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1 Introduction
The multitarget tracking (MTT) algorithms to estimate the number and states of tar-
gets on the basis of the measurements of the sensors are widely used in military and 
civil fields such as aerospace target surveillance and visual tracking. Within the frame-
work of finite set statistics (FISST), the random finite set (RFS) [1, 2]-based filters have 
been proposed for MTT as they are computational tractable. The probability hypothesis 
density (PHD) filter [3–5], which propagates the first moment (PHD) to approximate 
the multitarget probability density function (PDF), is the first moment approximation 
of multitarget Bayesian filter. The cardinalized PHD (CPHD) filter [6–10], which propa-
gates the PHD as well as the cardinality distribution, is also a moment approximation 
of multitarget Bayesian filter. The predicted multitarget process and the clutter process 
are modeled as Poisson RFS in the PHD filter and modeled as identical, independently 
distributed cluster (IIDC) RFS in the CPHD filter. As the IIDC RFS is a generalization of 
the Poisson RFS, the CPHD filter is a generalization of the PHD filter. Compared to the 
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PHD filter, the CPHD filter has the following advantages. First, the CPHD filter produces 
more stable estimate of the target number. Therefore, the tracking and positioning per-
formance is better than the PHD filter. Second, the classical CPHD filter admits more 
general clutter processes than the classical PHD filter. Lastly, suppose that the clutter 
process is IIDC RFS and the target number is no larger than 1, the CPHD filter is not an 
approximate filter but an accurate single-target filter.

With the development of sensors and the complication of MTT application scenarios, 
the point target assumption in the ordinary tracking filter is not valid and the multiple-
detection assumption is necessary. The multiple-detection assumption, in which one 
target may generate multiple measurements in a single frame, includes the extended tar-
get assumption, the multipath propagation assumption, and multiple sensors assump-
tion. For example, in the extended target scenario, a target can be modeled as a series of 
point scatterers and produces multiple measurements due to the increased resolution 
of the sensor. In order to track multiple extended targets, the extended target PHD (ET-
PHD) filter [11–15] and the extended target CPHD (ET-CPHD) filter [16, 17] have been 
researched. However, some multiple-detection scenarios, such as the multipath scenar-
ios, are not as simple as the extended target scenario. In the early warning of missiles, 
satellites and bombers by the over-the-horizon radar (OTHR) [18], a target may produce 
multiple measurements as the radar signals are scattered by different ionospheric layers. 
To track multiple targets under the multiple-detection assumptions, the multiple-detec-
tion PHD (MD-PHD) filter [19] has been proposed. However, the CPHD filter under the 
multiple-detection assumptions has not been proposed except the ET-CPHD filter and 
the multisensor CPHD filter [20].

In the PHD and CPHD filter, the clutter process is modeled as Poisson and IIDC RFS, 
respectively. But these two models are unable to describe some complicated clutter pro-
cess [21, 22]. Particularly when the target is submerged in the clutter background, the 
distribution of clutter process is more complicated [23]. The general PHD filter [24], 
which is the underlying theoretical basis for all kinds of PHD filters, allows the clutter 
process to be arbitrary. But in the PHD filters that have been implemented, such as the 
ET-PHD filter and the MD-PHD filter, the clutter process is still modeled as Poisson 
RFS. Only in [25], a PHD filter which assumes a negative binomial distribution for the 
clutter number has been proposed. Similarly, the clutter process in the ET-CPHD filter is 
modeled as IIDC RFS. In the previous research, we proposed the implementation of the 
arbitrary clutter PHD filter [26] and the arbitrary clutter extended target [27] PHD filter. 
However, the CPHD filter that can be applied to arbitrary clutter has not been proposed.

The general PHD filter proposed in [24] can adapt to arbitrary clutter process and tar-
get measurement process. Moreover, it is the underlying theoretical basis for various 
PHD filters [2]. In [28], a general Bernoulli filter was proposed by us to apply the Ber-
noulli filter [29, 30] to arbitrary clutter and target measurement process. It is the under-
lying theoretical basis for various Bernoulli filters. However, the CPHD filter that can be 
applied to arbitrary clutter and target measurement process has not yet been proposed. 
The recently proposed Poisson multi-Bernoulli mixture (PMBM) filter [31] has not been 
generalized to arbitrary clutter and target measurement process.

In our work, we propose a general CPHD filter. The proposed filter allows the clutter 
process and target measurement process to be arbitrary. Moreover, the proposed general 
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CPHD filter is the general form of all kinds of CPHD filters, PHD filters, and Bernoulli 
filters. To make the general CPHD filter computationally feasible, we propose a general 
partitioning algorithm. To illustrate the validity of the general CPHD filter, it is applied 
to the multiple-detection model of the OTHR. The simulation results show that, com-
pared to the MD-PHD filter, the general CPHD filter improves the accuracy of the state 
estimates and reduces the variance of the estimated number of targets.

This paper is organized as follows: Sect.  2 briefly introduces the theory of RFS and 
RFS-based filters. In Sect.  3, the general CPHD filter is proposed and the generality 
of the filter is proven. Results and discussion of the general CPHD filter are shown in 
Sect. 4. Section 5 presents conclusions.

2  Background and problem formulation
This section briefly introduces the RFS theory and the RFS-based filters. Ydenotes a RFS, 
y ∈ Y  denotes a random vector, and Wdenotes a subset of Y. When used to modeled the 
target state set or the measurement set, the symbol Y is replaced by X or Z.

2.1  Nomenclature, multitarget calculus and important multitarget processes

The functionalf[h], which is widely used in this work, is the function in the variable h(y) , 
where 0 ≤ h(y) ≤ 1 . If f [h] = f (y)h(y)dy , f[h] is a linear functional. For a RFS Y, the 
power functional is defined by hY =

∏

y∈Y h(y) if Y = ∅ and hY = 1 otherwise.
If the multitarget PDF is f(Y) , its probability generating functional (PGFL) is defined as

The PDF f(Y) can be expressed by the PGFL G[h] as

In our work, the derivative is Volterra functional derivative, and the integral of RFS is set 
integral [1].

The cardinality distribution of Yis p(n) = Pr(|Y | = n) =
∫

|Y |=n f (Y )δY  , |Y | is the 
number of elements of Y.

If 0 ≤ y ≤ 1 is a scalar, the probability generating function (PGF) of the RFS Y is

Suppose thatG(n)(y) is the nth derivative of the PGF G(y), the cardinality distribution can 
be calculated as

The PHD D(y) can be expressed as the functional derivatives of the PGFL,

Let F [h] = F1[h]F2[h] be a product of 2 functionals, for a RFS Y, the product rule can be 
expressed as

(1)G[h] =

∫

hY f (Y )δY .

(2)f (Y ) = δG[0]/δY .

(3)G(y) = G[h]
∣

∣

h=y
=

∫

y|Y |f (Y )δY =
∑

n≥0

p(n)yn.

(4)p(n) = G(n)(0)/n! .

(5)D(y) = δG[1]/δy .
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The summation is taken over all subsets of Y.
The permutation coefficient Pn,i is defined by Pn,i = n!/(n− i)! if n ≥ i and Pn,i = 0 

otherwise.
An IIDC RFS Y is one whose objects are independent and identically distrib-

uted with the spatial distribution s(y) and cardinality distribution p(n). The PGFL 
and the multitarget PDF are G[h] = G(s[h]) and f (Y ) = |Y |!p(|Y |)sY  , where 
G(y) =

∑

n≥0 p(n)y
n is the PGF and s[h] denotes a linear functional.

A Poisson RFS Y is an IIDC RFS whose cardinality distribution is Poisson distri-
bution. If the expected number is µ , the cardinality distribution is p(n) = e−µµn/n! , 
and the PHD is D(y) = µs(y) . The PGFL and the multitarget PDF can be expressed as 
G[h] = eD[h−1] and f (Y ) = e−µDY  , where D[h− 1] denotes a linear functional.

A Bernoulli RFS Y is an IIDC RFS that satisfies |Y | ≤ 1 . If Pr (|Y | = 1) = q , 
the PGFL and the multitarget PDF can be expressed as G[h] = 1− q + qs[h] and 
f (Y ) = (1− q)δ|Y |,0 + qsY δ|Y |,1.

