as (12), where it is notable that R(n)
i  in R(x)

ij  is 
expressed as (17) in the proposed basis-optimizing RCSCME, whereas that is expressed 
as (8) in the conventional fixed-basis RCSCME.

Using the inequalities that are proposed in [19] and hold in the Gaussian and super-
Gaussian cases (ρ ≤ 2) , we can design the following auxiliary function LU (see “Appen-
dix” for detail derivation):

where ui ∈ C
M is an eigenvector of the zero eigenvalue in R′(n)

i  , and R̆(n)
i  is the matrix 

defined as

with (R′(n)
i )+ being the Moore–Penrose inverse matrix of R′(n)

i  , E ∈ R
M×M is the identity 

matrix, �p = {�(t)
ij ,�

(n)
ij ,� ij , ιij , ζij} is the set of auxiliary variables, �(t)

ij ,�
(n)
ij ∈ C

M×M 
are matrices that satisfy �(t)

ij +�
(n)
ij = xijx

H
ij /�xij�2 , � ij ∈ C

M×M is a positive semidefi-
nite matrix, and ιij , ζij ∈ R are positive. The equality of (18) holds if and only if

(18)

L(�p) ≤
�

i,j





ρ

2ι
1− ρ

2
ij

�

|(a(t)i )H�
(t)
ij xij|2

r
(t)
ij �a(t)i �4

+
|uH

i �
(n)
ij xij|2

r
(n)
ij |uH

i ci|2

+
x
H
ij (�

(n)
ij )HR̆

(n)
i �

(n)
ij xij

r
(n)
ij

�

+
�

1− ρ

2

�

ι
ρ
2
ij

+tr(�−1
ij R

(x)
ij )+ log det� ij −M

+(α + 1)
r
(t)
ij

ζij
+ (α + 1)(log ζij − 1)+ β

r
(t)
ij

�

=: LU(�p,�p),

(19)R̆
(n)
i :=

(

E− uic
H
i

cHi ui

)

(R
′(n)
i )+

(

E− ciu
H
i

uH
i ci

)

,
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Note that whereas �a(t)i � = 1 and bHi ui = 1 are assumed in [19] for simplifying the der-
ivation of the update rules, we remove these restrictions and recalculate the auxiliary 
function. Thus, if we replace ‖a(t)i ‖ with 1 and ci with 

√
�ibi and assume bHi ui = 1 , LU 

coincides with the auxiliary function written in [19].
By minimizing the auxiliary function LU with respect to �p , we derive MM-algorithm-

based update rules. We describe in detail the derivation of the update rule of ci since 
the MM-algorithm-based update rules of r(t)ij  and r(n)ij  are the same as those in the con-
ventional fixed-basis RCSCME. We try to obtain the update rule of ci by finding the sta-
tionary point of LU for ci . However, the analytical calculation of the stationary point is 
difficult because the term ciuH

i /u
H
i ci in (19) has ci in both the numerator and the denom-

inator. By paying attention to the invariance of the term ciuH
i /u

H
i ci for the scale of ci , we 

again resolve ci into the scalar �i and the vector bi as ci =
√
�ibi and restrict the vector 

bi to the hyperplane bHi ui = 11. Then, the optimization problem of ci can be reconsid-
ered as the optimization of �i and bi . That is, �p is redefined as �p = {r(t)ij , r

(n)
ij , �i, bi} ; 

bi is also variable in this paper while only �c = {r(t)ij , r
(n)
ij , �i} is the set of variables in the 

conventional fixed-basis RCSCME. We focus on the derivation of the update rule for bi 
because the derivation for �i is the same as that in the conventional fixed-basis RCSCME 
when the other parameters r(t)ij  , r(n)ij  , and bi are fixed. Using ciuH

i /u
H
i ci = biu

H
i  , we simply 

express LU as

where const. includes the terms independent of bi , and

(20)�
(t)
ij = r

(t)
ij a

(t)
i (a

(t)
i )H(R

(x)
ij )−1

xijx
H
ij

�xij�2
,

(21)�
(n)
ij = r

(n)
ij R

(n)
i (R

(x)
ij )−1

xijx
H
ij

�xij�2
,

(22)� ij = R
(x)
ij ,

(23)

ιij =
|(a(t)i )H�

(t)
ij xij|2

r
(t)
ij �a(t)i �4

+
|uH

i �
(n)
ij xij|2

r
(n)
ij |uH

i ci|2

+
xHij (�

(n)
ij )HR̆

(n)
i �

(n)
ij xij

r
(n)
ij

,

(24)ζij = r
(t)
ij .

(25)
L
U =

∑

i

[

bHi Gibi − hHi bi − bHi hi
]

+ const.

s.t. bHi ui = 1,

1 In [19], the restriction bH
i
ui = 1 is introduced for simplifying the derivation of the update rules. In this paper, this 

restriction is necessary for obtaining the stationary point of the auxiliary function as a closed-form solution.
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For optimizing (25), we can use the method of Lagrange multipliers. The Lagrangian is 
defined as

where ηi is the Lagrangian multiplier and η∗ denotes the complex conjugate of η . From 
∂LL/∂b∗i = 0 and ∂LL/∂η∗i = 0 , we have

By solving (29) and (30), we derive the MM-algorithm-based update rule of bi as

The update rules of all parameters other than bi can be obtained in the same manner 
as those in the conventional fixed-basis RCSCME. By substituting (20)–(24) in (31) 
and rearranging the formula, we can obtain the MM-algorithm-based update rules as 
follows:

(26)
Gi =

∑

j

[

ρ

2ι
1− ρ

2
ij

|uH
i �

(n)
ij xij|2

r
(n)
ij

(R
′(n)
i )+

+ �ir
(n)
ij �

−1
ij

]

,

(27)hi = (R
′(n)
i )+

∑

j

ρ

2ι
1− ρ

2
ij

�
(n)
ij xijx

H
ij (�

(n)
ij )H

r
(n)
ij

ui.

