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1  Introduction
The wideband radar has a high range resolution, and its echo is called the target’s high-
resolution range profile (HRRP). HRRP has the advantages of easy acquisition and 
processing and contains rich target structure information such as radial dimension, scat-
terer’s distribution, and echo intensity. Therefore, HRRP-based radar automatic target 
recognition (RATR) is becoming a research hotspot in intelligent radar signal processing 
[1–4].

Several methods have been proposed in recent years to extract the spatial and tem-
poral features of HRRP. These methods can be roughly divided into two classes. (1) 
Considering HRRPs as random points scattered in high-dimensional space, HRRPs 
are assumed to follow specific statistical distributions when extracting the corre-
sponding spatial structural features. For example, the HRRPs are assumed to follow 
Gaussian distribution in [5–7], and the adaptive Gaussian classifier, Gaussian mix-
ture model (GMM), and support vector machine (SVM) are used to classify unknown 
radar targets, respectively; in [11], the HRRPs are modeled using the Gamma mix-
ture model to describe their statistical characteristics accurately; in [12], the subspace 

Abstract 

Stable and reliable feature extraction is crucial for radar high-resolution range profile 
(HRRP) target recognition. Owing to the complex structure of HRRP data, existing fea-
ture extraction methods fail to achieve satisfactory performance. This study proposes a 
new deep learning model named convolutional neural network–bidirectional encoder 
representations from transformers (CNN-BERT), using the spatio–temporal structure 
embedded in HRRP for target recognition. The convolutional token embedding mod-
ule characterizes the local spatial structure of the target and generates the sequence 
features by token embedding. The BERT module captures the long-term temporal 
dependence among range cells within HRRP through the multi-head self-attention 
mechanism. Furthermore, a novel cost function that simultaneously considers the 
recognition and rejection ability is designed. Extensive experiments on measured HRRP 
data reveal the superior performance of the proposed model.

Keywords:  High-resolution range profile (HRRP), Convolutional neural network (CNN), 
Bidirectional encoder representations from transformers (BERT), Attention mechanism, 
Intelligent target recognition

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Wang et al. 
EURASIP Journal on Advances in Signal Processing         (2022) 2022:89  
https://doi.org/10.1186/s13634-022-00909-9

EURASIP Journal on Advances
in Signal Processing

*Correspondence:   
wangpenghui@mail.xidian.edu.
cn; ai@hdu.edu.cn

1 National Laboratory of Radar 
Signal Processing, Xidian 
University, Xi’an 710071, China
2 School of Electronics 
and Information, Hangzhou 
Dianzi University, 
Hangzhou 310018, China

http://orcid.org/0000-0001-9659-5608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00909-9&domain=pdf


Page 2 of 26Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:89 

structure of HRRP is studied, while in [13], the multi-subspace structure of HRRP is 
exploited. (2) Viewing HRRP as a one-dimensional temporal sequence along the range 
dimension, sequential modeling of HRRP was conducted to extract the implicit evolu-
tion structures as features. For example, in [8, 9], the hidden Markov models (HMMs) 
are employed in HRRP target recognition; Pan et al. characterize the spectrogram fea-
ture extracted from HRRP via the TSB-HMM model, in which multi-aspect frames 
of one target are learned jointly [10]. In [14], the temporal factor analysis model is 
used. Though these methods achieved acceptable results in relatively simple tasks, 
their structural simplicity limits their description ability and performance in complex 
scenarios.

Owing to their excellent nonlinear feature extraction ability, deep learning models 
have gradually become the mainstream method in HRRP recognition. Deep learning-
based methods focusing on spatial or temporal structures have recently been applied 
to the radar HRRP recognition field. The convolutional neural network (CNN) models 
extract the local spatial structure features from the HRRP envelope using the convolu-
tion operation [22]. Wan et al. used CNN for extracting multi-resolution spectrogram 
features of HRRP and then weighed them using an attention mechanism [15]. In [32], 
Chen et al. integrated the target recognition and rejection tasks using CNN by add-
ing a deconvolution decoder. However, CNN models find it challenging to describe 
HRRP’s global structure due to the limited receptive field. Furthermore, the failure to 
capture the time-series correlation across the HRRP range cells causes a loss of valu-
able information reflecting the target physical structure characteristics.

Deep learning recurrent neural network (RNN) models have demonstrated excel-
lent sequence modeling ability in natural language processing, machine translation, 
and speech recognition. In RATR field, RNN is used to extract the long-range tem-
poral structure embedded in the HRRP sequence. In [36], Xu et al. proposed a new 
attention-based RNN model to reveal the structural correlation inside the target. In 
[35], Li et  al. proposed a bidirectional simple recurrent unit network (SAMBi-SRU) 
to extract robust features effectively from HRRP with good noise immunity. However, 
the dimension and length of input sequences in RNN models are coupled and cannot 
be adjusted independently, reducing the model’s flexibility. Furthermore, the long-
range dependence will be severely weakened as the sequence length grows, thereby 
limiting the application of deep models in HRRP target recognition.

