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1  Introduction
Target recognition in SAR images is one of the most important applications in SAR 
image interpretation. SAR target recognition extracts features from target slices and 
classifies them with a classifier to realize the recognition of target categories, models, 
attributes, etc. [1, 2]. SAR target recognition technology can primarily be divided into 
two stages: feature extraction and classification [3, 4]. First, effective target features 
are extracted from training samples, and then, an appropriate classification model is 
selected to achieve target recognition for many test samples. Classical SAR target rec-
ognition algorithms can be roughly divided into two categories: traditional classifica-
tion methods and deep learning methods. Traditional classification methods include 
template matching recognition, K-nearest neighbour, Bayesian [5] and support vec-
tor machine [6]. Most of these methods use prior knowledge, such as the probability 
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distribution of SAR images, and their performances are strongly affected by imaging 
quality, such as SAR data noise and the settings of the classifier parameters. To apply 
traditional methods to SAR image target recognition more effectively, many scholars 
have improved feature extraction methods and classification models or introduced new 
methods in similar fields, such as the sparse representation-based classification (SRC) 
method. SRC assumes that there are sufficient training samples, which uses the training 
samples to form an overcomplete dictionary to linearly represent the test samples and 
then minimizes the reconstruction error of the test samples according to the sparsity 
of the coding coefficients to achieve target recognition. In recent years, SRC has shown 
good performance in object recognition [7], face recognition [8], and text detection. SRC 
was first used for SAR image target recognition by Thiagarajan et al. [7]. Yang et al. [9] 
proposed a kernel sparse coding classifier using pulse contour transformation to derive 
the compressed features of the target and clustering pairs in the kernel space and veri-
fied its recognition performance on MSTAR data. Hongliang et  al. [10] separated the 
target region from the background and proposed a recognition method based on the 
sparse representation of the target local dictionary in SAR images. To take advantage of 
the correlation between SAR multiview targets, Zhang et al. [11] proposed an automatic 
target recognition method based on multiview joint sparse representation. However, it 
is typically difficult to obtain multiview images of objects in the same scene in practi-
cal situations. Lv et al. [12] achieved the multitask joint classification of multilevel deep 
features extracted by convolutional neural networks based on a multitask joint sparse 
representation classifier. Zhang et al. [13] used information decoupling to build a mul-
tiresolution dictionary and proposed a joint sparse representation model based on the 
multiresolution dictionary.

However, SRC must solve the norm minimization problem with constraints, and the 
computational complexity of this process is too high. Zhang et al. [14] used the L2 norm 
to replace the L1 norm in the SRC model to make the model have a closed solution and 
proposed a collaborative representation-based classification (CRC) method. The recog-
nition accuracy of CRC and SRC is similar, but the number of computations is markedly 
lower. Concurrently, CRC can find the optimal training sample representation coefficient 
of the reconstructed test sample, which enhances the correlation between the test sam-
ple and similar training samples. Zhang et al. [14] confirmed that good classification can 
be achieved under experimental conditions with few samples. The robustness of its clas-
sification has been verified in the fields of face recognition [15, 16], hyperspectral image 
classification [17], etc. In the field of SAR target recognition, Geng et al. [18] proposed a 
joint collaborative representation method based on the Wishart distance for polarimet-
ric SAR image classification. Zhang et al. [19] input the 3 types of features of SAR target 
slices into SRC and CRC to obtain 6 category labels and obtained the final recognition 
result according to the Yess decision fusion. Based on the model of Zhang et al., Wang 
et al. [20] added multiple adjacent multiview samples of the current sample as the input 
of the model and obtained the label of the current test sample under this feature. Finally, 
the tags are fused by the voting method to obtain the final recognition result.