(28)L
L = L

U +
∑

i

(

ηi(b
H
i ui − 1)+ η∗i (u

H
i bi − 1)

)

,

(29)Gibi − hi + ηiui = 0,

(30)uH
i bi − 1 = 0.

(31)b
(MM)
i = G

−1
i hi −

uH
i G

−1
i hi − 1

uH
i G

−1
i ui

G
−1
i ui.

(32)r
(t)
ij ← r

(t)
ij

√

√

√

√

√

√

κij|(a(t)i )H(R
(x)
ij )−1xij|2 + β

(r
(t)
ij )2

(a
(t)
i )H(R

(x)
ij )−1a

(t)
i + α+1

r
(t)
ij

,

(33)r
(n)
ij ← r

(n)
ij

√

√

√

√

κijx
H
ij (R

(x)
ij )−1R

(n)
i (R

(x)
ij )−1xij

tr((R
(x)
ij )−1R

(n)
i )

,

(34)�i ← �i

√

√

√

√

∑

j κijr
(n)
ij |bHi (R

(x)
ij )−1xij|2

∑

j r
(n)
ij bHi (R

(x)
ij )−1bi

,

(35)bi ← (R
′(n)
i �i + µiE)

−1(R
′(n)
i ϒ i + µiE)bi,
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where

3.3  ME‑algorithm‑based update rule of deficient component

We focus on the derivation of the ME-algorithm-based update rule for bi because the 
derivation for �i is the same as that in the conventional fixed-basis RCSCME when 
the other parameters r(t)ij  , r(n)ij  and bi are fixed. We use the same auxiliary function and 
restriction on parameters as in Sect. 3.2.

We heuristically discover the vector b(ME)
i ∈ C

M as one of the innumerable possible 
candidates of the ME-algorithm-based update rule of bi:

where b̃i ∈ C
M is the pre-update vector of bi , and b(ME)

i  satisfies (b(ME)
i )Hui = 1 because 

b̃
H

i ui = 1 and (b(MM)
i )Hui = 1 . First, we present Claim 1 guaranteeing that bi ← b

(ME)
i  is 

an ME-algorithm-based update rule. That is, b(ME)
i  provides the same value of the auxil-

iary function as the pre-update vector.

Claim 1 We define the function LU
i  as

Then, the following equation holds:

Proof First, LU
i  is deformed as

Then, by using the definition of b(ME)
i  , we can calculate the following:

(36)κij =
ρ

2(xHij (R
(x)
ij )−1xij)

1− ρ
2

,

(37)�i =
∑

j

r
(n)
ij (R

(x)
ij )−1,

(38)ϒ i =
∑

j

κijr
(n)
ij (R

(x)
ij )−1xijx

H
ij (R

(x)
ij )−1,

(39)µi = �ib
H
i ϒ ibi.

(40)b
(ME)
i := 2b

(MM)
i − b̃i,

(41)L
U
i (bi) := bHi Gibi − hHi bi − bHi hi.

(42)L
U
i (b

(ME)
i ) = L

U
i (b̃i).

(43)
L
U
i (bi) = (bi − b

(MM)
i )HGi(bi − b

(MM)
i )

+ |1− uH
i G

−1
i hi|2

uH
i G

−1
i ui

− hHi G
−1
i hi.
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 □

Next, we present Claim  2 supporting the fact that the step of the ME-algorithm-
based update rule is always larger in some sense (sense of the LogDet divergence [25] 
between the pre/post-update noise SCMs) than that of the MM-algorithm-based 
update rule proposed in Sect.  3.2. This larger step is expected to yield fast conver-
gence; indeed, [21] reports the improvement in convergence and we will experimen-
tally show the improvement in Sect. 4.2. Since the LogDet divergence is often used as 
the measure between two covariance matrices, we also introduce this divergence in 
this study. For the justification of Claim 2, we prepare Lemma 1.

Lemma 1 Let R′ ∈ C
M×M be a rank-(M − 1) Hermitian matrix and u ∈ C

M be a unit 
eigenvector of the zero eigenvalue in R′ . For all b ∈ C

M that satisfy bHu = 1 and � ∈ R+ , 
it holds that

Proof From bHu = 1,

holds, where v ∈ C
M satisfies uHv = 0 . It holds that

which is derived from the matrix determinant lemma [26]. Utilizing

we deform det (R′ + �bb
H) as

 □

(44)

L
U
i (b

(ME)
i )− L

U
i (b̃i)

= (b
(MM)
i − b̃i)

H
Gi(b

(MM)
i − b̃i)

− (b̃i − b
(MM)
i )HGi(b̃i − b

(MM)
i )

= 0.

(45)det (R′ + �bb
H) = det (R′ + �uu

H).