This study overcomes the challenges of CNN and RNN-based models by character-
izing the spatial structure of the HRRP envelope and temporal dependence across range 
cells simultaneously. Specifically, we developed a novel deep model named convolutional 
neural network–bidirectional encoder representations from transformers (CNN-BERT) 
for HRRP feature extraction. It comprises a convolutional token embedding module 
and BERT module and adjusts the feature importance at the backend using an attention 
mechanism. The main characteristics of the proposed model are summarized below:

1.	 The convolutional token embedding module finely describes the HRRP’s local spatial 
structure and generates the sequence features. It considerably improves the proposed 
model’s early expression capability and the efficiency and flexibility of the HRRP 
modeling task.
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2.	 The BERT module models the long-range temporal dependence in HRRP. To the best 
of our knowledge, this is the first attempt to introduce a BERT-based model into the 
RATR field. The multi-head self-attention mechanism in the BERT module perfectly 
describes the dependency relationship between two range cells at any position and 
captures one-step local and global dependencies. Additionally, the BERT module has 
good parallelism.

3.	 In designing the cost function, recognition and rejection abilities are simultaneously 
considered. Furthermore, their roles can be adjusted according to the application 
scenario.

4.	 Experimental results and attention map visualization based on the measured data 
verify the effectiveness of the proposed method.

The remaining article is organized as follows. We analyze the principles and long-
range feature capture capabilities of related deep models in Sect. 2. The proposed model 
is introduced in Sect. 3. Section 4 details the training and testing process. Section 5 pre-
sents the performance analysis based on various experiments. Finally, the conclusions 
are offered in Sect. 6.

2 � Analysis of related deep learning models
Currently, deep neural networks are being used for HRRP recognition and have achieved 
good recognition performance. In particular, RNN and CNN can effectively describe the 
interdependence among range cells and are widely used. This section mainly analyzes 
the principles, structures, and long-range feature capture capabilities of CNN and RNN 
models to understand their ability to utilize the time-series information within HRRP 
range cells.

2.1 � RNN model

RNN model is widely used for sequential data representation. However, the original 
RNN has short-term memory capability and suffers from gradient explosion and van-
ishing problems with relatively long input sequences [16]. The long short-term memory 
network (LSTM) based on the gated RNN was proposed to improve long-term memory 
ability [17–19]. A schematic of the LSTM structure, comprising the input, hidden, and 
output layers, is shown in Fig. 1. A linear sequence is formed between the hidden layer 
nodes, which propagates the extracted information from front to back in chronological 
order.

Fig. 1  Schematic of the LSTM. Left: LSTM structure; right: input sequence and output feature dependency
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LSTM controls the importance weights of current inputs and historical information 
through input and forgetting gates. When important information appears in the input of 
the current moment, the input gate value is close to 1, while that of the forgetting gate is 
close to 0, and the historical information will be forgotten. The older the information, the 
higher the degree of forgetting. According to the principle of the gating-based RNN, we 
plot the dependency between the input sequences and output features in Fig. 1. The con-
necting lines indicate a dependency between the output and input, while the thickness 
indicates the dependency strength. For example, the output feature o3 mainly depends 
on the current input t3 and past inputs t3 and t2 . The strongest dependency relationship 
is with the input at the current time t3 and gradually decreases with the backward move-
ment of time.

However, for HRRPs, the output of one moment is related to the past and subse-
quent inputs. Thus, the bidirectional LSTM (Bi-LSTM) model (Fig.  2), which extends 
the direction of information transfer, is adopted [20]. Compared with LSTM, Bi-LSTM 
allows bidirectional information transfer using two hidden layers in inverse order. The 
dependency of Bi-LSTM is shown in Fig. 2; the output feature o3 is jointly influenced by 
the current input t3 , past inputs t3 and t2 , and future input t4 . Therefore, Bi-LSTM over-
comes the shortcomings of RNN and LSTM by obtaining the long-range dependency 
between sequence inputs using layer-by-layer recursion. However, this dependency will 
gradually weaken as the length of the sequences grows, limiting the sequence modeling 
ability of Bi-LSTM.

2.2 � CNN model

General CNN models contain convolutional and pooling layers in their convolutional 
modules [21]. This causes information loss due to the pooling layer discarding the 
position information of the sequences. Thus, the pooling layer is discarded when deal-
ing with sequential modeling problems, and one-dimensional convolutional layers are 
directly stacked to process sequences data. The CNN with a two-layer convolutional 
layer is shown in Fig.  3; the dashed box indicates the location of the convolutional 
operation.