The deep learning method [21] primarily uses the convolutional neural network 
(CNN) to complete the automatic extraction of target features in the image and then 
uses the fully connected layer or other classification models to achieve automatic target 
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recognition. CNN models represented by AlexNet [22], VGGNet [23], GoogLeNet [24], 
ResNet [25], DenseNet [26] and SENet [27] have appeared in deep learning methods. 
CNNs have achieved excellent results in the field of optical image target recognition, and 
many scholars have also introduced them into SAR image target recognition. Chen S 
et al. introduced CNN into the SAR field and achieved recognition accuracy far exceed-
ing traditional methods on the MSTAR SOC dataset [28]. Zhang et al. used a ResNet 
network to extract fixed spatial scatter features from each azimuth image and trained 
the network using joint supervision of softmax loss and centre loss [29]. Treating SAR 
images as sequences, Ruihang Xu et al. proposed a target classification method for SAR 
images based on a spatiotemporal holistic convolutional network (STEC-Net), which 
achieved better results than basic convolutional neural networks [30]. Currently, a 
large number of studies of CNN-based SAR image target recognition [31–37, 39] have 
reported better performances than traditional learning algorithms, but deep learning 
methods have stricter hardware requirements and are difficult to implement on edge 
devices. In addition, deep learning methods rely heavily on large-scale and sample-bal-
anced datasets and face problems such as fewer training samples, optimal design of deep 
models and longer training time.

To develop traditional learning processes into deep learning processes, the primary 
required change lies in the automatic extraction of effective features. Feature extraction 
determines the upper limit of the performance of the target recognition algorithm, and 
the classification model only makes the algorithm approach the upper limit continu-
ously. Therefore, the study of effective feature extraction technology is important for tar-
get recognition.

In the field of image processing, feature extraction primarily reduces the dimension-
ality of image data and obtains a series of features representing the image. In addition 
to the sparse dictionary method mentioned in the traditional method, it also includes 
methods such as spatial transformation. Spatial transformation uses mathematical meth-
ods such as matrix decomposition and optimization to obtain global or local structural 
features in the corresponding low-dimensional space [5], which can effectively trans-
form a sample of high-dimensional data into low-dimensional features. This transforma-
tion has two advantages for target recognition: one is to remove the correlation between 
samples and increase the feature difference between samples of different categories; the 
other is to reduce the dimension of the input classifier by reducing the dimension of the 
sample features of the input classifier, which can reduce the computational load of the 
classification process.

The two-dimensional bidirectional principal component analysis feature named 
(2D)2PCA[6] and collaborative representation-based projections (CRP) feature [7] are two 
effective methods of data dimension reduction in spatial transformation. (2D)2PCA-CRP 
is a two-dimensional PCA that can analyse the principal component features of a sample 
set that is composed of two-dimensional samples. Compared with PCA, (2D)2PCA reduces 
the feature dimension and extracts more effective feature information. However, (2D)2PCA 
only extracts global structural features of an image and ignores local structural informa-
tion in the target that may improve recognition. CRP is an unsupervised spatial transforma-
tion feature. Similar to Fisher’s criterion, CRP must find an optimal projection matrix to 
maximize the global separability of the sample based on the graph and minimize the local 
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compactness. It is necessary to convert the SAR image containing redundant information 
into a one-dimensional vector before extracting the CRP feature, which destroys the spatial 
structure of the SAR image. Therefore, the extracted CRP features may not be able to char-
acterize the real target characteristics, resulting in a decrease in the performance of SAR 
target recognition.

To solve the problem of inefficient interpretation of massive high-resolution SAR data, 
this study combines (2D)2PCA and CRP to develop a spatial transformation feature 
called the (2D)2PCA-CRP feature, which effectively reduces the dimension of target fea-
tures and improves the recognition accuracy of targets using the intensity information of 
SAR images. First, (2D)2PCA is used to project the image to the low-dimensional feature 
space and filter out the interference redundant information in the high-resolution SAR 
image without destroying the spatial structure. Then, CRP is used to extract the global 
structural features and local structural features of the target in the high-resolution SAR 
image.