(46)b = v + u

(47)det (E− vu
H) = 1− u

H
v = 1,

(48)(E− vuH)b = b − v = u,

(49)(E− vuH)R′ = R
′,

(50)
det (R′ + �bb

H)

= det ((E− vu
H)(R′ + �bb

H)(E− uv
H))

= det (R′ + �uu
H).
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Claim 2 We define the positive-definite matrices as

We denote the LogDet divergence [25] defined between two positive-definite matrices 
�1,�2 ∈ C

M×M as

Then, it holds that

Proof We subtract the right side from the left side as

First, since b(MM)
i  and b(ME)

i  satisfy the condition of b in Lemma  1, detR(n,MM)
i = 

detR
(n,ME)
i = det (R

′(n)
i + �iuiu

H
i ) holds, resulting in log detR(n,MM)

i − log detR
(n,ME)
i = 0 . 

Next, (R̃(n)
i )−1 is expanded as

which is described in [19]. Utilizing (b(MM)
i )Hui = (b

(ME)
i )Hui = 1 , we obtain

(51)R̃
(n)
i := R

′(n)
i + �ib̃ib̃

H

i ,

(52)R
(n,MM)
i := R

′(n)
i + �ib

(MM)
i (b

(MM)
i )H,

(53)R
(n,ME)
i := R

′(n)
i + �ib

(ME)
i (b

(ME)
i )H.

(54)D(�1;�2) = tr(�1�
−1
2 )− log det (�1�

−1
2 )−M.

(55)D(R
(n,ME)
i ; R̃(n)

i ) ≥ D(R
(n,MM)
i ; R̃(n)

i ).

(56)

D(R
(n,ME)
i ; R̃(n)

i )−D(R
(n,MM)
i ; R̃(n)

i )

= tr
(

R
(n,ME)
i (R̃

(n)
i )−1

)

− tr
(

R
(n,MM)
i (R̃

(n)
i )−1

)

+ log detR
(n,MM)
i − log detR

(n,ME)
i

(57)

= tr
((

R
′(n)
i + �ib

(ME)
i (b

(ME)
i )H

)

(R̃
(n)
i )−1

)

− tr
((

R
′(n)
i + �ib

(MM)
i (b

(MM)
i )H

)

(R̃
(n)
i )−1

)

+ log detR
(n,MM)
i − log detR

(n,ME)
i

(58)

= �i

(

(b
(ME)
i )H(R̃

(n)
i )−1

b
(ME)
i

− (b
(MM)
i )H(R̃

(n)
i )−1

b
(MM)
i

)

+ log detR
(n,MM)
i − log detR

(n,ME)
i .

(59)
(R̃

(n)
i )−1 = (E− uib̃

H

i )(R
′(n)
i )+(E− b̃iu

H
i )

+ 1

�i
uiu

H
i ,



Page 14 of 24Kondo et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:88 

Then, we can calculate the following:

because (R′(n)
i )+ is a positive semidefinite matrix.  □

The update rules of all parameters other than bi can be obtained in the same man-
ner as those in the conventional fixed-basis RCSCME. Finally, the ME-algorithm-based 
update rules are derived as

where κij , �i , ϒ i , and µi are the same as those in Sect. 3.2.

4  Experimental results and discussion
4.1  Experimental conditions

To confirm the efficacy of the proposed basis-optimizing RCSCME, we conducted BSE 
experiments under simulated noise conditions. We simulated a mixture of a target 
speech source and diffuse noise by convoluting dry sources with impulse responses from 
each position to four equally spaced microphones as shown in Fig. 2. The diffuse noise 
was simulated by reproduction from 19 positions on the same circumference. The target 
speech originates from the loudspeaker located 0◦, 10◦, 20◦ , and 30◦ clockwise from the 

(60)(E− b̃iu
H
i )b

(MM)
i = b

(MM)
i − b̃i,

(61)
(E− b̃iu

H
i )b

(ME)
i = b

(ME)
i − b̃i

= 2(b
(MM)
i − b̃i).

(62)

D(R
(n,ME)
i ; R̃(n)

i )−D(R
(n,MM)
i ; R̃(n)

i )

= �i

(

(b
(ME)
i )H(R̃

(n)
i )−1

b
(ME)
i

− (b
(MM)
i )H(R̃

(n)
i )−1

b
(MM)
i

)

= 3�i(b
(MM)
i − b̃i)

H(R
′(n)
i )+(b(MM)

i − b̃i)

≥ 0,

(63)r
(t)
ij ← r

(t)
ij

|(a(t)i )H(R
(x)
ij )−1xij|2 + β

(r
(t)
ij )2

(a
(t)
i )H(R

(x)
ij )−1a

(t)
i + α+1

r
(t)
ij

,

(64)r
(n)
ij ← r

(n)
ij

xHij (R
(x)
ij )−1

R
(n)
i (R

(x)
ij )−1xij

tr((R
(x)
ij )−1R

(n)
i )

,

(65)�i ← �i

∑

j r
(n)
ij |bHi (R

(x)
ij )−1xij|2

∑

j r
(n)
ij bHi (R

(x)
ij )−1bi

,

(66)bi ← 2(R
′(n)
i �i + µiE)

−1(R
′(n)
i ϒ i + µiE)bi

− bi,
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normal to the microphone array and is closer to the microphone array than each diffuse 
noise loudspeaker. As the target speech source, we utilized six JNAS clean speech corpus 
sources  [27]. We used four diffuse noises, namely, the babble, station, traffic, and cafe 
noises. For the babble noise, we simulated diffuse noise by reproducing 19 other JNAS 
speech corpus sources from each loudspeaker. For station, traffic, and cafe noises, noise 
signals in DEMAND [28] are split into 19 fragments, which are then reproduced from 
each position. An STFT was performed by using a 64-ms-long Hamming window with a 
32-ms-long shift. The input signal-to-noise ratio was set to 0 dB.