The IIDC RFS needs to be represented by the spatial distribution and cardinality 
distribution together, while the Poisson RFS, whose cardinality distribution is Poisson 
distribution, can be represented by the PHD alone. The Bernoulli RFS can be rep-
resented by the spatial distribution and the probability of existence. Therefore, the 
CPHD filter jointly propagates the PHD and cardinality distribution, the PHD filter 
only propagates the PHD, and the Bernoulli filter propagates the probability of exist-
ence and the spatial distribution. The Poisson RFS and Bernoulli RFS are the special 
case of the IIDC RFS, so the PHD filter and the Bernoulli filter are the special case 
of the CPHD filter, although they do not jointly propagate the PHD and cardinality 
distribution.

2.2  General Chain rule

In the framework of FISST, a partition ℘ of a RFS Y is a collection of non-empty dis-
joint subsets (called cells). The notation ℘∠Y  denotes all partitions of Y, and the cells 
are denoted by W. In our work, the symbol |℘| denotes the number of cells in ℘ . If the 
set Y is a measurement set, the partition is important when multiple measurements 
can stem from the same target. But for a measurement set, Y = ∅ is possible. In order 
to characterize the partition of all sets, define the partition ℘ of the empty set as fol-
lows. If Y = ∅ , then the partition is ℘ = ∅ , and |℘| = 0 . When ℘ = ∅ is used for cal-
culation, 

∏

W∈℘ f (W ) = 1 and 
∑

W∈℘ f (W ) = 0 , by convention. As the cardinality |Y | 
increases, the number of all partitions grows very large [32].

The general chain rule (GCR) [24, 33] for functional derivative is

where

(6)
δF

δY
[h] =

∑

W⊆Y

δF1

δW
[h]

δF2

δ(Y −W )
[h].

(7)
δ

δY
F [T [h]] =

∑

℘∠Y

∂ |℘|F

∂W∈℘(δT [h]/δW )
[T [h]].
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The proofs are given in [24]. If Y = ∅ , |℘| = 0 , and

Thus, the GCR is true for any finite set.

2.3  Measurement processes of RFS‑based filters

In this work, the clutter process is denoted byκ(W ) . The single-target likelihood func-
tion MW (x) = f (W |{x}) represents the PDF that the measurement set produced by tar-
get x is W ,W ⊆ Z.

The clutter process κ(W ) is usually modeled as Poisson RFS or IIDC RFS. If modeled 
by Poisson RFS with spatial distribution c(z) and mean number � , κ(W ) = e−�

�
|W |cW  . 

If modeled by IIDC RFS with spatial distribution c(z) and cardinality distribution pκ(n) , 
κ(W ) = |W |!pκ (|W |)cW .

Within the framework of FISST, common target models include point target, extended 
target and multiple-detection target. The single-target likelihood function of the point 
target is

The Kronecker delta δi,j is defined by δi,j = 1 if i = j andδi,j = 0 otherwise. pD(x) and 
�z(x) denote the probability of detection and the sensor likelihood function, respectively.

If the measurements number of an extended target is Poisson distributed [34, 35] with 
an average γ (x) , the single-target likelihood function is

where pD(x) and �z(x) denote the probability of detection and the extended target 
measurement likelihood. In the multiple-detection scenario, assume that there are J pos-
sible measurement modes. p(j)D (·) and f (j)k (z|x) denote the probability of detection and 
sensor likelihood function of mode j(1 ≤ j ≤ J ) . Then, the single-target likelihood func-
tion of the multiple-detection target can be expressed as follows [19]. If W  = ∅,

And if W = ∅,

(8)∂W∈{W1,...,Wl}

(

δT

δW
[h]

)

abbr.
= ∂

(

δT

δW1
[h]

)

· · · ∂

(

δT

δWl
[h]

)

.

(9)
∑

℘∠∅

∂ |℘|F

∂W∈℘(δT [h]/δW )
[T [h]] = F [T [h]] =

δ

δ∅
F [T [h]].

(10)f (W |{x}) = (1− pD(x))δ|W |,0 + pD(x)
∏

z∈W

�z(x)δ|W |,1.

(11)f (W |{x}) = (1− pD(x))δ|W |,0 + pD(x)e
−γ (x)

∏

z∈W

γ (x)�z(x).

(12)f (W |{x}) =
�

θ









�

θ(j)=0

�

1− p
(j)
D (x)

�









�

θ(j)>0

p
(j)
D (x)f

(j)
k (zθ(j)|x)







.

(13)f (∅|{x}) =
∏

j=1:J

(

1− p
(j)
D (x)

)

.
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θ denotes the association hypotheses {1, ...,P} → {1, ..., |W |} defined in [1, pp.332]. The 
summation in (12) is taken over all possible θ . The example of the single-target likeli-
hood function f (W |{x}) can be found in [19]. In fact, as discussed in [36], the extended 
target likelihood function with the binomial cardinality distribution proposed in [30] is 
only a special case of (12).

2.4  Derivation process of RFS‑based filters

In the Bayesian filter, the predictor, which is also called time update, represents the 
process of obtaining prediction information through the prior information and motion 
model. The corrector, which is also called measurement update, refers to the process of 
obtaining posterior information through the prediction information, the measurement 
model and the current measurement. The purpose of our work is to derive a filter for 
arbitrary clutter process and target measurement process, so we restrict ourselves to the 
corrector of the filters. The predictor of various PHD filters can be found in [3]. And 
the predictor of the CPHD filter can be found in [6]. In our work, the subscript k|k − 1 
and k|k denote the parameters of the predictor and the corrector. Zk means the current 
measurement set, and |Zk | = m.

The derivation process of the corrector of the RFS-based filters is as follows.

Step 1. Derive the bivariate PGFL F[g, h]

where fk(Z|X) denotes the entire measurement process and 
Gk [g |X] =

∫

gZfk(Z|X)δZ is the PGFL of fk(Z|X) . If all measurements are 
independent, Gk [g |X] = Gκ [g]T [g]X , where T [g](x) =

∫

gWMW (x)δW  
andGκ [g] =

∫

gW κ(W )δW  denote the PGFL of the measurement process MW (x) 
and the clutter process κ(W ) . Suppose that G[h] =

∫

hXfk|k−1(X)δX denotes the 
predicted PGFL, the joint measurement-target PGFL typically ends up having the 
form [24]

This step is the same in the derivation process of various filters.
Step 2. Calculate δF

δZk
[g , h].

Step 3. Calculate the posterior PGFLGk|k [h][1, pp.122].

Step 4. Calculate the posterior parameters of the filters based on the posterior PGFL. 
The posterior parameters are the posterior PHD in the PHD filter, the posterior car-
dinality distribution and PHD in the CPHD filter and the posterior existence prob-
ability and PDF in the Bernoulli filter. 

(14)
F [g , h] =

∫

hX
(∫

gZfk(Z|X)δZ

)

fk|k−1(X)δX

=

∫

hXGk [g |X]fk|k−1(X)δX .

(15)F [g , h] = Gκ [g]G[hT [g]].

(16)Gk|k [h] =

(

δF

δZk
[0, h]

)

/

(

δF

δZk
[0, 1]

)

.
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 The derivation process of the RFS-based filters is summarized as Algorithm 1 in 
Table 1.
 According to the derivation process, the introduction of the RFS-based filters is 
given in Appendix A.

3  The general CPHD filter
The predictor of the classical CPHD filter can be found in [6] and [7]. The predicted cardi-
nality distribution pk|k−1(n) and PHD Dk|k−1(x) are calculated by the prior cardinality dis-
tribution pk−1|k−1(n) and PHD Dk−1|k−1(x) . The predicted cardinality distribution can be 
expressed as

The predicted PHD can be expressed as

in which

ps(x) and fk|k−1(x|x
′) denote the survival probability and Markov density of the survival 

target, and bk+1|k(x) and pBk+1|k(n) denote the PHD and cardinality distribution of new-
born target. Cn′,i represents the binomial coefficient. The predictor of the general CPHD 
filter is the same as the classical CPHD filter.

Then, the corrector of the general CPHD filter is given in this section. Here, the clutter pro-
cessκ(W ) and the single-target likelihood functionMW (x) are treated as a whole, so the pro-
posed general CPHD filter can adapt to arbitrary clutter and target measurement processes.

3.1  Corrector of the general CPHD filter

The posterior cardinality distribution and PHD are calculated by the predicted cardi-
nality distribution, PHD and the current measurement set. The corrector is derived as 
follows.