The dependency between the input sequences and output features is shown in 
Fig. 3; each output neuron has the same local receptive field size and is directly asso-
ciated with the three input neurons. The strength of dependency on the three input 

Fig. 2  Schematic of the bidirectional LSTM. Left: bidirectional LSTM structure; right: input sequence and 
output feature dependency
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neurons is equal. The longest sequence dependency distance captured by the first 
convolutional layer depends on the kernel size, while that captured by the second 
convolutional layer is 5. The convolutional layers required to associate any two inputs 
increase with increasing distance between the two inputs. Therefore, the CNN model 
is difficult to describe HRRP’s global structure because the convolution operation 
can only capture limited local information. The connection between larger regions 
requires enhancing the perceptual field through multiple stacked layers.

3 � HRRP recognition based on the CNN‑BERT model
We propose a new deep learning framework for HRRP recognition named CNN-
BERT, as shown in Fig.  4. The proposed framework contains four modules: data 
preprocessing, convolutional token embedding, BERT, and classifier modules. The 
functionalities of each module are discussed in this section.

3.1 � Data preprocessing module

This module solves the intensity and translation sensitivity problems of HRRP. The 
intensity of HRRP is affected by many factors, such as target distance, radar trans-
mitter power, and antenna gain; thus, the intensity of the same target’s HRRP differs 
depending on observation conditions. This intensity sensitivity problem is solved by l2 
normalization in the preprocessing module. The raw HRRP sample can be expressed 
as x = [x1, . . . , xl , . . . , xL] , where xl denotes the magnitude of the lth range cell within 
HRRP, and L denotes the total range cells. The intensity-normalized HRRP sample 
xnorm can be expressed as follows:

In addition, HRRP is obtained by intercepting the radar return with a range win-
dow. The translational motion of the target varies the position of the HRRP in the 
range window, a phenomenon known as the translational sensitivity of HRRP. Here, 
an absolute alignment method can overcome this sensitivity issue. Specifically, a 
cyclic shift operation on xnorm places the center of gravity G at the center of the range 
window as follows:

(1)xnorm =
x

L
l=1 x

2
l

.

Fig. 3  Schematic of the long-range feature capture capability of CNN; left: CNN structure, right: input 
sequences and output feature dependency



Page 6 of 26Wang et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:89 

where x̃l denotes the magnitude of the lth range cell within xnorm.
The raw HRRP samples recorded consecutively for the same target and preprocessed 

HRRP samples are shown in Fig. 5.

3.2 � Convolutional token embedding module

The convolutional token embedding module uses the convolutional operation to char-
acterize the spatial structural features of the HRRP envelope and embeds the original 
HRRP to obtain the sequence features as input sequences for the BERT module. This idea 

(2)G =
∑L

l=1 l · x̃l
∑L

l=1 x̃l
,

Fig. 4  HRRP recognition based on the CNN-BERT framework
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was inspired by [25], which shows that early convolutions help transformers see better; 
we use convolutional operation instead of the time-domain segmentation and patchify 
methods to obtain input sequences for the BERT module. The time-domain segmenta-
tion method used in RNN or LSTM causes information redundancy and dimensionality-
length constraints [23]. The direct patchify method, used by neural networks such as 
ViT [24], is implemented with a large convolutional kernel and large stride, violating the 
typical design of the convolutional layer. Moreover, the hard locality constraint in the 
early layer hinders the network’s expressive ability. By contrast, the extracted sequence 
features by the convolutional token embedding module retain the local structure infor-
mation in HRRP and have translation and scaling invariance. Moreover, the convolu-
tion kernel size and the number of the convolution channels independently control the 
number and dimension of token features to realize the decoupling of the dimensional-
ity length. Furthermore, the sequence feature generation avoids hard locality constraints 
and enhances the initial expression ability of the network.

The convolutional token embedding module (Fig. 6) contains three parts: the convo-
lutional layer, batch normalization (BN) layer, and activation layer. The preprocessed 
HRRP samples x̃ are convolved by K one-dimensional convolutional kernels to obtain 
the output sequence F, that is computed as

(3)F(l, k) = (x̃ ⊗ kernel(k))(l),

Fig. 5  Comparison of raw (left) and preprocessed (right) HRRP samples

Fig. 6  Schematic of convolutional token embedding
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where ⊗ denotes the convolutional operation and kernel(k) denotes the kth convolu-
tional kernel. F(l) =

∑

K

k=1 F(l, k) denotes the token embedding vector of the lth range 
cell.

The output sequence F passes through the BN and activation layers to generate the 
sequential embedding representation Fembedding of HRRP. The output sequence feature 
map is given in Fig. 7. The X-axis represents the range cell dimension, and the Y-axis 
represents the feature channel dimension. Further, the output feature of one channel is 
visualized on the right. It can be seen that the feature focuses more on the local charac-
teristics of the target.