We compared 11 BSE methods, namely, ILRMA  [9], independent vector extrac-
tion (IVE)  [3], blind spatial subtraction array (BSSA)  [2], MWF with single-chan-
nel noise power estimation (MWF1)  [29], MWF with multichannel noise power 
estimation (MWF2)  [30], original MNMF [14], MNMF initialized by ILRMA (ILRMA 
+ MNMF) [9, 31], original FastMNMF [17], FastMNMF initialized by ILRMA (ILRMA 
+ FastMNMF), the conventional fixed-basis RCSCME  [19], and the proposed basis-
optimizing RCSCME. In ILRMA, which was used as the preprocessing for each method, 
the number of bases was 10, the number of iterations was 50, and the observed signal 
was preprocessed using sphering transformation with principal component analysis. In 
IVE, the separation filter for the target speech was initialized by ILRMA. As for BSSA, 
ILRMA was used in place of FDICA utilized in [2] and the oversubtraction and floor-
ing parameters were set to 1.4 and 0, respectively. In MWF1 and MWF2, the a priori 
speech-to-noise ratio was estimated by a decision-directed approach  [32]. In MWF1, 
we used a minima controlled recursive averaging noise estimation approach  [29] for 
estimating the noise power spectrum. In MWF2, we estimated the noise power spec-
trum using M − 1 outputs of ILRMA excluding the nt th signal. For ILRMA, MNMF, 
and FastMNMF, the source model variables were initialized using nonnegative ran-
dom values following a uniform distribution on [0,  1]. As for ILRMA + MNMF and 
ILRMA + FastMNMF, the source model variables were handed over from ILRMA to 
MNMF and FastMNMF, respectively. For ILRMA, the demixing matrix was initialized 
by the identity matrix E . The SCM was initialized by E for both MNMF and FastM-
NMF, ai,ntaHi,nt + ǫE for ILRMA + MNMF, and ai,ntai,nt + ǫ

∑

n�=nt
ai,na

H
i,n for ILRMA 

+ FastMNMF, where ǫ was set to 10−5 . For MNMF and FastMNMF, we blindly selected 
the separated signal whose kurtosis was maximum from four separated signals as the 
target source. For all methods except IVE, MNMF, and FastMNMF, we blindly deter-
mined the index nt of the target source by selecting the demixed signal whose kurtosis 
was maximum from the M demixed signals of ILRMA. In both RCSCMEs, we utilized 

Fig. 2 Recording situation of impulse responses
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the minimum positive eigenvalue σi of R′(n)
i  as the initial value of �i . As both the fixed 

bi in the conventional fixed-basis RCSCME and the initial value of bi in the proposed 
basis-optimizing RCSCME, we used a unit eigenvector ui of the zero eigenvalue in R′(n)

i  . 
In the conventional fixed-basis RCSCME, we utilized α = 2.5 and β = 10−16 , which 
are the parameters of the inverse gamma distribution as the prior and showed the best 
separation performance at the preliminary experiment in [19]. We experimentally chose 
α = 0.01 and β = 10−16 in the proposed basis-optimizing RCSCME. For both RCSC-
MEs, the shape parameters of GGD ρ = 0.5, 1, 2 were utilized. For the evaluation of BSE 
performance, we used the source-to-distortion ratio (SDR) improvement [33]. The SDR 
improvement was averaged over 10 parameter-initialization random seeds, four target 
directions, and six target speech sources (totally 240 trials).

4.2  Comparison between three types of basis‑optimizing RCSCME

We conducted a preliminary experiment under the babble noise condition. We com-
pared the MM-algorithm-based fixed-basis RCSCME, the ME-algorithm-based fixed-
basis RCSCME, the proposed MM-algorithm-based basis-optimizing RCSCME, and the 
proposed ME-algorithm-based basis-optimizing RCSCME whose generative models are 
the Gaussian distribution ( ρ = 2 ) and the super-Gaussian distribution ( ρ = 0.5 ). The 
reason why the shape parameter of the GGD ρ = 0.5 was used was that the fixed-basis 
RCSCME showed the best performance in the shape parameter ρ = 0.5 in experiments 
in [19]. In the Gaussian case, we also compared the EM-algorithm-based basis-optimiz-
ing RCSCME proposed in our conference paper [22], which is a method that can only be 
applied to the Gaussian case.