(17)pk|k−1(n) =

∞
∑

n′=0

pk|k−1(n|n
′)pk−1|k−1(n

′).

(18)Dk|k−1(x) =

∫

ps(x
′)fk|k−1(x|x

′)Dk−1|k−1(x
′)dx

′
+ bk|k−1(x).

(19)pk|k−1(n|n
′) =

∑

i=0:n

pBk|k−1(n− i)Cn′,i�
i
k−1(1−�k−1)

n′−i.

(20)�k−1 =

∫

ps(x)Dk−1|k−1(x)dx/

∫

Dk−1|k−1(x)dx .

Table 1 Algorithm 1

The derivation process of the RFS‑based filters

1. Derive the bivariate PGFL F[g, h]

2. Calculate the functional derivative δF
δZk

[g, h]

3. Calculate the posterior PGFL Gk|k [h]

4. Calculate the posterior parameters of the filters
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Step 1. Derive the PGFL according to (15).
Step 2. Calculate δF

δZk
[g , h].

 Suppose that the predicted PGFL is G[h] = G(s[h]) with the spatial distribu-
tion s(x) and cardinality distribution p(n), the functional derivative of G[hT [g]] 
can be calculated by using the GCR as [24]

where the symbol s[·] denotes a linear functional, and G(i)(·) denotes the ith deriva-
tive of the predicted PGF G(x).
 The functional derivative of F [g , h] can be calculated by using the product rule 
as

Note that

and |℘ −W | = |℘| − 1 , thus

Then, the functional derivative of F [g , h] is

Step 3. Calculate the posterior PGFL Gk|k [h] . Assume that p̃D(x) = 1− f (∅|x) 
denotes the probability of detection,q̃D(x) = 1− p̃D(x) is the probability of missed 

(21)

δ

δZk
G[hT [g]] =

∑

℘∠Zk

∂ |℘|G

∂W∈℘
(

h
δT [g]
δW

) [hT [g]]

=
∑

℘∠Zk

G(|℘|)(s[hT [g]])
∏

W∈℘

s[h
δT

δW
[g]].

(22)

δ

δZk
F [g , h] =

∑

S⊆Zk

δ

δ(Zk − S)
Gκ [g]

δ

δS
G[hT [g]]

= Gκ [g]
∑

℘∠Zk

G(|℘|)(s[hT [g]])
∏

W∈℘

s[h
δT

δW
[g]]

+
∑

S⊂Zk

δ

δ(Zk − S)
Gκ [g]

∑

℘∠S

G(|℘|)(s[hT [g]])
∏

W∈℘

s[h
δT

δW
[g]].

(23)

∑

S⊂Z

f (Z − S)
∑

℘∠S

g(℘) =
∑

S⊆Z,S �=∅

f (S)
∑

℘∠Z−S

g(℘) =
∑

℘∠Z

∑

W∈℘

f (W )g(℘ −W ).

(24)

∑

S⊂Z

δ

δ(Z − S)
Gκ [g]

∑

℘∠S

G(|℘|)(s[hT [g]])
∏

W∈℘

s[h
δT

δW
[g]]

=
∑

℘∠Z

∑

W∈℘

δ

δW
Gκ [g]G(|℘−W |)(s[hT [g]])

∏

W ′∈℘−W

s[h
δT

δW ′
[g]]

=
∑

℘∠Z

∑

W∈℘

δ

δW
Gκ [g]G(|℘|−1)(s[hT [g]])

∏

W ′∈℘−W

s[h
δT

δW ′
[g]].

(25)

δ

δZk
F [g , h] = Gκ [g]

∑

℘∠Zk

G(|℘|)(s[hT [g]])
∏

W∈℘

s[h
δT

δW
[g]]

+
∑

℘∠Zk

∑

W∈℘

δ

δW
Gκ [g] · G(|℘|−1)(s[hT [g]])

∏

W ′∈℘−W

s[h
δT

δW ′
[g]].
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detection. According to the relationship between the multitarget PDF and the 
PGFL shown in (1) and (2), δT [0]/δW = MW (x) , T [0](x) = f (∅|x) = q̃D(x) , 
δGκ [0]/δW = κ(W ) , and Gκ [0] = κ(∅) . Substituting g = 0 into (25), the numerator 
of (16) is

Then, substitute h = 1 into (26) and define

The denominator of (16) is

where ηW = s[MW ] and ρk = s[q̃D] are linear functionals.
 Thus, substituting (26) and (28) into (16), the posterior PGFL Gk|k [h] is

Step 4. Calculate the posterior cardinality distribution pk|k(n) and PHD Dk|k(x).

Theorem 1 The posterior cardinality distribution pk|k(n) and the PHD Dk|k(x) are

where

(26)

δ

δZk
F [0, h] = κ(∅)

∑

℘∠Zk

G(|℘|)(s[hq̃D])
∏

W∈℘

s[hMW ]

+
∑

℘∠Zk

∑

W∈℘

κ(W )G(|℘|−1)(s[hq̃D])
∏

W ′∈℘−W

s[hMW ′ ].

(27)π℘ = κ(∅)G(|℘|)(ρk)
∏

W∈℘

ηW + G(|℘|−1)(ρk)
∑

W∈℘

κ(W )
∏

W ′∈℘−W

ηW ′ .

(28)

δ

δZk
F [0, 1] =

�

℘∠Zk

π℘

=
�

℘∠Zk



κ(∅)G(|℘|)(ρk)
�

W∈℘

ηW +
�

W∈℘

κ(W )G(|℘|−1)(ρk)
�

W ′∈℘−W

ηW ′



.

(29)
Gk|k [h] =











κ(∅)
�

℘∠Zk

G(|℘|)(s[hq̃D])
�

W∈℘

s[hMW ]+

�

℘∠Zk

�

W∈℘

κ(W )G(|℘|−1)(s[hq̃D])
�

W ′∈℘−W

s[hMW ′ ]











�

℘∠Zk

π℘

.

(30)pk|k(n) =

pk|k−1(n)
∑

℘∠Zk

(

pκ(0)ζ℘(n)+
∑

W∈℘

κ(W )ζ℘−W (n)

)

∑

℘′∠Zk

π℘′
.

(31)Dk|k(x) = LZk
(x)Dk|k−1(x).
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Nk|k−1 =
∑

npk|k−1(n) denotes the predicted expected number.

The derivation process of the general CPHD filter is summarized as Algorithm  2 in 
Table 2.

The proofs are given in Appendix B.

3.2  Generality of the general CPHD filter

In this section, we will prove the general CPHD filter is the general form of all kinds of 
CPHD filters, PHD filters and Bernoulli filters, as shown in Fig. 1.

3.2.1  Reduce to CPHD filter

Theorem 2 If the target is point target shown in (10), and the clutter process is IIDC 
process with cardinality distribution pκ(m) and spatial distribution c(z) , the equations of 
the posterior cardinality distribution in (26) are reduced to

(32)LZk
(x) = q̃D(x)

∑

℘∠Zk

ψ℘

Nk|k−1

∑

℘′∠Zk

π℘′
+

∑

℘∠Zk

∑

W∈℘

ψ℘−WMW (x)

Nk|k−1

∑

℘′∠Zk

π℘′
.

(33)ζ℘(n) = Pn,|℘|ρk
n−|℘|

∏

W∈℘

ηW .

(34)ψ℘ = κ(∅)G(|℘|+1)(ρk)
∏

W∈℘

ηW + G(|℘|)(ρk)
∑

W∈℘

κ(W )
∏

W ′∈℘−W

ηW ′ .

Table 2 Algorithm 2

The derivation process of the corrector the general CPHD filter

1. Derive the PGFL according to (15)

2. Calculate the functional derivative

(1) Calculate the functional derivative of G
[

hT [g]
]

 by using GCR 

(2) Calculate the functional derivative of F
[

g, h
]

 by using the product rule

(3) The functional derivative is shown in (21)

3. Calculate the posterior PGFL

(1) Calculate δ
δZk

F[0, h]

(2) Calculate δ
δZk

F[0, 1]

(3) The functional derivative is shown in (25)

4. Calculate the posterior parameters of the filter

(1) Calculate the posterior cardinality distribution pk|k(n)

(2) Calculate the posterior PHDDk|k(x)
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The equations of the pseudo-likelihood in (32) are reduced to

where

where σi(Zk) =
∑

W⊂Zk ,|W |=i

(

∏

z∈W

τ(z)
c(z)

)

 , and τ (z) = s[pD�z] denotes linear functionals.