2 � Two‑dimensional bidirectional principal component collaborative projection 
feature

2.1 � Two‑dimensional bidirectional principal component analysis

Principal component analysis (PCA) is a commonly used data analysis method that is 
often used for dimensionality reduction of high-dimensional data and can be used to 
extract the primary feature components of the data. PCA is often used as a pre-pro-
cessing method in computer vision and signal processing to reduce the dimension of big 
data. (2D)2PCA is developed based on PCA. Compared with PCA, (2D)2PCA does not 
need to vectorize the image matrix but directly processes it. Concurrently, (2D)2PCA 
performs dimensionality reduction from the row and column directions to eliminate the 
correlation between rows and columns. Given a training sample set X ∈ R

m×n×N , where 
X is a three-dimensional sample tensor composed of N  images of size m× n , the specific 
steps of (2D)2PCA feature extraction are as follows.

To perform row mapping of Y1= XA , where A is a projection matrix composed of a 
set of orthogonal bases, Y1 is the result of the original sample X mapped by A , and the 
overall scatter matrix Gt,r corresponding to the row transformation is in (1):

To perform column mapping of Y2= BX , where B is a projection matrix composed of 
a set of orthogonal bases, Y2 is the result of the original sample X mapped by B , and the 
overall scatter matrix Gt,l corresponding to the column transformation is shown in (2):

where Xi
r and Xj

r represent the ith row vector and the jth column vector of the rth sam-
ple, respectively; Xi and Xj  represent the ith row vector and the jth column vector of the 
sample mean X , respectively. To obtain the optimal projection of the training sample 
X ∈ R

m×n×N , the eigenvalues and eigenvectors of the scatter matrices Gt,r and Gt,l are 
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calculated, and the eigenvectors corresponding to the largest dt and dr eigenvalues of 
each are taken to form the projection matrices A and B . Therefore, the original sample 
joint mapping form is shown in (3):

where Y2 is the (2D)2PCA feature of the original sample set after spatial projection 
dimensionality reduction; thus, the feature dimension of the sample project is d ∈ R

t×r . 
This process retains the original sample data and spatial structure information as much 
as possible but also markedly reduces the dimension of the feature space.

2.2 � Cooperative representation‑based projection

CRP is an unsupervised discriminant projection method based on ℓ2 norm regularized least 
squares. The core idea of CRP is to use all samples to represent the specified sample to cal-
culate the edge weight of the specified sample and other samples through collaborative rep-
resentation theory. In addition, when obtaining the projection matrix, the local information 
and global information of the sample are considered concurrently, and the local informa-
tion is minimized. The optimal projection matrix is found by minimizing local compactness 
and maximizing total separability.

We assume that the training sample set is X = [x1, x2, . . . , xn] ∈ R
m×n , where xi is a col-

umn vector composed of the m-dimensional features of the ith sample. First, we construct 
an ℓ2 graph according to collaborative representation theory, and the weight wi ∈ R

n×1 of 
the sample xi reconstructed from the ℓ2 graph is:

where � is the regularization parameter, and wij(i  = j) represents the contribution made 
by sample xj when reconstructing sample xi . We let the derivative of Eq. (4) with respect 
to wij be 0, and it is easy to find its closed solution as follows:

According to the ℓ2 diagram, CRP defines local compactness JL and global separability JT 
as:

where the local scatter matrix SL and the global scatter matrix ST S are, respectively, 
expressed as:
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where I is identity matrix, W is the matrix of wij.
To obtain the best projection matrix P , it is necessary to solve two optimization 

problems of minimizing local compactness and maximizing total separability concur-
rently. Therefore, the final optimization function of CRP can be expressed as:

Thus, the projection matrix P is the first d largest nonzero eigenvalue correspond-
ing to (SL)−1STP = �P . The low-dimensional CRP feature of the final sample is:

2.3 � (2D)2PCA‑CRP features

As mentioned in Sect. 2.1, (2D)2PCA is a low-dimensional feature extraction method 
for two-dimensional data. When it is used in high-resolution SAR images, by com-
pressing the two-dimensional image row and column simultaneously, the redundant 
information in the SAR image can be removed without destroying the two-dimen-
sional matrix structure of the image, effectively retaining the image. The global 
scattering information of the target slice is typically removed from the informa-
tion redundancy caused by noise or background, and the characteristic information 
related to the target area is retained. However, the disadvantage of (2D)2PCA is that 
it only focuses on global features and ignores the local structure information in the 
target that is beneficial for recognition.