Figure 3 shows the SDR improvements of RCSCMEs for each iteration. As a reference, 
we also show the SDR improvement after 50 iterations of preprocessing ILRMA. The 
SDR improvements of all the RCSCMEs reach a peak followed by a decrease, which is 
caused by the sparsity of the speech signal [19]. Regarding the proposed basis-optimiz-
ing RCSCMEs, ME-algorithm-based update rules outperform MM-algorithm-based 
update rules in terms of both separation performance (the peak of the SDR curve) and 
convergence, which is a trend that can also be seen in conventional fixed-basis RCSC-
MEs. The advantage of ME-algorithm-based update rules over MM-algorithm-based 
update rules in terms of convergence is consistent with the description in Sect. 3.1. To 
show this advantage in convergence of the cost function, we additionally compared the 
proposed MM- and ME-algorithm-based basis-optimizing RCSCMEs in the behavior of 
cost functions (12) except for the constant term. Figure 4 shows the average of the cost 
function over 10 parameter-initialization random seeds under the condition that the tar-
get speech originated from the loudspeaker located 0◦ clockwise from the normal to the 
microphone array and the shape parameter ρ was set to 2. From Fig. 4, ME-algorithm-
based basis-optimizing RCSCME achieved faster convergence in the cost function 
than MM-algorithm-based basis-optimizing RCSCME, which provides support for the 
advantage of ME-algorithm-based basis-optimizing RCSCME against MM-algorithm-
based basis-optimizing RCSCME regarding convergence speed. Furthermore, since the 
difference of the computational complexity between the proposed MM- and ME-algo-
rithm-based update rules is caused by (40) and (40) has the much less computational 
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complexity than (35), the computational times of the proposed MM- and ME-algorithm-
based basis-optimizing RCSCMEs are expected to be almost the same. In fact, according 
to the experiment, the averages of the execution times per step in MM- and ME-algo-
rithm-based update rules over 2000 trials, which consist of 10 parameter-initialization 
random seeds and 200 iterations, were 10.3 s and 10.2 s, respectively. This time measure-
ment was executed under the condition that the target speech originated from the loud-
speaker located 0◦ clockwise from the normal to the microphone array and the shape 
parameter ρ was set to 2. The code for the time measurement was implemented in MAT-
LAB (R2022a), and the computation was performed on an Intel Core i9-9980XE (3.00 

Fig. 3 Behavior of SDR improvements under the babble noise condition. SDR improvements are averaged 
over six speech sources, four target directions, and 10 parameter-initialization random seeds. The shape 
parameter ρ in GGD is set to (a) 2 (Gaussian) and (b) 0.5 (super-Gaussian)

Fig. 4 Behavior of the cost functions (12) except for the constant term under the babble noise condition in 
the proposed basis-optimizing RCSCMEs. The cost functions are averaged over 10 parameter-initialization 
random seeds. The shape parameter ρ in GGD is set to 2
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GHz, 18 cores) CPU. Thus, the advantage of convergence in computational time had the 
same tendency as that in iteration shown in Figs. 3 and 4. On the basis of these results, 
we employ only ME-algorithm-based update rules for both the conventional fixed-basis 
RCSCME and the proposed basis-optimizing RCSCME.

4.3  Comparison between the proposed basis‑optimizing RCSCME and conventional 

methods under simulated noise conditions

Table 1 shows the SDR improvements averaged over 240 cases for each method under 
each simulated noise condition. For MNMF, ILRMA + MNMF, FastMNMF, ILRMA 
+ FastMNMF, the conventional fixed-basis RCSCME, and the proposed basis-opti-
mizing RCSCME, we show both the peak SDR improvement and the SDR improve-
ment after 200 iterations. For IVE, which is slow to converge, we show both the peak 
SDR improvement and the SDR improvement after 4000 iterations, which is the 
number of iterations recommended to achieve sufficient separation performance [3]. 
The proposed basis-optimizing RCSCME outperforms all the conventional methods 
under all the noise conditions. Furthermore, for the shape parameter ρ in the pro-
posed basis-optimizing RCSCME, ρ = 0.5 provides the best SDR improvement. This 
confirms the efficacy of the super-Gaussian GGD.

4.4  Comparison between proposed basis‑optimizing RCSCME and conventional methods 

under real noise condition

To confirm the efficacy of the proposed method under a more realistic noise condi-
tion, we conducted a BSE experiment using real-world sounds. We used a parking 

Table 1 SDR improvements for each method under each simulated noise condition

Each term represents “best‑iteration score [dB]/after‑200‑iteration (except for IVE; after‑4000‑iteration for IVE) score [dB].” 
Bold text indicates the maximum value

Methods Babble noise Station noise Traffic noise Cafe noise

ILRMA 6.1/– 6.2/– 4.7/– 6.4/–

IVE 6.2/5.8 6.2/5.8 5.4/5.2 6.4/5.9

BSSA 6.8/– 6.9/– 5.7/– 7.2/–

MWF1 6.1/– 6.9/– 5.8/– 7.0/–

MWF2 6.9/– 7.2/– 5.6/– 7.4/–

MNMF 2.7/2.7 3.5/3.5 2.6/2.6 2.8/2.8

ILRMA + MNMF 6.5/6.5 7.0/7.0 6.2/6.2 8.1/8.1

FastMNMF 1.7/1.7 2.6/2.5 2.9/2.8 2.6/2.6

ILRMA + FastMNMF 6.5/6.2 6.6/6.6 5.4/5.4 7.3/7.3

Fixed-basis RCSCME

 ρ = 0.5 8.7/7.7 10.2/9.5 8.3/7.8 10.1/9.3

 ρ = 1 8.6/7.7 9.9/9.4 8.0/7.7 9.9/9.2

 ρ = 2 8.5/7.6 9.8/9.2 7.9/7.5 9.8/9.1

Proposed basis-optimizing RCSCME

 ρ = 0.5 9.3/8.8 11.5/11.0 9.4/9.2 11.1/10.5
 ρ = 1 9.1/8.6 11.2/10.8 9.1/9.0 10.9/10.4

 ρ = 2 9.0/8.6 11.1/10.7 9.0/8.9 10.8/10.4
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noise, which was a diffuse noise recorded outdoors. The reverberation time was about 
90 ms. For the directional target speech, the same dry source was reproduced from 
the loudspeaker located 0◦, 10◦, 20◦ , and 30◦ clockwise from the normal to the micro-
phone array at a distance of 1.0 m. An STFT was performed by using a 256-ms-long 
Hamming window with a 32-ms-long shift.