3.3 � BERT module

BERT has demonstrated superior performance and is gradually replacing RNNs in 
long-term dependence modeling problems [26]. The BERT module uses the depth 
sequence encoding capability to extract temporal structural information embedded in 
input sequences and compensate for the lack of timing modeling capability of the con-
volutional token embedding module. The input sequence here refers to the sequential 
embedding representation of HRRP. The BERT module comprises a positional encoding 
layer and Nbert successive encoder blocks. Each encoder block comprises a multi-head 
self-attention layer that aggregates the relationship within the token embedding vector 
of the range cell, a feed-forward layer that extracts the feature representation at the posi-
tion level, and an add and norm layer. The implementation details of each layer are as 
follows.

3.3.1 � Positional encoding

The features extracted by the convolutional token embedding module do not explicitly 
include the positional relationship within range cell token embedding. The positional 
encoding technique fully uses the sequential relationship among range cells of HRRP. 
The sine and cosine functions can encode the odd and even bits of the input sequences, 
respectively, as follows:

Fig. 7  Output sequence features a map of convolutional token embedding module; left: two-dimensional 
feature map, right: single channel feature
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where l denotes the index of range cell in the input sequences, P(l, k) denotes the kth ele-
ment in the lth range cell of the positional encoding vector P, with 0 ≤ l < L , k ≤ dmodel.

According to the properties of sine and cosine functions, P(l + i) of the (l + i)th 
range cell can be expressed as a linear combination of P(l) and P(i).

The sequence feature map obtained by adding the output feature of the convolution 
module and positional encoding vector (Eq. 6) is shown on the right side of Fig. 8.

The texture in the feature map after positional encoding represents the unique 
position information, strengthening the temporal structure in the extracted HRRP 
features.

3.3.2 � Multi‑head self‑attention layer

The multi-head self-attention layer captures the local and global structure of input 
feature sequences and extracts the long-term dependency within range cells of HRRP.

3.3.2.1  Scaled dot‑product attention  The proposed framework adopts a scaled dot-
product attention mechanism for fast execution and memory space efficiency. A trans-
formation layer maps input sequences Fconv_emb ∈ R

L×d mod el to three different sequential 
vectors, i.e., query Q, key K, and value V, as follows:

(4)P(l, k) =
{

sin
(

l/10000k/dmodel
)

s.t. k mod 2 = 0

cos
(

l/10000k−1/dmodel
)

s.t. k mod 2 = 1
,

(5)P(l + i, k) =
{

P(l, k) ∗ P(i, k + 1)+ P(l, k + 1) ∗ P(i, k) s.t. k mod 2 = 0

P(l, k) ∗ P(i, k)− P(l, k − 1) ∗ P(i, k − 1) s.t. k mod 2 = 1

(6)Fconv_emb(l, k) = Fembedding(l, k)+ P(l, k)

Fig. 8  Schematic of positional encoding; left: output feature map of the convolutional token embedding 
module, middle: positional encoding vectors, right: sequential feature map after positional encoding
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where Wq ∈ R
dmodel×dq , Wk ∈ R

dmodel×dk , and Wv ∈ R
d mod el×dv are the three weight 

matrices; dq , dk , and dv are dimensions of the query, key, and value, respectively.
Secondly, as shown in Fig. 9, the query is explicitly aggregated with the corresponding 

key by calculating the product of Q and K. A scaling factor 
√

dk  and Softmax opera-
tion are subsequently applied to get the attention weights of the value V, also called an 
attention map. Combining the resulting attention weights with V, we obtain the output 
features Fselfatt as follows:

3.3.2.2  Multi‑head self‑attention mechanism  The HRRP data have a typical multi-sub-
space structure [13], while the single-head self-attention module can only obtain limited 
information from one of these subspaces. Therefore, the multi-head attention mechanism 
extracts features from multiple subspaces to enrich the diversity of feature representa-
tions.

(7)
Q = Fconv_embWq

K = Fconv_embWk ,

V = Fconv_embWv

(8)Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V

Fig. 9  Schematic of scaled dot-product attention
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As shown in Fig. 10, Q, K, and V are projected to multiple feature subspaces using sev-
eral independent attention heads simultaneously. The resulting output vectors of each 
subspace are concatenated and mapped to the final output Fatten as follows:

where h is the head number, headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ) denotes the result-

ing vectors of each head, WQ
i ∈ R

dmodel×dk , WK
i ∈ R

dmodel×dk , and WV
i ∈ R

dmodel×dv 
are the three groups of weight matrices, and WO ∈ R

hdv×dmodel is the output projected 
matrix.

3.3.2.3  Analysis of  long‑range feature extraction capability  The multi-head attention 
mechanism is the core operation in the BERT module. All input sequences can be input 
into the multi-head attention layer simultaneously (Fig. 11 left), ensuring the parallelism 
capability of the model. Meanwhile, the feature dimension of the output and input layers 
are the same to facilitate the stacking of the BERT modules.