CRP is an unsupervised spatial transformation feature. The advantage of CRP is that it 
considers global and local features concurrently. Similar to Fisher’s criterion, the process 
of CRP to obtain the best projection matrix is the process of simultaneously optimiz-
ing the global separability and local compactness based on the ℓ2 graph. Therefore, the 
extracted CRP features can effectively represent the global and local features of the SAR 
image. However, when extracting CRP features, the two-dimensional SAR image matrix 
containing redundant information must be stretched into a one-dimensional vector, 
which destroys the spatial structure of the SAR image. After stretching, the redundant 
information is interlaced and mixed with the effective information, and the extracted 
CRP features can no longer characterize the effective features of the original SAR image 
target, which leads to the degradation of the SAR target recognition performance.

Therefore, we combine (2D)2PCA and CRP to design (2D)2PCA-CRP features to effec-
tively reduce the target feature dimension and improve the SAR target recognition rate. 
First, we use (2D)2PCA to project the high-resolution SAR image into the low-dimen-
sional feature space, remove the interference redundant information in the high-resolu-
tion SAR image without destroying the spatial structure, and then use CRP to extract the 
redundant SAR image. With regard to the characteristic information of the target, the 
recognition of the target is finally achieved.
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n
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_
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3 � Methods
In this paper, the SAR vehicle target recognition algorithm flow based on the 
(2D)2PCA-CRP feature mentioned in Sect.  2.3 is shown in Fig.  1, which effectively 
reduces the dimension of target features and improves the recognition accuracy of 
targets in SAR images.

First, (2D)2PCA is used to project the image to the low-dimensional feature space 
and filter out the interference redundant information in the high-resolution SAR 
image without destroying the spatial structure. Then, CRP is used to extract the global 
structural features and local structural features of the target in the high-resolution 
SAR image.

The steps of this method are as follows:
Step 1: (2D) 2PCA feature matrix extraction. Considering that the original SAR image 

contains redundant information that interferes with target recognition, the original SAR 
image sample X is converted to a lower data dimension using the (2D)2PCA (2D) 2PCA 
subspace before CRP feature extraction and using Eqs. (1)-(3). We then denote the sam-
ple feature matrix after dimensionality reduction as X(2D)2PCA.

Step 2: CRP feature projection matrix calculation. First, we establish the ℓ2 graph 
about the sample space X(2D)2PCA according to Eqs. (4)-(5). Then define the local com-
pactness JL and global separability JT  of the ℓ2 graph according to Eqs. (6)-(7). Finally 
the optimization problem of Eq. (10) obtains the characteristic projection matrix P of 
CRP by solving Eq. (10).

Step 3: (2D) 2PCA-CRP feature extraction. The CRP characteristics of training 
samples Xtrain and test samples Xtest are expressed as X′

train = PT · Xtrain,(2D)2PCA and 
X′
test = PT · Xtest,(2D)2PCA.
Step 4: Nearest neighbour classification. The (2D) 2PCA-CRP features of samples 

X′
train and X′

test are sent to the nearest neighbour classifier, and the test sample is 
assigned a category label based on the Euclidean distance.

Finally, the complexity of (2D)2PCA-CRP is analysed as following. Suppose there are 
M m by n training images, the number of projection vectors in PCA, 2DPCA and alter-
native 2DPCA is p , d and q . Then the compression ratios of PCA, 2DPCA, alterna-
tive 2DPCA and (2D)2PCA are computed as Mmn/(Mp+mnp) , Mmn/(Mmd + nd) , 
Mmn/(Mmq + nq) and Mmn/(Mdq + nd +mq) , respectively [38].

Fig. 1  Flowchart of the SAR target recognition algorithm based on (2D)2PCA-CRP features
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4 � Results and discussion
Some experiments are performed to demonstrate the effectiveness of the proposed 
method in SAR vehicle target recognition under several condition and the results are 
discussed in this section.

