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1  Introduction
Time series data refers to data arranged in chronological order, reflecting the state 
changes of things over time. Typical time series include industrial data, medical data, 
meteorological data, stock data and traffic data, etc. Due to the complexity of the scene, 
the collected time series are usually multivariate time series data with diverse features 
and changing patterns.

Multivariate time series are widely used in industrial equipment monitoring and main-
tenance, health monitoring, weather forecasting, stock price forecasting and other fields. 
Due to abnormal sensors, equipment failures, environmental interference and human 
errors, the collected multivariate time series usually have certain missing values. Missing 
values imply the regularity of data, and seriously affect the further analysis and applica-
tion of multivariate time series.
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Among the related methods of missing values imputation, the methods, such as Mean, 
Median, Mode and Last Observed are easy to operate, which makes it difficult to restore 
the real data attributes and the imputation effect is general [1]. The Regression Impu-
tation [2] is prone to random errors, resulting in large fluctuations in the imputation 
effect. k-Nearest Neighbor (KNN) [3], Clustering [4], Expectation Maximization (EM) 
[5, 6], and Multiple Imputation (MI) have high computational complexity and low effi-
ciency, which makes it difficult to impute multivariate time series. The imputation meth-
ods Recurrent Neural Networks (RNN) [7]-based can learn the latent relationships and 
regularity of the time series and have been used to impute missing values.

Recently, Generative Adversarial Network (GAN) [8]-based imputation methods have 
gradually become a research hotspot and have achieved better results in the field of 
missing values imputation in multivariate time series. In order to learn the latent rela-
tionships between observations with non-fixed time intervals, Luo et  al. [9] proposed 
a novel RNN cell called Gated Recurrent Unit for Imputation (GRUI), which can take 
into account the non-fixed time intervals and fade the influence of the past observations 
determined by the time intervals. Based on GRUI, Luo et al. [10] further proposed an 
end-to-end GAN-based imputation model E2 GAN which consists of a generator and a 
discriminator. After adversarial training of the generator and the discriminator, the gen-
erator can generate complete time series that fits the distribution of the original dataset 
and is used to impute the missing values. E2 GAN achieved a better imputation accuracy, 
however, GRUI only considers the time interval information between two observations 
of missing time series, ignoring the equally important location interval information.

The contribution of this paper is to make full use of the time interval and location 
interval information between observations of missing time series based on GRUI, we 
propose a novel GRU cell called Time and Location Gated Recurrent Unit (TLGRU). 
The experiments on a real meteorologic dataset show that our method achieves a new 
state-of-the-art imputation accuracy with similar time efficiency to GRUI.

2 � Related works
The research on missing values imputation methods has received extensive attention 
from researchers, and various theoretical methods have been proposed in the industry. 
In the statistics-based imputation methods, Kantardzic [11] tried to impute missing val-
ues by mean value. Purwar et al. [12] used mode to impute missing values. Amiri et al. 
[13] used last observation to impute missing values for incomplete data. The imputation 
methods statistics based does not consider the characteristics of the missing values, the 
imputation result is affected by the observed values and the imputation accuracy is poor.

In the machine learning-based imputation methods, Hudak et al. [14] used the mean 
value of k nearest neighbors to impute missing values. White et  al. [15] proposed the 
Multiple Imputation by Chained Equations (MICE) to impute the missing values by 
using an iterative regression model. Hastie et al. [16] proposed an imputation method 
based on Matrix Factorization (MF), which treats the original dataset as a matrix, and 
decomposes the original matrix into the product of two matrices using algorithms such 
as Principal Component Analysis (PAC), and finally imputes the missing values with the 
product result. Ogbeide [5] proposed a Mode-Related Expectation Adaptive Maximi-
zation (MEAM) for obtaining better statistical inferences from multivariate data with 
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missing observations. The method produces initial values closest to the mean of the 
complete dataset and reduces computation time when solving problems such as missing 
survey observations, non-response, or missing data. Dzulkalnine et al. [17] proposed a 
hybrid FPCA-Support Vector Machines-FCM (FPCA-SVM-FCM) imputation method. 
The feature selection method used in this method is Fuzzy Principal Component Analy-
sis (FPCA), which identifies relevant features in the dataset while considering outliers. 
The selected features are then classified and irrelevant features are removed using the 
SVM. After identifying the significant features in the dataset, the missing data is then 
estimated by Fuzzy c-Means (FCM). Machine learning-based missing values imputation 
methods are usually computationally complex, inefficient, and unable to learn the latent 
relationships in time series, making it difficult to impute missing values in multivariate 
time series.