We compared eight methods, ILRMA, BSSA, MWF1, MWF2, FastMNMF, ILRMA 
+ FastMNMF, the conventional fixed-basis RCSCME, and the proposed basis-
optimizing RCSCME. We excluded IVE, MNMF, and ILRMA + MNMF for this 
experiment because the convergence of these methods is significantly slow. In the 
conventional fixed-basis RCSCME, we used α = 2.3 and β = 10−16 , which are the 
parameters of the inverse gamma distribution as the prior. The other conditions of the 
methods compared were the same as those described in Sect. 4.1.

Table 2 shows SDR improvements averaged over 240 cases for each method under the 
parking noise condition. The proposed basis-optimizing RCSCME outperforms all the 
conventional methods. This result shows the efficacy of the proposed basis-optimizing 
RCSCME in a practical situation.

5  Conclusions
In this paper, we proposed a new model extension of RCSCME, which is a blind speech 
extraction method utilized under the condition that one-directional target speech and 
diffuse background noise are mixed. In the conventional fixed-basis RCSCME, between 
two parameters constituting the deficient rank-1 component, only the scale is esti-
mated, whereas the deficient basis is fixed in advance. In the proposed basis-optimiz-
ing RCSCME model, we regarded the deficient basis as a parameter to estimate. We 
derived new MM- and ME-algorithm-based update rules for the deficient basis in the 
GGD model, which achieves better separation performance than the Gaussian distribu-
tion in the conventional RCSCME. In particular, among innumerable ME-algorithm-
based update rules, we successfully found an ME-algorithm-based update rule with a 

Table 2 SDR improvements for each method under real parking noise condition

Each term represents “best‑iteration score [dB]/after‑200‑iteration score [dB].” Bold text indicates the maximum value

Methods

ILRMA 6.0/–

BSSA 5.1/–

MWF1 6.7/–

MWF2 6.2/–

FastMNMF 2.5/2.5

ILRMA + FastMNMF 8.4/8.4

Fixed-basis RCSCME

 ρ = 0.5 9.1/8.8

 ρ = 1 9.0/8.8

 ρ = 2 8.9/8.8

Proposed basis-optimizing RCSCME

 ρ = 0.5 10.3/10.0

 ρ = 1 10.4/10.0

 ρ = 2 10.4/10.1
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mathematical proof supporting the fact that the step of the update rule is larger than 
that of the MM-algorithm-based update rule. We confirmed that the proposed method 
outperforms conventional methods under several simulated noise conditions and a real 
noise condition.

Appendix
In this section, we describe the derivation of the auxiliary function LU(�p,�p) in the 
Gaussian and super-Gaussian cases ( ρ ≤ 2 ) for the following negative log posterior in 
the same manner as in [19]:

First, when ρ ≤ 2 holds, we can apply the following tangent inequality for the first term 
in the right-hand side of (67):

where ιij is positive and the equality of (68) holds if and only if

For the first term in the right-hand side of (68), the inequality described in the following 
theorem [19] can be applied again.

Theorem 1 ([19]) Let K be any natural number, Rk ∈ C
M×M(k = 1, . . . ,K ) be a posi-

tive semidefinite Hermitian matrix satisfying rank(
∑

k Rk) = M , X ∈ C
M×M be any posi-

tive semidefinite Hermitian matrix, and X ∈ C
M×M be the projection matrix to the image 

space of X . For any matrix �k ∈ C
M×M satisfying the conditions

it holds that

where Ker and Im ,respectively, represent a kernel space and an image space. The equality 
of (73) holds if and only if

(67)

L(�p) =
∑

i,j

[

(xHij (R
(x)
ij )−1

xij)
ρ
2 + log detR

(x)
ij

+ (α + 1) log r
(t)
ij + β

r
(t)
ij

]

+ const.

(68)(xHij (R
(x)
ij )−1xij)

ρ
2 ≤ ρ

2ι
1− ρ

2
ij

xHij (R
(x)
ij )−1xij +

(

1− ρ

2

)

ι
ρ
2
ij ,

(69)ιij = xHij (R
(x)
ij )−1xij .

(70)Ker�k ⊇ KerX,

(71)Im�k ⊆ ImRk ,

(72)
∑

k

�k = X ,

(73)tr
(

(
∑

k
Rk)

−1
X

)

≤
∑

k

tr(�H

k R
+
k �kX),
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By replacing K = 2 , X = xijx
H
ij  , R1 = r

(t)
ij a

(t)
i (a

(t)
i )H , R2 = r

(n)
ij R

(n)
i  , �1 = �

(t)
ij  , and 

�2 = �
(n)
ij  at Theorem 1, it holds that

where �(t)
ij ,�

(n)
ij ∈ C

M×M are the auxiliary variables satisfying �(t)
ij +�

(n)
ij = xijx

H
ij /�xij�22 . 

The equality of (75) holds if and only if

Since the second term of the right-hand side of (75) contains (R(n)
i )−1 , it is difficult to dif-

ferentiate the term with respect to ci . Then, we represent (R(n)
i )−1 as an explicit expres-

sion about ci using the following claim.

Claim 3 ([19]) Let R′ ∈ C
M×M be a rank-(M − 1 ) positive semidefinite Hermitian 

matrix, � be positive, u ∈ C
M be an eigenvector of the zero eigenvalue in R′ , and b ∈ C

M be 
any vector that is not included in the (M − 1)-dimensional hyperplane spanned by column 
vectors of R′ . We define the matrix R ∈ C

M×M as

Then, it holds that

where

Note that whereas bHu = 1 are assumed in [19] for simplifying the derivation, we 
remove this restriction and reformulate Claim 3. From Claim 3, it holds that

where

(74)�k = Rk′(
∑

k′
Rk′)

−1
X .