According to Eq. (8), the self-attention mechanism directly uses the product of Q and 
K to obtain the attention weights. Each element in the input sequences is compared 
with other elements, and the distance between each element is equal. Accordingly, the 

(9)Fatten = Concat(head1, ...headh)W
O
,

Fig. 10  Schematic of the multi-head self-attention mechanism

Fig. 11  Long-range feature capture capability of BERT module. Left: structure of the multi-head attention 
layer; right: the dependency relationship between input sequences and output features
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schematic of the input sequences and output feature dependency is drawn on the right 
side of Fig. 11. Each output layer feature depends on the input sequences at all moments, 
and the dependency degree is the same without attenuation. Therefore, only one multi-
head attention layer is needed, and the longest dependency distance captured by the 
output layer features is the length of the whole sequences. Thus, the BERT module can 
capture the global and local features using the multi-head attention mechanism.

3.3.3 � Feed‑Forward layer

The feed-forward layer enhances the separability of the extracted features using two suc-
cessive feed-forward networks with a ReLU activation to map the feature representation to 
a high-dimensional hidden space. The output of the feed-forward layer is given as follows:

where W1, W2, b1, and b2 represent the weight matrices and biases of two linear changes, 
and max(·, ·) represent the maximum function.

3.3.4 � Add and Norm layer

The add and norm layer performs residual connection and layer normalization (LN) oper-
ation. Since the gradient of the deep neural network during training will gradually van-
ish during the backpropagation process, adjusting the parameters of the previous layers is 
challenging. A residual connection can overcome the vanishing gradient problem caused 
by stacking multilayer BERT modules and facilitate the building of deeper models.

Moreover, LN can stabilize the model training process. Unlike BN in the convolutional 
token embedding module, LN can address the interval covariate shift problem [27]. 
Specifically, BN normalizes the features of the same channel among different samples, 
whereas LN normalizes the features of the same sample in different channels, and the 
computation is independent of the batch size parameter. The calculation process of LN 
can be expressed as follows:

where x is the input of the LN layer, µ and σ 2 denotes the mean and the variance, respec-
tively, ε is a very small positive number, and α and β are the scaling and translation 
parameters, respectively. Let M denote the number of neurons in the LN layer; then µ 
and σ 2 can be calculated as follows.

3.4 � Classifier module

The classifier module comprises attention and Softmax layers. The attention mechanism 
strengthens the deep features useful for recognition by assigning weights to the output 

(10)FFN(x) = max(0, xW1 + b1)W2 + b2,

(11)LN(x) = α ×
x − µ√
σ 2 + ε

+ β ,

(12)

µ =
1

M

M
∑

i=1

xi,

σ 2 =
1

M

M
∑

i=1

(xi − µ)2
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features Obert of the BERT module along the feature channel dimension. Thus, the fea-
tures FATT = {FATT(l)}Li=1 can be obtained as follows:

where Obert(l, k) denotes the kth element in the lth range cell of the output feature vector 
and a(l, k) denotes the weight of the corresponding elements of Obert(l, k) . The proposed 
model can automatically learn a(l, k) according to the importance of the features.

Next, linear mapping and Softmax operation are adopted to classify the feature FATT . 
The posterior probability that x belongs to the cth target can be calculated as follows:

where Fs = WsFATT and Ws is a weight matrix, Fs(i) refers to the ith element in the 
vector Fs , C denotes the class number of in-library targets, c ≤ C + 1 . Finally, an HRRP 
sample x is classified into the c0-class as follows:

3.5 � Cost function

The cost function determines the function and performance of the model. In RATR, 
besides recognition performance, identifying out-of-library targets is important. Thus, 
while designing the cost function, we consider the recognition and rejection perfor-
mance simultaneously. The rejection function is integrated into our model by regarding 
the out-of-library samples as the (C + 1)th class in the training process. A nonnegative 
regularization hyperparameter λ balances the recognition and rejection ability, and the 
cost function is defined as follows:

where Lrecognition = − 1
N1

N1
∑

n=1

C+1
∑

c=1

z(n) ln p
(n)
c (x) , and Lrejection = − 1

N2

N2
∑

n=1

C+1
∑

c=1

z(n) ln p
(n)
c (x) . N1 denotes  

the total number of in-library samples identified as within the data library and outlier 
samples identified as out of the data library. N2 denotes the total number of inner sam-
ples identified as out of the data library and outlier samples identified as within the data 
library. N = N1+ N2 represents the total number of samples in each mini-batch and z(n) 
represents the real label of the nth sample in the corresponding mini-batch. Positive and 
negative λ implies that the model is more concerned with rejection and recognition per-
formances, respectively.