Thus, the proposed general CPHD filter is a generalized classical CPHD filter, and it 
can reduce to the classical CPHD filter. The proofs are given in Appendix C.1.

The general CPHD filter reduces to the ET-CPHD filter if MW (x) is defined as 
shown in (11). Furthermore, as the definition of the partition of the empty set, Zk = ∅ 
and Zk  = ∅ do not need to be studied separately as in the ET-CPHD filter in [17]. 
Until now, the study for multiple-detection CPHD filter has not appeared. Our filter 
reduces to the multiple-detection CPHD filter, if the single-target likelihood function 
MW (x) is defined as shown in (12) and (13).

(35)pk|k(n) =

p(n)
∑

i=0:m

(m− i)!pκ (m− i)Pn,iρk
n−iσi(Zk)

∑

j=0:m

G(j)(ρk)(m− j)!pκ (m− j)σj(Zk)
.

(36)LZk
(x) = (1− pD(x))

ND
L +

∑

z∈Zk

pD(x)�z(x)

c(z)

D
L (z).

(37)
ND
L =

∑

i=0:m

G(i+1)(ρk)(m− i)!pκ (m− i)σi(Zk)

Nk|k−1

∑

j=0:m

G(j)(ρk)(m− j)!pκ (m− j)σj(Zk)
.

(38)
D
L (z) =

∑

i=0:m−1

G(i+1)(ρk)(m− i − 1)!pκ(m− i − 1)σi(Zk − {z})

Nk|k−1

∑

j=0:m

G(j)(ρk)(m− j)!pκ (m− j)σj(Zk)
.

Fig. 1 Generality of the general CPHD filter
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3.2.2  Reduce to the general PHD filter

Theorem 3 Suppose that the predicted target process of the general CPHD filter is sim-
plified to Poisson RFS, the pseudo-likelihood of the general CPHD filter in (32) is equal to 
the pseudo-likelihood of the general PHD filter in (58). Thus, the proposed filter reduces to 
the general PHD filter [24]. The proofs are given in Appendix C.2.

As discussed in Sect. 2.2, the PHD filter is the special case of the CPHD filter although 
the PHD filter only propagates the PHD. This is because the spatial distribution and the 
cardinality distribution can be expressed by the PHD if the predicted target process of 
the general CPHD filter is simplified to Poisson RFS.

3.2.3  Reduce to the Bernoulli filter

Theorem 4 When the number of targets does not exceed 1, the corrector in (30) and (31) 
can be recalculated as

The proofs are given in Appendix C.3.

When the number of targets does not exceed 1, pk|k−1(0)+ pk|k−1(1) = 1 . Define the 
predicted probability of existence ωk|k−1 = pk|k−1(1) and the posterior probability of 
existence ωk|k = pk|k(1) , then pk|k−1(0) = 1− ωk|k−1 . Thus,

In fact, this is the general Bernoulli filter proposed by us in [28]. s(x) and sk|k(x) denote 
the predicted and the posterior spatial distribution. Thus, when the number of targets 
does not exceed 1, the general CPHD filter reduces to the general Bernoulli filter.

As discussed in 2.2, though the CPHD filter jointly propagates the PHD and the car-
dinality distribution while the Bernoulli filter jointly propagates the spatial distribution 

(39)pk|k(n) =

pk|k−1(n)

(

κ(Zk)ρk
n +

∑

W⊂Zk

κ(W )Pn,1ρk
n−1ηZk−W

)

pk|k−1(0)κ(Zk)+ pk|k−1(1)
∑

W⊆Zk

κ(Zk −W )ηW
.

(40)Dk|k(x) =

s(x)pk|k−1(1)
∑

W⊆Zk

κ(Zk −W )MW (x)

pk|k−1(0)κ(Zk)+ pk|k−1(1)
∑

W⊆Zk

κ(Zk −W )ηW
.

(41)ωk|k =

ωk|k−1

∑

W⊆Zk

κ(Zk −W )ηW

(

1− ωk|k−1

)

κ(Zk)+ ωk|k−1

∑

W⊆Zk

κ(Zk −W )ηW
.

(42)sk|k(x) =
Dk|k(x)

ωk|k
= s(x)

∑

W⊆Zk

κ(Zk −W )MW (x)

∑

W⊆Zk

κ(Zk −W )ηW
.
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and the probability of existence, the Bernoulli filter is the special case of the CPHD fil-
ter. This is because the probability of existence can be derived from the cardinality 
distribution.

3.3  Measurement set partitioning

As discussed in Sect. 2.3, the number of partitions grows very large as the measurement 
number increases [32]. The corrector of the general CPHD filter includes a combinato-
rial sum of all partitions. Thus, some effective partitioning algorithm must be developed 
to make the general CPHD filter computationally practicable.

3.3.1  Analysis of partitioning

Some special issues of the general PHD filters are implemented effectively by some 
approximation, such as the ET-PHD filter and the MD-PHD filter. As discussed in [36], 
the distance partitioning [12],[14] proposed for the ET-PHD filter or the generalized dis-
tance (GD) partitioning [36] proposed for the MD-PHD filter are not useful because the 
clutter process is not modeled by Poisson RFS and cannot be denoted by the Log-clutter 
density κW .

Both π℘ and ψ℘ contain two items, which are calculated by the partition ℘ of the meas-
urement set. In the item containing 

∏

W∈℘

ηW  , all cells W are treated as target cells and 

used to calculate ηW  . In the item containing 
∑

W∈℘

κ(W )
∏

W ′∈℘−W

ηW ′ , one cell is treated 

as clutter cell and the other cells are treated as target cells. Therefore, the partition, 
which makes great contribution to the posterior PHD, consists of at most one clutter 
cell. Similarly, in (30), the calculation of the posterior cardinality distribution consists of 
2 items, too. The first item is pκ(0)ζ℘(n), and the second item is 

∑

W∈℘

κ(W )ζ℘−W (n) . In 

the first item, whenever n < |℘| , ζ℘(n) = 0 . In the second item, whenever n < |℘| − 1 , 
ζ℘−W (n) = 0 . Therefore, the partition, which makes great contribution to the posterior 
cardinality distribution, consists of at most one clutter cell. Therefore, the informative 
partitions for the general CPHD filter consist of several target cells and at most one clut-
ter cell.

As an illustration shown in Fig. 2, the measurement set is generated by two targets. 
Figure 2b shows the partition generated by the distance partitioning or the GD parti-
tioning. The partition for the general CPHD filter is illustrated in Fig. 2c. With Fig. 2b, 
we can obtain Fig. 2c by combining all the individual clutter cells into 1 cell.

3.3.2  General partitioning algorithm

Here, a general partitioning algorithm is proposed for the general CPHD filter. The par-
titions generated by the general partitioning algorithm are referred as general parti-
tions. In [36], a multiple-detection distance is defined in the GD partitioning algorithm. 
Although the GD partitioning algorithm cannot be directly applied to the general CPHD 
filter, the multidetection distance is useful in this work.

3.3.2.1 The potential target measurement In the partition in Fig.  2b, the measure-
ments generated by the same target are in the same cell, and each clutter measurement 
becomes a cell by itself. Thus, when a target generates only one measurement, it is 
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an individual cell. In the general PHD filter implemented effectively with the Poisson 
clutter process, the cell can be treated as a target cell, so the target will not be lost. 
However, in the general CPHD filter, the informative partitions consist of at most one 
clutter cell. When a target generates only one measurement, it is an individual cell 
which is represented in the same way as a clutter measurement. Thus, the cell may be 
treated as a clutter cell, so the target will be loss. To avoid the missing of the target with 
only one measurement, the potential target (PT) measurement is defined as follows.
n̂ = max

n
pk|k−1(n) denotes the predicted number of targets. If p(p)D (·) is the target 

detection probability of mode p, the expected number of measurements from one tar-
get is 

∑

p=1:P p
(p)
D  . The expected number of measurements from targets can be 

expressed as m̂ = ceil
(

n̂ ·
∑

p=1:P p
(p)
D

)

 , where ceil(x) denotes the minimum integer no 

less than x.
Suppose that f (p)k (z|x) is the sensor likelihood function of mode p(1 ≤ p ≤ P) . For 

each measurement zi , define a coefficient that can reflect the likelihood that the meas-
urement comes from target as follows.