(75)

xHij (R
(x)
ij )−1xij = xHij (r

(t)
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(t)
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(n)
ij R

(n)
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≤
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H
ij
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(77)�
(n)
ij = r
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(78)R := R
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(79)R
−1 = R̆ + 1

�|bHu|2
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E− buH

uHb

)

.

(81)(R
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In summary, we can design the following inequality for the first term of (67):

The equality of (83) holds if and only if

Next, since log det (·) is a concave function for any positive definite Hermitian matrix, 
the following inequality derived from the relationship between a concave function and 
its tangent plane can be applied to the second term of (67):

where � ij ∈ C
M×M is a positive semidefinite Hermitian matrix and the equality of (87) 

holds if and only if � ij = R
(x)
ij .

For the third term of (67), from the relationship between the logarithmic function and 
its tangent, it holds that

where ζij is positive and the equality of (88) holds if and only if ζij = r
(t)
ij .

By combining (83), (87), and (88), we can design the auxiliary function LU(�p,�p) as 
(18).
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RCSCME  Rank-constrained spatial covariance matrix estimation
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MWF  Multichannel Wiener filtering
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MM  Majorization-minimization
ME  Majorization-equalization
STFT  Short-time Fourier transform
IVE  Independent vector extraction
BSSA  Blind spatial subtraction array
SDR  Source-to-distortion ratio

Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions that helped to 
improve the quality of this manuscript.

Authors’ contributions
YK: conceptualization, methodology for MM algorithm, software, investigation, writing original draft. YK: conceptualiza-
tion, software for MNMFs. NT: conceptualization, methodology for ME algorithm, formal analysis. DK: conceptualization, 
software for IVE and ILRMA, validation. HS: conceptualization, supervision, methodology, writing review and editing, 
project administration. All authors read and approved the final manuscript.

Funding
This work was supported by Japan-New Zealand Research Cooperative Program between JSPS and RSNZ, Grant number 
JPJSBP120201002, JSPS KAKENHI Grant Numbers 19K20306, 19H01116, and 21H05054, and JST, Moonshot R &D Grant 
Number JPMJPS2011.

Availability of data and materials
Not available online. Please contact author for data requests.

Declarations

Ethical approval and consent to participate
All experiments are the computer simulations that used the acoustical databases, and do not relate with human and 
animals in this work.

Competing interests
The authors declare that they have no competing interests.

Received: 12 March 2022   Accepted: 24 August 2022

References
 1. H. Sawada, N. Ono, H. Kameoka, D. Kitamura, H. Saruwatari, A review of blind source separation methods: two con-

verging routes to ILRMA originating from ICA and NMF. APSIPA Trans. Signal Inf. Process. 8(e12), 1–14 (2019)
 2. Y. Takahashi, T. Takatani, K. Osako, H. Saruwatari, K. Shikano, Blind spatial subtraction array for speech enhancement 

in noisy environment. IEEE Trans. ASLP 17(4), 650–664 (2009)
 3. Z. Koldovský, P. Tichavský, Gradient algorithms for complex non-Gaussian independent component/vector extrac-

tion, question of convergence. IEEE Trans. SP 67(4), 1050–1064 (2019)
 4. P. Smaragdis, Blind separation of convolved mixtures in the frequency domain. Neurocomputing 22(1–3), 21–34 

(1998)
 5. S. Araki, R. Mukai, S. Makino, T. Nishikawa, H. Saruwatari, The fundamental limitation of frequency domain blind 

source separation for convolutive mixtures of speech. IEEE Trans. ASP 11(2), 109–116 (2003)
 6. H. Saruwatari, T. Kawamura, T. Nishikawa, A. Lee, K. Shikano, Blind source separation based on a fast-convergence 

algorithm combining ICA and beamforming. IEEE Trans. ASLP 14(2), 666–678 (2006)
 7. A. Hiroe, Solution of permutation problem in frequency domain ICA using multivariate probability density func-

tions, in Proceedings of ICA (2006), pp. 601–608
 8. T. Kim, H.T. Attias, S.-Y. Lee, T.-W. Lee, Blind source separation exploiting higher-order frequency dependencies. IEEE 

Trans. ASLP 15(1), 70–79 (2007)
 9. D. Kitamura, N. Ono, H. Sawada, H. Kameoka, H. Saruwatari, Determined blind source separation unifying independ-

ent vector analysis and nonnegative matrix factorization. IEEE/ACM Trans. ASLP 24(9), 1626–1641 (2016)
 10. D. Kitamura, S. Mogami, Y. Mitsui, N. Takamune, H. Saruwatari, N. Ono, Y. Takahashi, K. Kondo, Generalized independ-

ent low-rank matrix analysis using heavy-tailed distributions for blind source separation. EURASIP J. Adv. Signal 
Process. 2018(1), 1–28 (2018)

 11. R. Ikeshita, Y. Kawaguchi, Independent low-rank matrix analysis based on multivariate complex exponential power 
distribution, in Proceedings of ICASSP (2018), pp. 741–745

 12. N.Q.K. Duong, E. Vincent, R. Gribonval, Under-determined reverberant audio source separation using a full-rank 
spatial covariance model. IEEE Trans. ASLP 18(7), 1830–1840 (2010)