The experimental data adopt the moving and stationary target acquisition and 
recognition named MSTAR published by Sandia Laboratory supported by DARPA. 
Whether at home or abroad, the research on SAR image target recognition is basi-
cally based on this dataset. All images in this dataset are high-resolution spotlight 
sensor starlos imaging in the X-band that were created in the HH polarization work-
ing mode and have an image resolution of 0.3 m × 0.3 m. The coverage of the imaging 
azimuth is 0°–360°. A target consists of one type of rocket launcher 2S1; four types of 
armoured vehicles, including BMP2, BRMD2, BTR60 and BTR70; one type of bull-
dozer D7; two types of tanks T72 and T62; and one type of air defence unit ZSU23/4. 
In addition, there are several types of targets with submodels and differences in spe-
cific model configurations. In addition, different types of target samples have differ-
ent sizes, including 128 × 128 pixels, 158 × 158 pixels, 178 × 178 pixels and 192 × 192 
pixels. Therefore, in the experiments, these samples must be pre-processed. For all 
types of SAR vehicle target samples, the centre interception or zero filling operation is 
performed, and the sample slice size is uniformly adjusted to 128 × 128 pixels.

4.1 � SOC samples

In this study, the training set and test set under the SOC conditions contain the 
MSTAR data of 10 types of targets with elevation angles of 17° and 15°. The com-
parison algorithms are CRP, PCA, (2D)2PCA, (2D)2PCA -CRP and CA-MCNN [39]. 
CA-MCNN is a multiscale convolutional neural network (CNN) based on component 
analysis (CA-MCNN) for synthetic aperture radar (SAR) automatic target recogni-
tion (ATR). The component information of a target is robust to the local variations 
of the target, which is not made the best of by traditional CNN-based methods. Spe-
cific experimental data settings are shown in Table 1. The training samples and test 
samples of each type include all submodels, which increases the difficulty of recogni-
tion compared to using only a single model. The confusion matrix obtained by the 
algorithm in this paper is shown in Table  2. The average recognition rate of the 10 
types of targets is 95.63%. The average recognition rates obtained based on the other 
three spatial transformation features are shown in Table  3. The average recognition 
rates based on the PCA feature and CRP feature are 72.37% and 73.58%, respectively, 
which are similar. The (2D)2PCA feature recognition rate is marginally higher but is 
far lower than the recognition accuracy based on (2D)2PCA-CRP features because 
PCA and CRP both extract features based on the one-dimensional form of the image 
and lose the spatial structure information that can characterize the detailed features 
of the target. However, with multitype target recognition, it is particularly important 
to accurately describe the detailed structural characteristics of the target. Therefore, 
the (2D)2PCA-CRP feature has marked advantages when used for multiclass MSTAR 
vehicle target recognition under SOC conditions. It is worth noting that this method 
uses the multiscale CNN network structure and integrates the target scattering 
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structure information, and its recognition accuracy is slightly higher than that of this 
method.

4.2 � Type change samples

In specific classification tasks, similar targets typically appear in different models of vari-
ants or have different mounts installed. The primary structure of these variants is similar, 
but there are differences in specific details, such as whether a tank is equipped with fuel 
tanks, whether an antenna is deployed, whether an armoured vehicle target is equipped 
with artillery, etc. Therefore, the model recognition of the target brand of the vehicle 
is important. In this section, two sets of experiments are described. Experiment one 

Table 1  SOC sample division

Type Train set Test set

2S1 299 274

BMP2 233 (sn_9563) 195 (sn_9563)

232 (sn_9566) 196 (sn_9566)

233 (sn_c21) 196 (sn_c21)

BRDM2 298 274

BTR60 256 195

BTR70 233 196

D7 299 274

T62 299 273

T72 232 (sn_132) 196 (sn_132)

231 (sn_812) 195 (sn_812)

228 (sn_s7) 191 (sn_s7)