4 � Training and testing procedure
The detailed training test flow is shown in Algorithm  1. We first preprocess the raw 
HRRP data and then initialize the model parameters in the training phase. After training 
the model with the mini-batch-based BP algorithm, the model parameters are saved for 

(13)FATT(l) =
K
∑

k=0

α(l, k)Obert(l, k),

(14)Pc(x) =
exp (Fs(c))

∑C+1
i=1 exp (Fs(i))

,

(15)c0 = arg max
c

Pc(x).

(16)L = Lrecognition + �Lrejection,
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testing. In the testing phase, we first preprocess the test HRRP samples, input these sam-
ples for forward propagation, and finally obtain the recognition results.
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5 � Results and discussion
5.1 � Experimental dataset

The recognition performance of the proposed model is examined by the measured 
data of three types of aircraft targets. Yark-42 is a large-sized jet, Cessna Citation S/II 
is a small jet, and An-26 is a medium-sized propeller aircraft [14, 29]. The division of 
training and test sets is consistent with that in [28]. The parameters of the radar and 
aircraft targets are shown in Table 1.

Furthermore, ten classes of simulated HRRPs are generated as train out-of-library 
samples to evaluate the recognition performance. Each class have 1600 HRRP sam-
ples. In addition, 1600 HRRPs of real aircraft targets are used as test out-of-library 
samples to detect the rejection performance in the model testing phase.

5.2 � Model setup

5.2.1 � Proposed model

The parameter settings of the CNN-BERT model are set as follows to evaluate the 
recognition and rejection performance of the proposed model. The kernel size S of 
the convolutional token embedding module is set to 5, the number of convolutional 
channels K to 768, and the step size to 1. For the BERT module, we set the attention 
head number h to 8, and Nbert to 6. The dimensions of W1 and W2 in the feed-forward 
layer are set to 768 × 3072 and 3072 × 768, respectively. For the cost function, λ in 
Eq. (16) is set to 2. The CNN-BERT model is built according to the above parameters.

5.2.2 � Comparative models

The proposed model is compared with several conventional HRRP recognition mod-
els, including SVM and GMM in traditional models, AE and CNN in the deep non-
time-series models, and RNN in the deep time-series models.

The SVM model is implemented using the LIBSVM toolbox and the kernel function 
with radial basis function. The GMM is implemented using the scikit-learn toolkit for 
python.

The AE model contains a stack of five AEs, where the number of neurons per layer 
is 300, 600, 900, 2000, and 3, respectively. The CNN model consists of three convo-
lutional and two fully connected layers. The number of convolutional channels in 

Table 1  Radar and aircraft parameters

Radar parameters Center frequency 5520 MHz

Pulse repetition frequency 400 Hz

Bandwidth 400 MHz

The plane Length (m) Width (m) Height (m)

Yark-42 36.38 34.88 9.83

An-26 23.80 29.20 9.83

Cessna Citation S/II 14.40 15.90 4.57
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each layer is 8, 16, and 32, and the kernel size is 1 × 16 with a step size of 2. The two 
fully connected layers contain 300 and 3 neurons.

The RNN implementation is based on LSTM cells whose input sequences are 
extracted from HRRP samples based on the time-domain segmentation method with 
a sliding window. The sliding window step size is set to 16 and 8, respectively.

5.3 � Recognition performance evaluation

5.3.1 � Experimental results using all training data

Table 2 compares the recognition accuracy with three aircraft targets for the GMM, 
SVM, CNN, AE, RNN, and proposed model. Bold values in  this  Table means the 
highest average recognition rate (ARR).  Compared with SVM and GMM models, 
the average recognition rate of the proposed model is 4.23% higher than the best 
SVM model. Compared with the AE and CNN models, the ARR of the proposed 
model is 5.90% higher than the best AE model. Compared with the RNN model, the 
ARR of the proposed model is improved by 5.77%.

The recognition performance needs to meet minimum standards for practical 
engineering applications by considering the overall recognition performance while 
balancing the recognition performance of each target type. Therefore, we compare 
the recognition balance of each method by analyzing the confusion matrix in Fig. 12. 
The difference between An-26 and Cessna aircraft with the highest and lowest rec-
ognition accuracy, respectively, is only 1.10%. Thus, the proposed method can model 
the characteristics of the three aircraft in a more balanced manner. Although the 
overall recognition accuracy of the comparative models exceeded 90%, only the 
SVM model exceeded 90% recognition accuracy for each type of aircraft target. 
Thus, based on the SVM model, Cessna and An-26 misjudge each other more. The 
difference between Yark-42 and Cessna aircraft with the highest and lowest rec-
ognition accuracy, respectively, is 6.47%. Thus, the SVM model fails to extract the 
unique attributes of each class of aircraft targets widening the gap between Cessna 
and An-26 and causing uneven recognition performance. The problem is consider-
ably evident in CNN, GMM, AE, and RNN models. In contrast, our proposed model 
integrates local structure features of targets, and long-range features between range 
cells, fusing multi-level physical structure features for recognition. With its excellent 
nonlinear sequence modeling ability to extract better separable features, the recog-
nition performance of each class is balanced.