There are also many RNN-based imputation methods in the field of multivariate time 
series. Berglund et  al. [7] proposed two probabilistic interpretations of bidirectional 
recurrent neural networks that can be used to reconstruct missing samples efficiently. 
Che et al. [18] proposed GRUD, which imputes missing values of clinical dataset with 
a smooth method. GRUD takes the advantage of last observed value and mean value to 
represent missing patterns of incomplete time series. Cao et al. [19] proposed Bidirec-
tional Recurrent Imputation for Time Series (BRITS), which directly learns the missing 
values in a bidirectional recurrent dynamical system, without any specific assumption.

The imputation methods GAN-based seek to generate new samples that obey the dis-
tribution of the training dataset, have been used to impute missing values, and achieved 
high imputation accuracy. Yoon et al. [20] proposed Generative Adversarial Imputation 
Nets (GAIN), which uses a hint vector that is conditioned on what we actually observed 
to impute missing values. GAIN made tremendous advances in data imputation. Shang 
et al. [21] proposed a GAN-based missing values imputation algorithm for multimodal 
data, which can learn the common properties of multimodal data and impute missing 
values in certain modal data. Luo et al. [10, 22] proposed E2 GAN, which takes a com-
pressing and reconstructing strategy to automatically learns internal representations of 
the time series and tries its best to reconstruct this temporal data. E2 GAN also improves 
the imputation performance by getting a better feature representation of samples, which 
contributes to better reconstructed samples and improves the imputation. Optimization 
of E2 GAN was achieved by Zhang et al. [23] using real data during the training of the 
generator to force the imputed values to be close to the real ones.

3 � Problem formulation
Given a d-dimensional multivariate time series X , observed at T=(t0, t1, · · · , tn−1) and L
=(l0, l1, · · · , ln−1) , is denoted by X=(x0, x1, · · · , xn−1) ∈ R

d×n , where T  is the observing 
timestamp and L is the observing locationstamp, xi is the ith observation of X , and xji is 
the jth dimension of xi.

Suppose that d-dimensional time series X is incomplete, the M ∈ R
d×n is a mask 

matrix that takes values in {0, 1} . M means whether the values of X exist or not, if xji 
exists, mj

i=1, otherwise, mj
i=0.

In the following is an example of a 3-dimensional multivariate time series X and its 
correspondingM , T  andL . “/” is missing value.
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We define a matrix δt ∈ R
d×n that records the time interval between current value and 

last observed value. The following part shows the calculation and a calculated example 
of δt.

We define a matrix δl ∈ R
d×n that records the location interval between current value 

and last observed value. The following part shows the calculation and a calculated exam-
ple of δl.

4 � Approach
In this part, we show the details of the TLGRU and the method E2 GAN-based for mul-
tivariate time series missing values imputation. The overall architecture of the proposed 
method is shown in Fig.  1. We replaced GRUI with TLGRU in the architecture of E2 
GAN and achieved a new state-of-the-art imputation accuracy.

The imputation method consists of a generator (G) and a discriminator (D). The gen-
erator is composed of an auto-encoder and recurrent neural networks. We take a com-
pressing and reconstructing strategy to compress the input incomplete time series X into 
a low-dimensional vector z by the encoder. Then we use vector z to reconstruct a com-
plete time series X ′ by the decoder. The discriminator tries to distinguish the original 
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incomplete time series X and the fake but complete sample X ′ . After the adversarial 
training, the generator generates complete time series X ′ that can fool the discriminator, 
and the discriminator can best determine the authenticity of X ′.

Traditional GAN is difficult to maintain long-term stable training and is prone to 
mode collapse. Arjovsky et  al. [24] proposed the Wasserstein GAN (WGAN), which 
can improve learning stability and get away from the problem of mode collapse. In our 
method, we use WGAN instead of GAN. The following are the loss functions of WGAN.

4.1 � Time and location gated recurrent unit

Multivariate time series have certain latent relationships and regularity between adja-
cent observations in the same dimension and observations in different dimensions. 
When imputing multivariate time series missing values, not only the relationships 
between missing values and observations of the same dimension, but also the relation-
ships between missing values and observations of different dimensions should be con-
sidered. Most of the current missing values imputation methods lack consideration of 
the relationships between observations and are difficult to be used for imputing missing 
values.