ZIL131 299 274

ZSU23/4 299 274

Table 2  Confusion matrix of the presented method

Type 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU23/4

2S1 0.8650 0 0 0 0.1314 0 0.0036 0 0 0

BMP2 0 0.9983 0 0 0 0 0 0.0017 0 0

BRDM2 0 0 0.8175 0 0.1825 0 0 0 0 0

BTR60 0 0 0 0.7946 0.2051 0 0 0 0 0

BTR70 0 0 0 0 1 0 0 0 0 0

D7 0 0 0 0 0.0036 0.9891 0.0036 0 0 0.0036

T62 0 0 0 0 0.0110 0.0037 0.9744 0 0 0.0110

T72 0 0 0 0 0 0 0 1 0 0

ZIL131 0.0036 0 0 0 0.0036 0 0 0 0.9927 0

ZSU23/4 0 0 0 0 0 0 0 0 0 1

Table 3  Comparison of recognition rates of various algorithms

Algorithm PCA (2D)2PCA CRP (2D)2PCA-CRP CA-MCNN

Average recognition rate 0.7237 0.8820 0.7358 0.9563 0.9861
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considers four types of targets and a total of 8 specific models, and experiment two con-
siders five submodels of T72 targets to complete two sets of SAR vehicle target model 
classification experiments.

4.3 � Recognition of 4 types of targets

In this section, the training samples and test samples are 14 types of vehicles at eleva-
tion angles of 17° and 15°. As shown in Table 4, the BMP2 and T72 targets each contain 
three different variants. Pairwise methods have similar scattering performance on SAR 
images [4]. The average recognition rate based on the four spatial transformation fea-
tures is shown in Table 6. The average recognition rate of the 8 submodels based on the 
four features from high to low is CRP > (2D)2PCA-CRP > (2D)2PCA > PCA. The average 
recognition accuracy based on (2D)2PCA-CRP features is 93.88%, and the performance 
is marginally lower than when SOC conditions exist. Specifically, from the confusion 
matrix obtained by the target recognition algorithm based on the (2D)2PCA-CRP fea-
ture in Table 5, the primary reason for the decline in recognition rate is that the three 
submodels of the BMP2 target produce serious misclassifications. However, the BMP2 
target will not be mistakenly classified into the other three types of targets and thus has 
almost no impact on the performance of the SOC’s large-type target recognition experi-
ment. In general, under the current experimental conditions, the (2D)2PCA-CRP feature 
achieves good performance when recognizing the 14 types of SAR targets (Table 6).

4.4 � T72 target type classification

To examine how the proposed method performs with specific model changes in the T72 
target, the experimental conditions are set as shown in Table  7. The training samples 
and test samples are the A32, A62, A63, A64 and SN_S7 submodels of the T72 target 
at elevation angles of 17° and 15°. The confusion matrix of the algorithm in this paper 
for the recognition results of the five submodels of the T72 target is shown in Table 8. 
The recognition rates of each type of submodel are 99.27%, 97.81%, 94.89%, 95.26% and 

Table 4  Sample division of 14 types of target model identification

Type Training set Test set

BMP2 (sn_9563) 233 195

BMP2 (sn_9566) 232 196

BMP2 (sn_c21) 233 196

BTR60 256 195

T62 299 273

T72 (sn_132) 232 196

T72 (sn_812) 231 195

T72 (sn_s7) 228 191

2S1 299 276

BRDM2 298 274

BTR70 233 196

D7 299 274

ZIL131 299 274

ZSU23/4 299 274
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98.95%, and the average recognition rate is 97.13%. These results are markedly higher 
than the recognition results of the other three features in Table 9, particularly the two 
features based on one-dimensional vectors, which is consistent with the previous theo-
retical analysis.