If the number of measurements in the measurement set is Mk , we can obtain a sequence 
Ŵ = {γi}

Mk
i=1 . If zi is generated by a target, the value of γi is more likely to be large. If γi is 

one of the largest m̂ values in the sequence Ŵ , the measurement zi is called PT measure-
ment. Here, m̂ is the expected number of measurements from targets.

3.3.2.2 Obtain the general original partition In Zk = {zi}
Mk
i=1 , a credibility coefficient 

is defined as

Then, the multiple-detection distance is defined as

(43)γi = max
1≤p≤P

∫

f
(p)
k (zi|x)Dk|k−1(x)dx.

(44)ξ
(

zi, zj
)

= max
1≤p≤P,1≤q≤P

∫

f
(p)
k (zi|x)f

(q)
k (zj|x)dx.

Fig. 2 Partitioning illustration. a Measurement set. b A partition generated by the distance partitioning or 
the GD partitioning. c Partition should be used in the general CPHD filter. The clutter measurements are 
merged to a single cell
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Here, d(zi, zj) is used to judge whether 2 measurements come from the same target. 
Then, with the cutoff value δu , one can obtain the original partition ℘o = {Od}

D
d=1 of 

measurement set as in [36]. The partitions used for the general CPHD filter in this work 
are all obtained on the basis of this original partition.

In the original partition, if a cell consists of multiple measurements or a PT measure-
ment, it is a target cell and should be reserved. And if a cell consists of one measurement 
which is not a PT measurement, it should be merged into the clutter cell C. So the gen-
eral original partition can be expressed as ℘c =

(
⋃

d=1:D̂
Od

)
⋃

C . D̂ means the number 
of the target cells (including the cells with multiple measurements and the cells with a 
PT measurement). Here, the target cells and the clutter cell are notated by different sym-
bols, as they are distinguished successfully.

As an illustration, the process of obtaining the general original partition from a meas-
urement set is shown in Fig. 3. z1 , z2 and z3 are generated by target 1. z4 and z5 are gener-
ated by target 2. z6 is generated by target 3. z7 , z8 and z9 are clutter measurements. In the 
original partition, z6 , z7 , z8 and z9 are individual cells. In order to show that the measure-
ments are divided into a cell, we put the measurements together in the second layer. The 
location of the measurements does not change from the first to the second layer in fact. 
While z6 is a PT measurement, it should be reserved. So z7 , z8 andz9 should be merged 
into the clutter cell C in the general original partition.

3.3.2.3 Obtain the general partitions With the general original partition ℘c , the general 
partitions can be obtained. At first, calculate all partitions of each target cell in the general 
original partition ℘c =

(
⋃

d=1:D̂
Od

)
⋃

C . A target cell Od of ℘c can be treated as a small 
measurement cell, and thus, it can be partitioned into cells and get a series of partitions. 
Then, for every target cell of ℘c , choose one of its partitions to constitute the target cells of 
the partition. The clutter cell does not change. The general partition consists of the clutter 
cell and the target cells. As an illustration, if ℘̃(d) is a partition of Od , a general partition is

This is the first type of partition. Merging all the individual cells in the first type of par-
tition into the clutter cell, we can get the second type of partition. In the first type of 

(45)d(zi, zj) = 1/ξ(zi, zj) 1 ≤ i �= j ≤ Mk .

(46)℘ =
{(

⋃

d=1:D̂
℘̃(d)

)

⋃

WC |℘̃
(d)

∠Od ,WC = C
}

.

Fig. 3 General original partition illustration
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partition, merging all the individual cells which are not the PT measurement into the 
clutter cell, we can get the third type of partition.

As an illustration, the general original partition and the 3 types of partition are shown 
in Fig. 4. In the general original partition, there are 3 target cells {Od}

3
d=1 and a clutter 

cell C.
In Fig. 4b, {W1,W2} is a partition of O1 , {W3} is a partition of O2 , {W4} is a partition of 

O3 , and WC = C . So a first type of partition is ℘ = {W1,W2}
⋃

{W3}
⋃

{W4}
⋃

WC.
W2 and W4 are the individual cells. So a second type of partition can be expressed as 

℘ = {W1}
⋃

{W3}
⋃

WC , in which WC = C
⋃

W2
⋃

W4 , as shown in Fig. 4c.
As z6 is a PT measurement but z3 is not, a third type of partition can be expressed as 

℘ = {W1}
⋃

{W3}
⋃

{W4}
⋃

WC , in which WC = C
⋃

W2, as shown in Fig. 4d.
The general partitioning algorithm is summarized as Algorithm 3 in Table 3.

3.3.3  Computational complexity analysis

The number of partitions of the measurement set Z is given by the Bell number B|Z| that 
obeys the following recursive equation.

Fig. 4 General partitioning algorithm illustration. a General original partition, b The 1st type of partition, c 
The 2nd type of partition, d The 3rd type of partition

Table 3 Algorithm 3

The general partitioning algorithm

1. Identify the potential target measurements

2. Obtain the general original partition

(1) Calculate the multiple-detection distance d(zi , zj) between any two measurements

(2) Obtain the original partition ℘o = {Od}
D
d=1 of measurement set

(3) Reserve the target cells and merge the clutter measurements into the clutter cell

(4) Obtain the general original partition ℘c =
(
⋃

d=1:D̂
Od

)
⋃

C

3. Obtain the general partitions

(1) Calculate all partitions of each target cell in the general original partition

(2) Obtain the 1st type of partition

(3) Obtain the 2nd type of partition

(4) Obtain the 3rd type of partition
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Cm,i is the binomial coefficient, and B0 = B1 = 1 is the initial value for recursion. Table 4 
shows the relationship between the number of measurements and the partitions num-
ber. It can be seen that as the number of measurements in Z increases, the partitions 
number increases rapidly, which causes it difficult to sum all the partitions.

In our work, the number of the first type of partitions generated by the general par-
titioning algorithm is the product of the partitions number of every target cell in ℘c . 
In the measurement set shown in Fig. 4, the number of partitions of O1 , O2  and O3 
is 5, 2 and 1, respectively. Thus, the number of the first type of partitions is 10. The 
number of the second and third type of partitions is less than the number of the first 
type of partitions. Then, the number of partitions of our general partitioning algo-
rithm is less than 30. As shown in Table 1, the number of all partitions of the set with 
9 measurements is 21147. Therefore, the partitions number is reduced significantly.

It must be pointed out that the partition number of the general partitioning algo-
rithm is related to the measurement set. As the uncertainty of the target measure-
ment process, the number is not fixed. But in general, the number of partitions in this 
work is considerably smaller than the number of all partitions.

4  Results and discussion
4.1  Setup

The OTHR is an early warning tool for missiles, satellites and strategic bombers. The 
transmitter–receiver–target model in OTHR [18] shown in Fig.  5 is used to obtain 
the single-target multiple-detection measurement likelihood function. The param-
eters acquired by the OTHR include the slant range Rg, the rate of change of slant 
range fd and the apparent azimuth Az. The measurement vector z = [Rg , fd,Az]T  can 
be expressed as

(47)Bm+1 =

m
∑

i=0

Cm,i · Bi.

Table 4 The partitions number of the measurement set

|Z| 0 1 2 3 4 5 6 7 8 9 10 20 30 40 50

Bell number 1 1 2 5 15 52 203 877 4140 21147 115975 > 1013 > 1023 > 1025 > 1047

Fig. 5 Transmitter–receiver–target model in OTHR
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where

ρ is the range, b is the bearing, and ρ̇ is the range rate.
The sensor likelihood functions of various modes can be calculated by using dif-

ferent hr and ht . The values of hr and ht can be selected from hE = 100km and 
hF = 220km . So the number of the measurement modes isP = 4(mode EE in which 
hr = ht = hE , mode EF in which hr = hE and ht = hF  , mode FE in which hr = hF  and 
ht = hE , mode FF in which hr = ht = hF  ). The detection probabilities are heuristically 
selected as p(EE)D = p

(FF)
D = 0.4 and p(EF)D = p

(FE)
D = 0.5 , respectively. We assume that 

the measurement noise of various modes obeys the same distribution. In the surveil-
lance area of OTHR, the interval of possible values of Rg is [700, 1200]km , the interval 
of possible values of fd is [−0.4,−0.1]km/s , and the interval of possible values of Az is 
[π/8, 3π/8]rad . The distance from the receiver to the transmitter is d = 100km.