Table 2  Recognition results of different models (%)

Methods An-26 Cessna Yark-42 Average

GMM 94.98 81.33 99.09 91.80

SVM 94.95 92.20 98.67 95.27

CNN 91.88 85.86 97.7 91.81

AE 95.1 89.08 96.61 93.60

RNN 91.23 93.78 96.18 93.73

Proposed model 99.90 98.80 99.80 99.50
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5.3.2 � Recognition performance evaluation with different training sample sizes

To evaluate the impact of training set size on the recognition results, we sampled the 
training data set uniformly with different sampling rates and obtained 4 small sam-
ple sets of sizes 34,560, 8640, 2160, and 1080. The 137,880 HRRP training samples are 
divided into multiple frames, with 4 samples in each frame. Each frame randomly selects 
one HRRP sample to form the first small sample dataset. Those small sample sets are 
generated from the frames with sample sizes 4, 16, 64, and 128.

Table  3 compares the recognition accuracy with different training data sizes of the 
proposed model with that of the conventional models. The proposed model exhibits 
superior recognition performance under small samples condition compared with other 

Fig. 12  Confusion matrix of different models
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models. The smaller the number of training samples, the more prominent the effect of 
our model. Particularly, when the number of training samples is 1080, the proposed 
model can reach an ARR of 96.20%. Compared to our method, the performances of 
the SVM, GMM, AE, CNN, and RNN methods are lowered by 24.91%, 9.09%, 13.58%, 
14.61%, and 12.10%, respectively. Moreover, the recognition accuracies of other mod-
els significantly decline when the training data number decreases. Thus, the proposed 
model can solve small sample problems.

5.4 � Rejection performance evaluation

We integrate the out-of-library rejection task into the recognition model by introducing 
an importance parameter λ. We expect that the introduction of out-of-library samples in 
the training phase can widen the spacing between in-library and out-of-library samples 
without changing the differentiability of the in-library samples. Therefore, we used the 
idea of weighting to equalize the importance of in-library recognition loss and out-of-
library rejection loss using λ.

Because unreasonable setting of λ can reduce the model’s recognition and rejection 
performance, we first analyze the impact of λ on the proposed model before com-
paring the rejection performance of different models. We use the ARR and the area 
under the receiver operating characteristic curve (AUC) as the evaluation index of 

Table 3  ARRs of different models in different training sample sizes (%)

Training data number 34,560 8640 2160 1080

GMM 0.8731 0.8561 0.8312 0.7732

SVM 0.9167 0.8862 0.8591 0.8415

CNN 0.8807 0.8664 0.8554 0.7516

AE 0.9229 0.9179 0.8867 0.8511

RNN 0.9208 0.9159 0.8758 0.8564

Proposed model 0.9910 0.9840 0.9810 0.9620

Fig. 13  Confusion matrix comparison of different methods using all training data
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recognition and rejection performances, respectively [30–34]. We plot a line chart 
of AUC and accuracy with different λ, as shown in Fig.  13. The parameter λ influ-
ences the recognition and rejection performances; the rejection performance being 
more sensitive to λ variations. When λ = 1, the model degenerates to a general rec-
ognition model with a recognition function; the recognition accuracy is 0.987, while 
AUC is 0.82. When we increase λ, the model is more focused on the rejection perfor-
mance. Thus, when � = 2 , the recognition and rejection performances of the model 
are improved, reaching the peak value; the recognition accuracy is 0.998, and AUC is 
0.98. When λ continues to increase, recognition and rejection performance decreases. 
At this time, the model is overly concerned with rejection performance and ignores 
recognition performance, resulting in small loss weights for recognition, thereby 
decreasing recognition and rejection performances.

To graphically portray the influence of λ on the rejection performance, we plot AUCs 
with optimal and general λ as shown in Fig. 14. The AUC with � = 2 and 2.5 is 0.98 and 
0.85, respectively. Because λ significantly impact the rejection performance, we set � = 2 
for the subsequent evaluation of the rejection performance.

Fig. 14  AUC obtained by the proposed model. a AUC with λ = 2, b AUC with λ = 2.5

Fig. 15  Rejection performance of our model and comparative models on measured data
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Figure 15 shows the receiver operating characteristic curve of models to quantify the 
rejection performance of each model. The AUC values are 0.98, 0.12, 0.93, 0.65, 0.59 and 
0.73 for our proposed model (� = 2) , GMM, SVM, CNN, RNN, and AE models, respec-
tively. Our proposed model rejects the out-of-library samples better than the other mod-
els. The introduction of out-of-library samples in the training phase and adjustment of 
the model cost function by the importance parameter λ enhances the rejection perfor-
mance of the proposed model based on the guaranteed recognition performance.

