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1  Introduction
The joint direction-of-arrival (DOA) and polarization estimation of the polarization sen-
sitive array (PSA) is one of the classical topics in array signal processing and has been 
widely used in radar, telecommunications, seismology [1]. In most scenarios, these esti-
mation methods are proposed based on the linear array or planar array. Recently, the 
conformal array has aroused great concern. A conformal array [2, 3] is generally an array 
amounted with radiating sensors on the curvature surface. The conformal array has 
many benefits including reduction of aerodynamic drag, wide angle coverage, space sav-
ing, reduction of radar cross-section and so on. Complicated surface structure of CPSA 
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will lead to the non-uniformity of element pattern and polarization characteristics, 
which brings lots of new challenges to parameters estimation. Therefore, the research on 
parameters estimation of CPSA is relatively significant.

At present, the DOA and polarization estimation methods based on the conformal 
array or the PSA are mainly according to their similar characteristics with the con-
ventional array signal model and extended from the traditional parameter estimation 
techniques to conformal and PSA array. As a result, various approaches for cylindrical 
conformal arrays have been suggested to carry out two-dimensional (2D) DOA esti-
mation, such as multiple signal classification (MUSIC) [4] and signal parameters via 
rotational invariance technique (ESPRIT) methods [5]. However, due to the direction 
diversity of the antenna, these conventional methods demand large signal to noise ratio 
(SNR) and snapshots. In practical electromagnetic environment, the increasingly dense 
signals and jamming signals, and more mobility targets will cause the received signal to 
face the problems of low SNR and small snapshots, which would cause the algorithm 
performance to deteriorate or even fail. In order to solve this problem, by considering 
the multidimensional structure of the array received data, the tensor technique is uti-
lized to the MUSIC algorithm for cylindrical conformal array to improve the estimation 
performance [6, 7] proposed a 2D DOA estimation method by using the nested array 
on the cylindrical conformal arrays, which shows better performance. Nonetheless, the 
method in [6] is computationally much expensive as it requires spectrum peak search-
ing, while the method in [7] needs to place the antenna in an elaborate design.

Recently, the emerging sparse reconstruction methods for DOA estimation, including 
ℓp-norm (0 ≤ p ≤ 1) methods [8–12], orthogonal matching pursuit (OMP) methods [13, 
14] and the sparse Bayesian learning (SBL) methods [15–18], have aroused a lot of atten-
tion in DOA estimation. The essential idea of these algorithms is that the directions of 
incident source are substantially sparse in the spatial domain, which is intrinsically dif-
ferent from the subspace-based algorithms. Related methods have been shown to gain 
much enhanced performance over the subspace-based methods in the condition of low 
SNR and limited snapshots. In [19], a joint DOA, power and polarization estimation 
method using the cocentered orthogonal loop and dipole array is proposed by utilizing 
the signal reconstruction method. By exploiting the sparsity of the incident signals in 
the spatial domain, [20] proposed a novel method to estimated the DOA and polariza-
tion parameters by using SBL method. In [21], a novel off-grid hierarchical block-sparse 
Bayesian method for DOA and polarization parameters estimation was presented to 
improve the estimation accuracy [22]. Addressed a DOA and polarization estimation 
method based on the spatially separated polarization sensitive array under the SBL 
framework. However, these methods mentioned above focus on the estimation problem 
based on linear array or planar array, and do not consider the CPSA. As a result, the 
DOA and polarization estimation based on sparse reconstruction framework for CPSA 
needs further research.

This paper follows sparse reconstruction to address the joint DOA and polariza-
tion estimation based on the CPSA. By using the 2D joint sparsity signals of incident 
signals, a comprehensive array model is established first and a singular value decom-
position (SVD) method is then used to reduce the dimension of array output matrix. 
And then, a variational sparse Bayesian learning (VSBL)-based method named 
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CPSA-VSBL and OMP-based method named CPSA-OMP are proposed to realize 
DOA estimation. Finally, the polarization parameters are obtained by the minimum 
eigenvector method. The scenario when cylinder CPSA is taken as example, so as to 
show how the CPSA-VSBL and CPSA-OMP realize DOA and polarization estima-
tion jointly. Numerical examples also be provided to show how the performance of 
the proposed methods in DOA and polarization estimation and resolution under low 
SNR and limited snapshots.