The state transition model [37] is

where xk = [xk , ẋk , yk , ẏk ]
T is the vector of target state.

wk−1 =
[

wx,k−1,wy,k−1

]T  means the noise components with standard deviations 
σx = σy = 1m/s2 . ⊗ denotes the Kronecker product, and I2 denotes a 2× 2 identity 
matrix. T = 20s represents the time interval between two frames. The simulations last 
for 50 scans. Two different dynamic scenarios are simulated, as shown in Table 5 and 
Fig. 6.

The clutter process κ(Z) is modeled by an IIDC RFS, with the cardinality distribu-
tion as follows.

where α > 0 and β > 0 . This cardinality distribution is a negative binomial distribution 
[25, 38]. The mean of clutter number is �= α/β . The clutter measurements are uniformly 
distributed in the surveillance area of OTHR.

(48)
Rg = dr + dt

fd = ρ̇(ρ/dr + η/dt )/4

Az = sin−1(ρ sin(b)/(2dr) ).

(49)dr =

√

(ρ/2)2 + h2r .

(50)dt =

√

(ρ/2)2 − dρ sin(b)/2+ (d/2)2 + h2t .

(51)η = ρ − d sin(b).

(52)xk = Fxk−1 + Gwk−1.

(53)F = I2 ⊗

[

1 T
0 1

]

,G =

[

T 2/2 T 0 0

0 0 T 2/2 T

]T

.

(54)pκ (n) =
(−α)(−α − 1)...(−α − n+ 1)

n!

(

1+
1

β

)−α( 1

β + 1

)n

.
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The proposed general CPHD filter is approximated by particle filter (PF) implementa-
tion [4], in which the initial particles are uniformly distributed and the particles for new 
born target are distributed based on the measurements [39]. The particles number for 
new born target and each survival target is 2000. The cutoff value of the general parti-
tioning algorithm is selected as δu = 0.999.

4.2  Simulation results

The general CPHD filter allows the clutter process and target measurement process to 
be arbitrary. In order to show that the proposed filter can achieve better tracking perfor-
mance than the other CPHD filters under the multiple-detection assumption, the clas-
sical CPHD filter, in which the targets are assumed to be point targets, is selected as a 
comparison algorithm. At the same time, to show that the proposed filter can achieve 
better tracking performance than the other multiple-detection filters, the MD-PHD fil-
ter, in which the clutter process is assumed to be Poisson, is selected as a comparison 
algorithm. The reason why we choose the MD-PHD filter is that the only implemented 
PHD filter with negative binomial clutter for the multiple-detection tracking is the arbi-
trary clutter ET-PHD filter, and the arbitrary clutter PHD filter that can apply to more 
complex multiple-detection tracking such as the multipath tracking has not yet been 
implemented.

Fig. 6 Ground truth. (a) 2 targets, (b) 3 targets

Table 5 Target motion parameters for simulation

Scenario Target Initial state Scan of 
appearance

Scan of disappearance

Scenario 1 Target 1 [958 km, −200 m/s, 958 km, −200 m/s] 1 41

Target 2 [910 km,−180m/s, 934 km,−220m/s] 10 Not disappear

Scenario 2 Target 1 [878 km,−200m/s, 878 km,−200m/s] 1 31

Target 2 [958 km,−200m/s, 958 km,−200m/s] 1 31

Target 3 [874 km,−180m/s, 890 km,−220m/s] 20 Not disappear
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Then, the tracking performance of the general CPHD filter and the comparison algo-
rithm is simulated. The standard deviation of the measurement noise of Rg, fd and Az are 
5km , 0.005km/s and 0.003rad , respectively. The parameters of the clutter process cardi-
nality distribution are α = 0.25 and β = 0.05 . In the classical CPHD filter for compari-
son, the targets are assumed to be point target whose measurement mode is mode EE 
of the OTHR, in which hr = ht = hE . The clutter process of the classical CPHD filter is 
the same as the general CPHD filter. In the MD-PHD filter for comparison, the mean of 
the amount of clutter is �= α/β = 5 , which is consistent with the average number of 
clutters used by the general CPHD filter. The measurement mode of the MD-PHD filter 
is the same as the general CPHD filter. The results in this section are obtained from 500 
independent simulations.

The tracking performance is evaluated by using the optimal subpattern assignment 
(OSPA) metric [40] between the estimated state and true state. The OSPA metric jointly 
captures differences in target states and cardinality between the estimated state and true 
state [40]. Let X ,Y denote RFS, x ∈ X , y ∈ Y  denote the random vector, |X | = m , |Y | = n 
and d(c)(x, y) = min(c,

∥

∥x − y
∥

∥) . If m ≤ n , the OSPA metric between X and Y is defined 
as follows.

where p ≥ 1 , c > 0 and 
∏

k denote the permutation set on 
{

1, 2, ..., k
}

 . If m > n , 
d̄
(c)
p (X ,Y ) = d̄

(c)
p (Y ,X) . If m = n = 0 , d̄(c)p (X ,Y ) = 0 . For full details, see [40].

The average estimated cardinality and the standard deviation of the general CPHD fil-
ter and the comparison algorithm along with the true number are shown in Fig. 7 (sce-
nario 1 with two targets) and Fig. 8 (scenario 2 with three targets). The simulation results 
shown in both scenario 1 and scenario 2 can reach the same conclusion. The average 
estimated cardinality of the classical CPHD filter is significantly greater than the true 
target number. This is because the targets are assumed to be point targets in the clas-
sical CPHD filter, and the generated multiple measurements in a single frame may be 
treated as multiple targets. The average estimated cardinality of the MD-PHD filter is 
slightly higher than the correct number of targets present, while the simulation results 
demonstrate that the estimate of the number from the general CPHD filter in our work 
accurately converges to the correct number of targets present, although it takes longer to 
converge to the new number of targets than the MD-PHD filter when targets disappear. 
Moreover, the standard deviation of the estimated cardinality, which is used to meas-
ure the estimated error of the target number in each independent simulation, is much 
smaller in the general CPHD filter than in the MD-PHD filter. There are two reasons. 
The first reason is that the general CPHD filter produces more stable estimates than the 
MD-PHD filter, because the predicted PGFL is modeled as IIDC RFS. The second reason 
is that the clutter process is well modeled in the general CPHD filter but not well mod-
eled in the MD-PHD filter.

Figure  9 shows the average of the OSPA metric [40] with the parameters p = 2 , 
c = 15km . Since the average estimated cardinality deviates too much from the true tar-
get number, the OSPA metric of the classical CPHD filter becomes meaningless, and we 

(55)d̄(c)p (X ,Y ) =

(

1

n

(

min
π∈

∏

n

∑

i=1:m

d(c)(xi, yπ(i))
p + cp(n−m)

))1/p

.
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only study the OSPA metric of the general CPHD filter and the MD-PHD filter here. The 
peaks of the OSPA metric in the figure correspond to the appearance and disappearance 
of targets, respectively. According to Fig. 9, in both scenario 1 and scenario 2, the OSPA 
metric of the general CPHD filter is smaller than that of the MD-PHD filter. The reason 
is the same as in the mean and standard deviation of the estimated cardinality. Thus, we 
can conclude that the tracking performance the general CPHD filter is better than that 
of the MD-PHD filter.

Then, we simulate the tracking performance for scenario 1 with various parameters. 
Figure  10a shows the tracking performance of the general CPHD filter with different 
measurement noise variances. The standard deviation σ of the measurement noise of 
the slant range Rg is 5 km, 10 km and 15 km, respectively. Figure 10b shows the track-
ing performance of the general CPHD filter with different clutter numbers. The param-
eters of the negative binomial distribution of the clutter process are α = 0.25 , α = 0.5 
and α = 0.75, respectively. As � = α/β , the average clutter number of the general CPHD 
filter is 5, 10 and 15, respectively. As shown in Fig. 10a, the OSPA metric increases as the 
standard deviation of the measurement noise of the slant range Rg increases. As shown 
in Fig. 10b, the OSPA metric increases as the number of clutter increases. It is easy to 
understand that as the tracking performance deteriorates, the measurement noise 
increases or the clutter number increases.