In multivariate time series, due to the existence of missing values, two adjacent observa-
tions have non-fixed time intervals and location intervals. If the data in one dimension is 
missing continuously for a long time, the time interval and location interval between two 
valid observations in that dimension will be larger than in other dimensions. The GRUI 
decreases the memory of the Gated Recurrent Unit (GRU) by introducing the time interval 
matrix. The TLGRU is improved based on the GRUI. We consider the time interval and 

(3)LG = Ez∼Pg [−D(G(z))]

(4)LD = Ez∼Pg [D(G(z))] − Ex∼Pr [D(x)]

Fig. 1  The architecture of the proposed method
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location interval information between observations, and we introduce a decay vector β to 
decrease the memory of GRU. The following is the update function of β.

where δt , δl are the time interval matrix and location interval matrix, and the hyper-
parameters αt , αl are the time weight and location weight. The values of αt , αl are deter-
mined by the principle of random initialization and by combining a large number of 
experiments. wβ , bβ are training parameters. The formulation of β guarantees that with the 
increase in time interval matrix δt and location interval matrix δl , the value of β decreases. 
The smaller δt and δl , the bigger β . This formulation also make sure that β ∈ (0, 1].

The TLGRU of proposed method is shown at Fig. 2. The decay vector β is a core part of 
the TLGRU. Before each TLGRU iteration, we update the hidden state hi−1 by decay vector 
β . The following are the update functions of the TLGRU.

where z is update gate, r is reset gate, h̃ is candidate hidden state, h is current hidden 
state, σ is the sigmoid activation function, ⊙ is an element-wise multiplication, Wz , bz , 
Wr , br , Wh̃

 , b
h̃
 are training parameters.

4.2 � Generator architecture

The generator of the proposed method is shown in Fig. 3. The generator is an auto-encoder 
based on the TLGRU cell, including an encoder and a decoder. The generator can not only 
compress the incomplete time series X into a low-dimensional vector z by the encoder, but 
also reconstruct the complete time series X ′ from z by the decoder. Different from tradi-
tional auto-encoder, we just add some noise to destroy original samples rather than drop 
out some values. The random noise η is sampled from a standard distribution N (0, 0.01) , 
and can avoid the loss of data information in traditional auto-encoder and reduce over-fit-
ting to a certain extent. The following are the update functions of denoising auto-encoder.

(5)βi =
1

emax(0,wβ(αtδti+αlδli
)+bβ)

(6)h
′

i−1 = βi ⊙ hi−1

(7)zi = σ(Wz[h
′

i−1, xi] + bz)

(8)ri = σ(Wr[h
′

i−1, xi] + br)

(9)h̃i = tanh(W
h̃
[ri ⊙ h

′

i−1, xi] + b
h̃
)

(10)hi = (1− zi)⊙ h
′

i−1 + zi ⊙ h̃i

Fig. 2  TLGRU cell
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Since both the encoder and the decoder use the TLGRU cell to process multivari-
ate time series, we need input corresponding time interval matrix δt , δ

′

t , and location 
interval matrix δl , δ

′

l in the process of multivariate time series compression and recon-
struction. The δt and δl represent the time interval and location interval of the original 
incomplete time series. The δ′t and δ′l represent the time interval and location interval of 
the reconstructed complete time series.

The generator tries to produce a new sample X ′ that is most similar to X , we add a 
squared error loss to the loss function of the generator. The following is the loss function 
of the generator, where � is a hyper-parameter that controls the weight of the discrimi-
native loss and the squared error loss.

First, we use zero value to replace the missing values of X at the input stage of TLGRU. 
Then we feed the TLGRU cell with the incomplete time series X and its interval matrix 
δt and δl . After recurrent processing of the input time series, the last hidden state of the 
recurrent neural network will flow to a fully connected layer. The output of this fully 
connected layer is the compressed low-dimensional vector z.

Next, we take z as the initial input of another fully connected layer. Then we use this 
output as the first input of another TLGRU cell. The current output of this TLGRU cell 
will be fed into the next iteration of the same TLGRU cell. At the final stage, we combine 
all the outputs of this TLGRU cell as the generated complete time series X ′.