Notations: Bold-italic letters are used to represent vectors and matrices. Lower case 
letters denotes scalars. C denotes complex numbers. (·)−1 , (·)T and (·)H denote the 
inverse operation, transpose operation and conjugate transpose operation, respec-
tively. �·� denotes the statistical expectation. • , ⊗ and ⊙ denote Hadamard Product, 
Kronecker product and Khatri-Rao Product, respectively. For a vector x , diag(x) is 
diagonal matrix with x being its diagonal. �·�2 represents 2-norm.

2 � 2D sparse signal model
As shown in Fig.  1, suppose that there are K narrowband far-field true sources 
(θk ,ϕk , γk , ηk), k = 1, 2, · · · ,K  , impinging on an arbitrary CPSA with M electromag-
netic vector sensor (EMVS), where θk is azimuth and ϕk is elevation, γk ∈ [0,π/2) 
and ηk ∈ [−π ,π) are the polarization auxiliary angle and polarization phase dif-
ference angle of the k-th signal, respectively. ri = [xi, yi, zi]

T, i= 1, 2, · · · ,M is 
position vector of i-th sensor. The propagation direction vector of the signal is 
u = [sin θ cosϕ, sin θ sin ϕ, cos θ ]T . Each EMVS can output three electric-field vectors 
E = ex, ey, ez  and three magnetic-field vectors H =

[

hx,hy,hz
]

 [23]. For the k-th fully 
polarization wave, the polarization steering vector of each sensor can be written as

Fig. 1  Arbitrary conformal polarization sensitive array
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where b(θk ,ϕk , γk , ηk) ∈ C6×1 , v(θk ,ϕk) and ρ(γk , ηk) represent the source’s spatial infor-
mation and polarization information, respectively.
O(X ,Y ,Z) represents the global coordinate system in Fig.  1, and accordingly, 

O′
i

(

X ′,Y ′,Z′
)

 represents the local coordinate system of i-th element [24]. Hence, θ is 
azimuth and ϕ is elevation in the global coordinate system, and accordingly, θ ′ and ϕ′ are 
azimuth and elevation in the local coordinate system, respectively. Given the effect of 
the CPSA curvature, the element pattern and polarization characteristics of each sensor 
is not uniform any more. There exists a rotation matrix R in [25], so that the pattern of i-
th sensor can be transformed from local coordinate system gi

(

θ ′,ϕ′
)

 to global coordinate 
system gi(θ ,ϕ) . Therefore, the array steering vector of the k-th signal can be written as

where a(θk ,ϕk) ∈ CM×1 denotes the spatial steering vector, g(θk ,ϕk) ∈ CM×1 denotes the 
element pattern in the global coordinate system. d(θk ,ϕk) = g(θk ,ϕk) • a(θk ,ϕk) and its 
expression is formulated as follows

where � is the carrier wavelength. As shown in Fig. 2 [26], fi is the direction diagram of 
the i-th sensor, uθ and uϕ are unit vectors, kθ and kϕ are the polarization parameters of 
the true sources. giθ and giϕ are the response of i-th sensor to the θ ′ and ϕ′ in the local 
coordinate system [27]. Thus, the received data model is expressed as

where x̄(t) = [x̄1(t), · · · , x̄6M(t)]T ∈ C6M×1 and n̄(t) = [n̄1(t), · · · , n̄6M(t)]T ∈ C6M×1 
are the received data vector and complex Gaussian noise vector, respectively. Consider 

(1)

b(θk ,ϕk , γk , ηk) =
�

Ek Hk

�T

=
�

exk eyk ezk hxk hyk hzk
�T

=















cosϕk cos θk
sin ϕk cos θk
− sin θk
− sin ϕk
cosϕk

0

− sin ϕk
cosϕk

0
− cosϕk cos θk
− sin ϕk cos θk

sin θk















�

sin γke
jηk

cos γk

�

= v(θk ,ϕk)ρ(γk , ηk)

,

(2)
ā(θk ,ϕk , γk , ηk) = g(θk ,ϕk) • a(θk ,ϕk)⊙ b(θk ,ϕk , γk , ηk)