4.5 � Change in elevation angle

Affected by SAR imaging characteristics, there are marked differences in the imaging of 
samples at different elevation angles, and the greater the elevation angle difference is, the 
smaller the similarity between samples. To verify the robustness of the proposed algo-
rithm under the change of the elevation angle, this section sets up the target recognition 

Table 6  Comparison of recognition rates of various algorithms for 14 types of targets

Algorithm PCA (2D)2PCA CRP (2D)2PCA-CRP

Average recognition rate 0.8905 0.9143 0.9435 0.9388

Table 7  Data division of 5 specific types of T72 targets

Type Training set Test set

A32 298 274

A62 299 274

A63 299 274

A64 299 274

SN_S7 228 191

Table 8  Confusion matrix of the classification algorithm for 5 specific types of T72 targets

Type A32 A62 A63 A64 SN_S7

A32 0.9927 0.0036 0 0.0036 0

A62 0.0036 0.9781 0.0146 0.0036 0

A63 0.0109 0.0292 0.9489 0.0073 0.0036

A64 0.0073 0.0255 0.0073 0.9526 0.0073

SN_S7 0 0 0 0.0105 0.9895

Table 9  Comparison of recognition rates of various algorithms for 5 specific types of T72 targets

Algorithm PCA (2D)2PCA CRP (2D)2PCA-CRP

Average recognition rate 0.8042 0.8539 0.7428 0.9713

Table 10  Data division under the change in elevation angle

Type Training set (17°) Test set (30°)

2S1 299 288

BRDM2 298 287

ZSU23/4 299 288
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experiment under the large elevation angle. The training set still uses the samples at 17°, 
and the test set changes from 15° to the samples at the larger 30° pitch angle. Target 
types include three types, 2S1, BRDM2 and ZSU23/4, and the specific sample size of 
each category is shown in Table 10. The confusion matrix of (2D)2PCA-CRP features at 
large pitch angles is shown in Table 11. The recognition rates of the three types of targets 
are 99.31%, 99.65% and 98.61%. All have achieved good recognition results. Compared 
with the recognition rate of the other three features shown in Table 12, the (2D)2PCA-
CRP feature achieves a recognition rate of 99.19%, which is higher than the two features 
of PCA and (2D)2PCA. However, the recognition rate of the CRP feature for the 2S1 and 
BRDM2 targets is only 16.67% and 11.5%, respectively, which is strongly affected by the 
change in the pitch angle. The experimental results thus show that compared with the 
original CRP feature, the improved (2D)2PCA-CRP feature is insensitive to changes in 
the pitch angle.

5 � Conclusion
To solve the problem of a large amount of high-resolution image data and low inter-
pretation efficiency, this study uses three types of PCA, (2D)2PCA and CRP to effec-
tively reduce the spatial transformation characteristics of the SAR image feature space. 
In addition, we analysed the proposed method’s performance in a high-resolution SAR 
target recognition task. Then, (2D)2PCA and CRP were combined to develop a spa-
tial transformation feature that effectively reduces the feature space dimension and 
improves the SAR target recognition rate. First, (2D)2PCA is used to project the image 
into a low-dimensional feature space. While considering the spatial structure, the inter-
ference redundant information in the high-resolution SAR image was filtered out. Then, 
CRP was used to extract the spatial global separability feature and local structure fea-
ture of the target in the high-resolution SAR image. Finally, based on the (2D)2PCA-CRP 
feature, the nearest neighbour classifier was used to complete the target recognition 
task. Experiments were performed under four experimental conditions in the MSTAR 
dataset, including SOC, 8 types of target changes, T72 model changes and pitch angle 
changes. (2D) 2PCA-CRP features achieved average recognition rates of 95.63%, 93.89%, 
97.13%, and 99.19%, which were markedly higher than those of the three features of 
PCA, (2D)2PCA and CRP.

Table 11  Confusion matrix of the classification algorithm under the change in elevation angle

Type 2S1 BRDM2 ZSU23/4

2S1 0.9931 0.0069 0

BRDM2 0.0035 0.9965 0

ZSU23/4 0.0069 0.0069 0.9861

Table 12  Comparison of recognition rates of various algorithms under the change of elevation 
angle

Algorithm PCA (2D)2PCA CRP (2D)2PCA-CRP

Average recognition rate 0.9779 0.9623 0.4276 0.9919
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When extracting spatial transformation features, this method only removes the cor-
relation and reduces the feature dimension of the current sample, and does not use the 
category information of the sample. Similar targets usually have similar target charac-
teristics, while different targets have obvious differences in target characteristics. There-
fore, the next research will use the sample category information to extract more effective 
spatial transformation features.
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