 13. A. Ozerov, C. Févotte, Multichannel nonnegative matrix factorization in convolutive mixtures for audio source sepa-
ration. IEEE Trans. ASLP 18(3), 550–563 (2010)

 14. H. Sawada, H. Kameoka, S. Araki, N. Ueda, Multichannel extensions of non-negative matrix factorization with 
complex-valued data. IEEE Trans. ASLP 21(5), 971–982 (2013)



Page 24 of 24Kondo et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:88 

 15. K. Kitamura, Y. Bando, K. Itoyama, K. Yoshii, Student’s t multichannel nonnegative matrix factorization for blind 
source separation, in Proceedings of IWAENC (2016)

 16. N. Ito, T. Nakatani, FastMNMF: joint diagonalization based accelerated algorithms for multichannel nonnegative 
matrix factorization, in Proceedings of ICASSP (2019), pp. 371–375

 17. K. Sekiguchi, Y. Bando, A.A. Nugraha, K. Yoshii, T. Kawahara, Fast multichannel nonnegative matrix factorization with 
directivity-aware jointly-diagonalizable spatial covariance matrices for blind source separation. IEEE Trans. ASLP 28, 
2610–2625 (2020)

 18. K. Kamo, Y. Kubo, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, K. Kondo, Joint-diagonalizability-constrained 
multichannel nonnegative matrix factorization based on multivariate complex Student’s t-distribution, in Proceed-
ings of APSIPA (2020)

 19. Y. Kubo, N. Takamune, D. Kitamura, H. Saruwatari, Blind speech extraction based on rank-constrained spatial covari-
ance matrix estimation with multivariate generalized Gaussian distribution. IEEE/ACM Trans. ASLP 28, 1948–1963 
(2020)

 20. D.R. Hunter, K. Lange, Quantile regression via an MM algorithm. J. Comput. Graph. Stat. 9(1), 60–77 (2000)
 21. C. Févotte, J. Idier, Algorithms for nonnegative matrix factorization with the β-divergence. Neural Comput. 23(9), 

2421–2456 (2011)
 22. Y. Kondo, Y. Kubo, N. Takamune, D. Kitamura, H. Saruwatari, Deficient basis estimation of noise spatial covariance 

matrix for rank-constrained spatial covariance matrix estimation method in blind speech extraction, in Proceedings 
of ICASSP (2021), pp. 806–810

 23. E. Gómez, M. Gomez-Viilegas, J.M. Marín, A multivariate generalization of the power exponential family of distribu-
tions. Commun. Stat. Theory Methods 27(3), 589–600 (1998)

 24. N. Murata, S. Ikeda, A. Ziehe, An approach to blind source separation based on temporal structure of speech signals. 
Neurocomputing 41(1–4), 1–24 (2001)

 25. B. Kulis, M.A. Sustik, I.S. Dhillon, Low-rank kernel learning with Bregman matrix divergences. J. Mach. Learn. Res. 10, 
341–376 (2009)

 26. J. Ding, A. Zhou, Eigenvalues of rank-one updated matrices with some applications. Appl. Math. Lett. 20(12), 
1223–1226 (2007)

 27. K. Itou, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka, T. Kobayashi, K. Shikano, S. Itahashi, JNAS: Japanese speech 
corpus for large vocabulary continuous speech recognition research. J. Acoust. Soc. Jpn. (E) 20(3), 199–206 (1999)

 28. J. Thiemann, N. Ito, E. Vincent, DEMAND: a collection of multi-channel recordings of acoustic noise in diverse envi-
ronments (2013). https:// doi. org/ 10. 5281/ zenodo. 12271 21

 29. I. Cohen, B. Berdugo, Speech enhancement for non-stationary noise environments. Signal Process. 81(11), 
2403–2418 (2001)

 30. R. Miyazaki, H. Saruwatari, R. Wakisaka, K. Shikano, T. Takatani, Theoretical analysis of parametric blind spatial subtrac-
tion array and its application to speech recognition performance prediction, in Proceedings of HSCMA (2011), pp. 
19–24

 31. K. Shimada, Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, T. Kawahara, Unsupervised beamforming based on multichan-
nel nonnegative matrix factorization for noisy speech recognition, in Proceedings of ICASSP (2018), pp. 5734–5738

 32. Y. Ephraim, D. Malah, Speech enhancement using a minimum-mean square error short-time spectral amplitude 
estimator. IEEE Trans. ASSP 32(6), 1109–1121 (1984)

 33. E. Vincent, R. Gribonval, C. Févotte, Performance measurement in blind audio source separation. IEEE Trans. ASLP 
14(4), 1462–1469 (2006)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.5281/zenodo.1227121

	Deficient-basis-complementary rank-constrained spatial covariance matrix estimation based on multivariate generalized Gaussian distribution for blind speech extraction
	Abstract 
	1 Introduction
	2 Conventional RCSCME
	2.1 Auxiliary function technique [20, 21]
	2.2 Generative model and update rules of RCSCME [19]

	3 Proposed basis-optimizing RCSCME
	3.1 Motivation
	3.2 Design of auxiliary function and derivation of MM-algorithm-based update rule for deficient component
	3.3 ME-algorithm-based update rule of deficient component

	4 Experimental results and discussion
	4.1 Experimental conditions
	4.2 Comparison between three types of basis-optimizing RCSCME
	4.3 Comparison between the proposed basis-optimizing RCSCME and conventional methods under simulated noise conditions
	4.4 Comparison between proposed basis-optimizing RCSCME and conventional methods under real noise condition

	5 Conclusions
	Acknowledgements
	References