4.3 � Discriminator architecture

The discriminator is composed of TLGRU cells and a fully connected layer. The task 
of the discriminator is to distinguish between fake complete time series X ′ and true 
incomplete time series X . The output of the discriminator is a probability that indicates 

(11)z = Encoder(X + η)

(12)X
′

= Deconder(z)

(13)GL = −D(X
′

)+ ��X ⊙M − X
′

⊙M�2

Fig. 3  The architecture of the generator. The generator is a denoising auto-encoder which is mainly 
composed by the TLGRU cell
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the degree of authenticity. We try to find a set of parameters that can produce a high 
probability when we feed true incomplete time series X , and produce a low probabil-
ity when we feed fake complete time series X ′ . The following is the loss function of the 
discriminator.

With the help of the TLGRU cell, the multivariate time series can be successfully 
handled. The last hidden state of the TLGRU cell is fed into one fully connected layer 
that outputs the p of being true. We also use the sigmoid function to make sure that 
p ∈ (0, 1).

4.4 � Imputation

For each true incomplete time series X , we try to map it into a low-dimensional vector 
z and reconstruct a fake complete time series X ′ from z , so that the fake time series X ′ 
is most close to the X . We use the corresponding values of X ′ to impute in the missing 
values of X . The imputation formula can be summarized as follows.

5 � Experiments
In this part, we will present the dataset and experiment results. In order to facilitate 
comparison with E2 GAN, we also selected a meteorologic dataset as the experimental 
dataset. The experiments on the dataset show that our method achieves a new state-of-
the-art imputation accuracy.

5.1 � Dataset

The KDD dataset is a public meteorologic dataset that comes from the KDD CUP Chal-
lenge 2018. The KDD dataset contains air quality and weather data which is hourly 
collected between 2017/1/30 to 2018/1/30 in Beijing. The records have a total of 12 vari-
ables which include PM2.5(ug/m3), PM10(ug/m3), CO(mg/m3), weather, temperature, 
and so on. One task of the KDD dataset is the imputation accuracy task. We selected 
11 common air quality and weather data observatories for our experiments. We first 
performed the operation of randomly dropping out 30% of records for all observato-
ries to obtain an experimental dataset with non-fixed collection timestamps. We then 
randomly dropped out p percent on the variables of the experimental dataset, where 
p ∈ {10, 20, · · · , 80} . Finally, we imputed these time series and calculated the imputation 
accuracy by the mean squared error (MSE) between original values and imputed values.

5.2 � Training settings

5.2.1 � Network details

We performed one task on a real public meteorologic dataset. For the KDD dataset, the 
input dimension is 132, the batch size is 16, the hidden unit number of all TLGRU cells 
is 64, and the dimension of the low-dimensional vector z is 128.

(14)DL = −D(X)+ D(X
′

)

(15)Ximputed = M ⊙ X + (1−M)⊙ X
′
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5.2.2 � Baseline methods

We adopted different imputation methods to carry out experiments on the KDD dataset, 
the following is an introduction of the methods.

•	 Median: We use median value to impute missing values simply.
•	 Mean: We use mean value to impute missing values simply.
•	 MF: MF imputation is used to factorize the incomplete matrix into low-rank matri-

ces and impute the missing values.
•	 KNN: The missing values are imputed by using k nearest neighbor samples.
•	 ISVD: IterativeSVD can impute the missing values by iterative low-rank SVD decom-

position.
•	 GAIN: GAIN is a GAN-based imputation method that uses a hint vector to impute 

the missing values.
•	 E2 GAN [10]: E2 GAN is an end-to-end GAN-based imputation model.

5.3 � Results and discussions

5.3.1 � Experimental results on KDD dataset

Table 1 is the imputation results on the KDD dataset by using the proposed method and 
other baseline methods such as Median imputation, Mean imputation, KNN imputa-
tion, MF imputation, ISVD imputation, GAIN imputation, and E2 GAN imputation. The 
first column of Table 1 is the missing rate which indicates how many percent values are 
dropped, and the other columns are MSE. The parameters of our method on the KDD 
dataset are: pretrain epoch is 10, epoch is 15, learning rate is 0.005, � takes values in 
{0.5, 1, 5, 10, 20, 40} , the values of αt and αl are visible in Table 1. We can see that in all 
cases, our method is one of the best methods and wins others methods in most cases.