5.5 � Visualization

5.5.1 � Visualization of long‑range dependency

We also provides an intuitive and effective way to inspect the variation of long-range 
dependency at different layers. This is done by visualizing the attention map of the BERT 
module using Eq. (8). Attention values indicate the strength of the interdependence rela-
tionship between different range cell sequences and the importance of different range 
cells. In Fig. 16, the horizontal and vertical coordinates indicate the HRRP range cells. 
Brighter colors represent higher attention values in the attention map.

Attention maps of the self-attention layer in the shallow, middle, and deep layers of 
the BERT encoder block are shown in Figs. 17, 18, and 19, respectively. For simplic-
ity, we only show the attention map of 5 heads, while the BERT encoder block has 8 
heads. To show the interdependency between each range cell more comprehensively, 
we also give the average map of 8 different heads, which integrates the interdepend-
ency obtained by different heads from different perspectives. In Fig. 17a–i, the head 
learned interdependence relationship varies; the shallow layer BERT encoder block 
initially extracts the long-distance features and learns relatively strong interdepend-
ency within the range cells in the HRRP support area. Compared with Fig. 17, Fig. 18 
shows the expansion of the strong correlation area, indicating that the middle layer 
BERT encoder block can better extract the long-range features. The attention map in 
the deep layer BERT encoder block in Fig. 19 shows that the important information 

Fig. 16  Schematic of attention map
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is aggregated to specific range cells, and the attention value is irrelevant to the query 
Q. As shown in Fig. 19f, the attention map shows vertical lines. Combined with the 
physical properties of HRRP, range cells in the support area can better reflect the 
radial size of the target and scattering point distribution. Moreover, it explains why 

Fig. 17  Attention map of each head of shallow multi-head self-attention layer; a–e attention map of 5 
different heads, f average attention map

Fig. 18  Attention map of each head of middle multi-head self-attention layer; a–e attention map of 5 
different heads, f average attention map
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Fig. 19  Attention map of each head of deep multi-head self-attention layer; a–e attention map of 5 different 
heads, f average attention map

Fig. 20  Average attention map in the three encoder blocks of Yark-42 aircraft; a the shallow layer, 
b the middle layer, c the deep layer

Fig. 21  Average attention map in the three encoder blocks of An-26 aircraft; a the shallow layer, 
b the middle layer, c the deep layer
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the important information is mainly aggregated to the range cells in the support area 
and that the most core aggregation point is the peak position of HRRP.

We selected the representative attention map obtained from the three types of air-
craft to observe the commonality and differences. In Figs. 20, 21 and 22a–c represent 
the average attention map in the shallow, middle, and deep layers of the BERT encoder 
block, respectively. A comparison of Figs. 20, 21 and 22 shows a significantly different 
strong correlation region size. The strong correlation region of Yark-42 aircraft is the 
largest, followed by that of An-26 and Cessna Citation S/II aircraft, which corresponds 
to the actual target size, as shown in Table 1. Therefore, the attention map extracted by 
the BERT module can reflect the target size information, indicating that the model has 
learned the physical structure variability between different targets.

5.5.2 � Visualization of separability

For a simple and intuitive analysis of the separability of the features extracted by different 
models, the PCA visualization projections of the deep feature vectors extracted by our 
proposed model and the deep neural network model are given in Fig. 23; “other” indi-
cates out-of-library samples. PCA operation is performed on the corresponding deep 
feature, and the 2D projection matrix is constructed using the principal components 
corresponding to the largest two feature values. The comparison of visualization perfor-
mance reveals that our model has a smaller overlap region between in-library samples 
and between in-library and out-of-library samples than AE, CNN, and RNN models. The 
good separability and rejection performance further verify that the features extracted by 
the proposed model are suitable for recognition and rejection tasks.

6 � Conclusion
This study proposed an improved BERT-based deep neural network for radar HRRP 
target recognition. The convolutional token embedding module provides the input 
sequence feature reflecting the local spatial structure of the target, and the BERT 
module describes the long-range dependency within the input sequence to extract 
deep temporal features. The experimental results reveal that the ARR of the proposed 
model is better than other comparative models when all training samples are applied 
and is more balanced across targets. In addition, even when the training sample size 

Fig. 22  Average attention map in the three encoder blocks of Cessna Citation S/II aircraft; a the shallow layer, 
b the middle layer, c the deep layer
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is reduced to 1/128 of the original training samples, the ARR of the proposed model 
for each aircraft is over 96%. Finally, the proposed model has a much higher rejection 
capability with  the AUC being 0.98 and can effectively deal with recognition tasks 
in complex environments. Thus, the proposed model has excellent engineering util-
ity and extends the application of HRRP target recognition. In future work, we are 
devoted to lightweight deep learning model research and further improve computa-
tion and parameter efficiency of the proposed model.
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