Lastly, the tracking performance of the general CPHD filter and the MD-PHD fil-
ter for different parameters is shown in Fig.  11. The standard deviation σ of the 

Fig. 7 Average of cardinality for scenario 1
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measurement noise of the slant range Rg is 10 km and 15 km, respectively. The com-
parison of tracking performance when the standard deviation is 5 km can be found in 
Fig. 9. The simulation results show that as the standard deviation of the measurement 
noise increases, the gap between the OSPA metric of the general CPHD filter and the 
MD-PHD filter becomes larger and larger, which shows that the general CPHD filter 

Fig. 8 Average of cardinality for scenario 2

Fig. 9 OSPA metric of the general CPHD filter and the MD-PHD filter
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has a greater advantage in tracking performance. This is because the PHD filters will 
react much more sensitively to the change of the measurement noises than the CPHD 
filters.

When the target number is large, the computational complexity of the proposed filter 
increases significantly. This is because the filters for multiple-detection tracking include a 
combinatorial sum of all partitions. For extended target tracking filter, the partitioning algo-
rithms can significantly reduce the computational complexity, while for multiple-detection 

Fig. 10 OSPA metric with various parameters. a Various range variances, b Various clutter numbers

Fig. 11 OSPA metric of the general CPHD filter and the MD-PHD filter for different range variances
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tracking filter, the partitioning algorithms are difficult to reduce the computational com-
plexity significantly. But compared to the MD-PHD filter in [19] which can only track 2 tar-
gets, and the MD-PHD filter in [36] which can track 3 targets, the general CPHD filter with 
the general partitioning algorithm mentioned in this work has the ability to track at least 3 
targets stably. This shows that the partitioning algorithm proposed in this paper can reduce 
the computational complexity of the general CPHD filter and make the filter computation-
ally tractable. Though it can only track a small number of targets by using the partitioning 
algorithm, the general CPHD filter proposed in this work is of great significance.

5  Conclusion and future work
In this work, the general CPHD filter is proposed. This filter is the general form of all kinds 
of CPHD filters, as well as all kinds of PHD filters and Bernoulli filters. Then, a general 
partitioning algorithm is proposed to make the proposed filter computationally feasible. 
The simulation results show that, compared to the MD-PHD filter, the general CPHD fil-
ter reduces the variance of the estimated number of targets and improves the accuracy of 
the state estimates. A venue for further research is the multisensor version of the general 
CPHD filter.

Appendix A. Derivation of RFS‑based filters
The PHD filter, which models the predicted PGFL as Poisson RFS, only propagates the 
PHD to approximate the multitarget PDF. If the predicted PHD is Dk|k−1(x) and the pre-
dicted PGFL is G[h] = eDk|k−1[h−1] , G[hT [g]] = eDk|k−1[hT [g]−1] . Suppose that Nk|k−1 is the 
integral of Dk|k−1(x) , the bivariate PGFL F[g, h] in (15) can be calculated as

Thus, it is easy to calculate δF
δZk

[g , h] with the GCR as shown in [24]. Then in step 4 of the 
derivation process, the posterior PHD is

where τW = Dk|k−1[MW ] , κW =
δ logGκ

δW [0] denotes the Log-clutter density, and

(56)

F [g , h] = Gκ [g]G[hT [g]]

= exp(logGκ [g] + Dk|k−1[hT [g] − 1])

= exp(Dk|k−1[N
−1
k|k−1 logG

κ [g] + hT [g] − 1])

= G
[

N−1
k|k−1 logG

κ [g] + hT [g]
]

.

(57)Dk|k(x) = LZk
(x)Dk|k−1(x).

(58)LZk
(x) = 1− p̃D(x)+

∑

℘∠Zk

ω℘

∑

W∈℘

MW (x)

κW + τW
.

(59)ω℘ =

∏

W∈℘ (κW + τW )
∑

℘′∠Zk

∏

W ′∈℘′ (κW ′ + τW ′)
.
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Gκ [g] is the PGFL of the clutter process. If κ(W ) is a Poisson RFS with PGFL 
Gκ [g] = e�c[g−1] , the Log-clutter density is

Thus, whenever |W | > 1 , κW = 0 . As discussed in [27], the general PHD filter reduces to 
different PHD filters by using different likelihood functions in Sect. 2.4.

The Bernoulli filter, which models the predicted PGFL as Bernoulli RFS, propagates the 
probability of existence as well as the spatial distribution to express the PDF. If the PGFL of 
the predicted target process is G[h] = 1− q + qs[h] , as the functional derivatives of G[h] 
are easy to be calculated, it is easy to calculate δF

δZk
[g , h] with the product rule. On basis of 

the functional derivatives, we proposed the general Bernoulli filter [28], which is the theo-
retical basis for various Bernoulli filters.

The CPHD filter, which models the predicted PGFL as IIDC RFS, jointly propagates the 
cardinality distribution and the PHD to approximate the multitarget PDF. In this case, the 
derivation of δF

δZk
[g , h] is more complicated. Only with the IIDC clutter process, the 

researchers proposed the point target CPHD filters and ET-CPHD filters.

Appendix B. Derivation of theorem 1 (The corrector of the general CPHD filter)
If 0 ≤ x ≤ 1 is a scalar, the posterior PGF Gk|k(x) can be calculated as

Substituting h = x into (26), the numerator of (61) is

Here, h = x indicate that h(x) is the constant functional over the state space with value x. 
If ϑ℘(x) = x|℘|G(|℘|)(xρk)

∏

W∈℘ ηW  , the PGF Gk|k(x) is

The nth derivative of the PGF is

(60)κW = δ|W |,1 · �c
W − �δ|W |,0.

(61)Gk|k(x) = Gk|k [x] =

(

δF

δZk
[0, x]

)

/
∑

℘′∠Zk

π℘′ .

(62)

δ

δZk
F [0, x] =

∑

℘∠Zk

x|℘|pκ(0)G(|℘|)(xρk)
∏

W∈℘

ηW

+
∑

℘∠Zk

x|℘|−1G(|℘|−1)(xρk)
∑

W∈℘

κ(W )
∏

W ′∈℘−W

ηW ′ .

(63)Gk|k(x) =

∑

℘∠Zk

(

pκ(0)ϑ℘(x)+
∑

W∈℘

κ(W )ϑ℘−W (x)

)

∑

℘′∠Zk

π℘′
.

(64)G
(n)
k|k(x) =

∑

℘∠Zk

(

pκ(0)ϑ(n)
℘ (x)+

∑

W∈℘

κ(W )ϑ
(n)
℘−W (x)

)

∑

℘′∠Zk

π℘′
.
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Note that

According to the relationship between the PGF and the cardinality distribution shown in 
(4), G(n)(0) = n!pk|k−1(n) and G(n)

k|k(0) = n!pk|k(n) , the posterior cardinality distribution 
pk|k(n) can be expressed as (30).

The posterior PHDDk|k(x) can be calculated as

Derive the functional derivative of δ
δZk

F [0, h] with respect to x and substitute h = 1 into 
the derivative,

So the posterior PHD Dk|k(x) is

Rewrite Dk|k(x) as (31), as Dk|k−1(x) = Nk|k−1s(x) , the pseudo-likelihood LZk
(x) can be 

expressed as (32). And the derivation of the general CPHD filter is finished.

Appendix C. Derivation of the generality of the general CPHD filter
C.1. Derivation of theorem 2

If the target is point target, whenever |W | > 1 , MW (x) = 0 and ηW = 0.
When W = {z} , M{z}(x) = pD(x)�z(x) and η{z} = τ (z) . Suppose that the clutter pro-

cess is modeled by an IIDC RFS,

(65)ϑ(n)
℘ (x)

∣

∣

∣

x=0
= Pn,|℘|G

(n)(0)ρk
n−|℘|

∏

W∈℘
ηW = G(n)(0)ζ℘(n).

(66)Dk|k(x) =

(

δF

δxδZk
[0, 1]

)

/

(

δF

δZk
[0, 1]

)

.

(67)

δ

δx

δ

δZk
F [0, h]

�

�

�

�

h=1

=

s(x)q̃D(x)
�

℘∠Zk



pκ(0)G(|℘|+1)(ρk)
�

W∈℘

ηW + G(|℘|)(ρk)
�

W∈℘

κ(W )
�

W ′∈℘−W

ηW ′





+ s(x)
�

℘∠Zk

�

W∈℘

MW (x)







pκ(0)G(|℘|)(ρk)
�

W ′∈℘−W

ηW ′+

G(|℘|−1)(ρk)
�

W ′∈℘−W

κ(W ′)
�

V∈℘−W−W ′

ηV







= s(x)



q̃D(x)
�

℘∠Zk

ψ℘ +
�

℘∠Zk

�

W∈℘

ψ℘−WMW (x)



.