To further compare the performance of the proposed method with E2 GAN model, we 
evaluated the effects of the discriminator and random noise η on both models. Table 2 

Table 1  The MSE results of the proposed method and other imputation methods on the KDD 
dataset. In most cases, our method owns the best imputation accuracy

Bold values indicates the minimum MSE at different missing rates

Missing rate Median Mean KNN MF ISVD GAIN E
2 GAN Ours

10% 0.519 0.386 0.344 0.361 0.356 0.359 0.334 αt=1,αl=0.5
0.336

20% 0.627 0.522 0.538 0.526 0.544 0.523 0.517 αt=0.8,αl=0.3
0.510

30% 0.683 0.608 0.628 0.621 0.620 0.616 0.584 αt=0.3,αl=0.3
0.578

40% 0.755 0.659 0.682 0.681 0.708 0.663 0.641 αt=1,αl=0.2
0.637

50% 0.816 0.735 0.733 0.760 0.740 0.714 0.694 αt=0.5,αl=0.3
0.697

60% 0.821 0.736 0.734 0.727 0.714 0.724 0.705 αt=0.4,αl=0.2
0.702

70% 0.855 0.776 0.807 0.766 0.759 0.768 0.745 αt=0.6,αl=0.2
0.741

80% 0.883 0.816 0.831 0.792 0.824 0.787 0.756 αt=1,αl=0.8
0.747
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shows the results of the MSE on the KDD dataset. The first row is the missing rate. The 
second and third rows show the results for the proposed method and E2 GAN. The 
fourth and fifth rows show the results for both models without the discriminator. The 
sixth and seventh rows show the results for both models without the random noise η.

5.3.2 � Discussions

The experimental results on the KDD dataset with different percentage missing rates are 
shown in Table 1. We can see that in the vast majority of cases, the proposed method 
achieved the smallest MSE compared to other baseline methods. In the baseline meth-
ods for imputing multivariate time series, the methods GAN based, such as GAIN and 
E2 GAN have a better performance than Median, Mean, KNN, MF, and ISVD. And fur-
ther, the methods GRUI based, such as E2 GAN can take into account the non-fixed time 
interval and fade the influence of the past observations determined by the time inter-
val matrix, improving the imputation accuracy effectively. In the proposed method, we 
optimized GRUI by introducing the location interval matrix. The weights of the time 
interval matrix and location interval matrix are controlled by introducing the hyper-
parameters αt and αl . Our proposed method wins the new state-of-the-art imputation 
accuracy for all percentages except 10% and 50%. We can also see that the choice of val-
ues for the hyper-parameters αt and αl will affect the imputation accuracy. We selected 
different hyper-parameters and conducted a large number of experiments, and finally 
obtained the experimental results in Table 1. However, the values of the hyper-parame-
ters in Table 1 may not be the optimal results, and we only use these values to improve 
the imputation accuracy. The specific numerical selection of hyper-parameter needs fur-
ther research.

The effects of the discriminator and random noise η on the proposed method and E2 
GAN are shown in Table 2. As we can see, the discriminator and random noise η have an 
impact on the imputation accuracy of both models. In particular, the proposed method 
outperforms E2 GAN in the vast majority of cases in all three experiments.

6 � Conclusion
In order to learn the latent relationships between observations with non-fixed time 
intervals and location intervals in multivariate time series, we propose a novel TLGRU 
cell for dealing with missing values. We made necessary modifications to the architec-
ture of the end-to-end missing values imputation model E2 GAN by replacing GRUI 
with TLGRU to make the generated fake sample closer to the original one, and the 

Table 2  The effects of the discriminator and random noise η on the proposed method and E2 GAN

Method/Missing 10% 20% 30% 40% 50% 60% 70% 80%

Ours 0.336 0.510 0.578 0.637 0.697 0.702 0.741 0.747

E
2 GAN 0.334 0.517 0.584 0.641 0.694 0.705 0.745 0.756

Ours-no-D 0.354 0.514 0.606 0.665 0.727 0.729 0.783 0.789

E
2 GAN-no-D 0.357 0.519 0.608 0.671 0.735 0.742 0.784 0.788

Ours-no-noise 0.347 0.517 0.611 0.655 0.723 0.730 0.768 0.782

E
2 GAN-no-noise 0.353 0.518 0.614 0.667 0.736 0.729 0.779 0.791
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generated fake but complete sample can be used to impute missing values. Experiments 
on a public meteorologic dataset show that our method outperforms the baselines on 
the imputation accuracy and achieves a new state-of-the-art result.
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