(68)Dk|k(x) = s(x)q̃D(x)

∑

℘∠Zk

ψ℘

∑

℘′∠Zk

π℘′
+ s(x)

∑

℘∠Zk

∑

W∈℘

ψ℘−WMW (x)

∑

℘′∠Zk

π℘′
.
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Here, the summation over all partitions reduces to the summation over all subsets. 
Similarly,

pk|k(n) in (30) is reduced to (35). Thus, the general CPHD filter proposed in our work 
reduces to the classical CPHD filter. Note that

Therefore,

(69)

∑

℘∠Zk

π℘ = pκ(0)G(|Z|)(ρk)
∏

z∈Zk

η{z}

+
∑

W⊆Zk ,W �=∅

G(|Zk−W |)(ρk)|W |!pκ(|W |)cW
∏

z∈Zk−W

η{z}

= cZk
∑

W⊆Zk

G(|Zk−W |)(ρk)|W |!pκ(|W |)
∏

z∈Zk−W

η{z}

c(z)

= cZk
∑

W⊆Zk

G(|W |)(ρk)|Zk −W |!pκ(|Zk −W |)
∏

z∈W

τ (z)

c(z)

= cZk
∑

j=0:m

G(j)(ρk)(m− j)!pκ (m− j)σj(Zk).

(70)

�

℘∠Zk



pκ(0)ζ℘(n)+
�

W∈℘

|W |!pκ(|W |)ζ℘−W (n)





= cZk
�

W⊆Zk

|Zk −W |!pκ(|Zk −W |)Pn,|W |φk
n−|W |

�

z∈W

τ (z)

c(z)

= cZk
�

i=0:m

(m− i)!pκ(m− i)Pn,iφk
n−iσi(Zk).

(71)
∑

℘∠Zk

ψ℘ = cZk
∑

i=0:m

G(i+1)(ρk)(m− i)!pκ (m− i)σi(Zk).

(72)

∑

℘∠Zk

∑

W∈℘

ψ℘−WMW (x) =

cZk
∑

z∈Zk

pD(x)�z(x)

c(z)
·

∑

W⊆Zk−z

G(|W |+1)(ρk)|Zk −W − z|!pκ(|Zk −W − z|)
∏

z′∈W

τ (z′)

c(z′)

= cZk
∑

z∈Zk

pD(x)�z(x)

c(z)
·

(

∑

i=0:m−1

G(i+1)(ρk)(m− i − 1)!pκ(m− i − 1)σi(Zk − {z})

)

.

(73)
�

℘∠Zk

ψ℘/



Nk|k−1

�

℘′∠Zk

π℘′



 =
ND
L .
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Thus, the pseudo-likelihood in (31) is reduced to (36).

C.2. Derivation of theorem 3

Suppose that the predicted target process of the general CPHD filter is simplified to 
Poisson RFS, the predicted PGF is simplified to G(x) = eD[x−1] = e(x−1)Nk|k−1 . Thus, 
τW = Nk|k−1ηW  and G(|℘|)(ρk) = N

|℘|
k|k−1G(ρk) . Then, π℘ is simplified to

and ψ℘ = Nk|k−1π℘ . So the pseudo-likelihood shown in (32) is reduced to

Then, define a functional H[g] that satisfy δH [0]/δW = τW ,

On the other hand,

Then,

Thus,

Note that

(74)

∑

℘∠Zk

∑

W∈℘

ψ℘−W ·MW (x)

Nk|k−1

∑

℘′∠Zk

π℘′
=

∑

z∈Zk

pD(x)�z(x)

c(z)
·
D
L (z).

(75)π℘ = G(ρk)



pκ(0)
�

W∈℘

τW +
�

W∈℘

κ(W )
�

W ′∈℘−W

τW ′



.

(76)LZk
(x) = 1− p̃D(x)+

∑

℘∠Zk

∑

W∈℘

π℘−WMW (x)

∑

℘′∠Zk

π℘′
.

(77)

δ(Gκ [0] exp(H [0]))

δZk
= pκ(0) exp (H [0])

�

℘∠Zk





�

W∈℘

τW +
�

W∈℘

κ(W )

pκ(0)

�

W ′∈℘−W

τW ′



.

(78)Gκ [g] exp(H [g]) = exp(log(Gκ [g])+H [g]).

(79)

δ(Gκ [0] exp(H [0]))

δZk
=

δ
(

exp(log(Gκ [g])+H [g])
)

δZk

∣

∣

∣

∣

∣

g=0

= pκ(0) exp(H [0])
∑

℘∠Zk

∏

W∈℘

(κW + τW ).

(80)
�

℘∠Zk





�

W∈℘

τW +
�

W∈℘

κ(W )

pκ (0)

�

W ′∈℘−W

τW ′



 =
�

℘∠Zk

�

W∈℘

(τW + κW ).

(81)
∑

℘∠Zk

π℘ = G(ρk)p
κ (0)

∑

℘∠Zk

∏

W∈℘

(τW + κW ).
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Thus, using the weight ω℘ defined in (59),

Therefore, the pseudo-likelihood LZk
(x) in (32), which is reduced to (76), is the same as 

that in (58).

C.3. Derivation of theorem 4

When the maximum number of targets is 1, whenever n > 1 , pk|k−1(n) = 0 . Thus,

So (30) can be recalculated as (39). Similarly,

Thus,

(82)

∑

℘∠Zk

∑

W∈℘

π℘−WMW (x) = MZk
(x)π∅ +

∑

S⊂Zk

MZk−S(x)
∑

℘∠S

π℘

= G(ρk)p
κ (0)MZk

(x)+ G(ρk)p
κ (0)

∑

S⊂Zk

MZk−S(x)
∑

℘∠S

∏

W∈℘

(τW + κW )

= G(ρk)p
κ (0)

∑

℘∠Zk

∑

W∈℘

MW (x)
∏

W ′∈℘−W

(τW ′ + κW ′)

= G(ρk)p
κ (0)

∑

℘∠Zk

∏

W∈℘

(τW + κW )
∑

W∈℘

MW (x)

τW + κW
.

(83)

∑

℘∠Zk

∑

W∈℘

π℘−WMW (x)

∑

℘′∠Zk

π℘′
=

∑

℘∠Zk

ω℘

∑

W∈℘

MW (x)

κW + τW
.

(84)

�

℘∠Zk



pκ (0)ζ℘(n)+
�

W∈℘

κ(W )ζ℘−W (n)





= κ(Zk)ρk
n +

�

W⊂Zk

κ(W )Pn,1ρk
n−1ηZk−W .

(85)

∑

℘∠Zk

π℘ =
(

pk|k−1(0)+ pk|k−1(1)s[q̃D]
)

κ(Zk)+ pk|k−1(1)
∑

W⊂Zk

κ(W )ηZk−W

= pk|k−1(0)κ(Zk)+ pk|k−1(1)
∑

W⊆Zk

κ(Zk −W )ηW .

(86)
∑

℘∠Zk

ψ℘ = G(1)(ρk)κ(Zk) = pk|k−1(1)κ(Zk).

(87)

∑

℘∠Zk

∑

W∈℘

ψ℘−WMW (x)

= pκ(0)ωk|k−1MZk
(x)+ pk|k−1(1)

∑

W⊂Zk ,W �=∅

κ(W )MZk−W (x)

= pk|k−1(1)
∑

W⊂Zk

κ(W )MZk−W (x).
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So (31) can be recalculated as (40).

Abbreviations
CPHD  Cardinalized probability hypothesis density
ET-CPHD  Extended target cardinalized probability hypothesis density
ET-PHD  Extended target probability hypothesis density
FISST  Finite set statistics
GCR   General chain rule
IIDC  Identical, independently distributed cluster
MD-PHD  Multiple-detection probability hypothesis density
MTT  Multitarget tracking
OSPA  Optimal subpattern assignment
OTHR  Over-the-horizon radar
PDF  Probability density function
PGFL  Probability generating functional
PHD  Probability hypothesis density
RFS  Random finite set
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