= d(θk ,ϕk)⊙ b(θk ,ϕk , γk , ηk),

(3)d(θk ,ϕk) =
[

g1(θ ,ϕ)e
−j 2π

�
r1•uk , · · · , gM(θ ,ϕ)e−j 2π

�
rM•uk

]T
,

(4)gi(θ ,ϕ) =
∣

∣fi
∣

∣|e| cos
(

θife
)

= f i · e = giθkθ + giϕkϕ , i = 1, 2, ...,M,

(5)ri = [xi, yi, zi]
T, i = 1, 2, · · · ,M,

(6)uk = [sin θk cosϕk , sin θk sin ϕk , cos θk ]
T,

(7)x̄(t) =

K
∑

k=1

ā(θk ,ϕk , γk , ηk)s̄k(t)+ n̄(t),
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that all the K true sources are incident on the CPSA [28]. As a result, the array steering 
matrix is

where D(θ ,ϕ) = G(θ ,ϕ) • A(θ ,ϕ) and B(θ ,ϕ, γ , η) = V (θ ,ϕ)Q(γ , η) . I is the K × K  
identity matrix. Ā is a 6M × K  matrix denoting the response of the array. It is seen 
that G denotes M × K  element pattern matrix of K signals, A denotes the M × K  full-
rank steering matrix, B denotes the 6× K  polarization steering matrix, V (θ ,ϕ) denotes 
6× 2K  spatial information matrix of B , Q(γ , η) denotes 2K × K  polarization informa-
tion matrix of B.

Hence, the received array data model is given by

(8)

Ā(θ ,ϕ, γ , η) = G(θ ,ϕ) • A(θ ,ϕ)⊙ B(θ ,ϕ, γ , η)

= D(θ ,ϕ)⊙ B(θ ,ϕ, γ , η)

= D(θ ,ϕ)I ⊙ V (θ ,ϕ)Q(γ , η)

= (D(θ ,ϕ)⊗ V (θ ,ϕ))(I ⊗Q(γ , η))

,

(9)G(θ ,ϕ) = [g(θ1,ϕ1), · · · , g(θK ,ϕK )],

(10)A(θ ,ϕ) = [a(θ1,ϕ1), · · · ,a(θK ,ϕK )],

(11)
B(θ ,ϕ, γ , η) = [b(θ1,ϕ1, γ1, η1), · · · , b(θK ,ϕK , γK , ηK )]

= [v(θ1,ϕ1)ρ(γ1, η1), · · · , v(θK ,ϕK )ρ(γK , ηK )]
,

(12)D(θ ,ϕ) = [d(θ1,ϕ1),d(θ2,ϕ2), · · · ,d(θK ,ϕK )]

(13)V (θ ,ϕ) = [v(θ1,ϕ1), · · · , v(θK ,ϕK )],

(14)Q(γ , η) = diag(ρ(γ1, η1), · · · , ρ(γK , ηK )).

Fig. 2  Response of sensor
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For simplicity, (15) can be rewritten as

where S̄ = [s1, s2, · · · , sK ]
T , N̄ = [n1,n2, · · · ,n6M]T . S̄ and N̄  denote K × T  source and 

6M × T  additive white Gaussian noise, respectively.
In order to use sparse reconstruction method to DOA estimation, generally [29], we can 

uniformly sample the range of azimuth and elevation to formulate a DOA set 
{(

θ̃ , ϕ̃
)}

=
{(

θ̃1, ϕ̃1

)

, · · · ,
{(

θ̃J
θ̃
, ϕ̃Jϕ̃

)}}

 with J = Jθ̃ Jϕ̃ ≫ K  . Assume that all the true 

sources lie on a fixed DOA set. For simplicity, the sparsity of the polarization information is 
not considered. The proposed methods are derived in the multiple measurement vectors. 
Therefore, the observation matrix X with the snapshots is T can be presented as

It is noted that Ã is called the overcomplete dictionary and the number of Ã columns 
is much larger than that of rows. Similar to (8), it can be found that Ã not only depends 
spatial parameters but also depends polarization parameters. S is called sparse direction 
weights, each sparse weight has non-zero value only at the true source directions. Com-
pared with nonsparse method, sparse reconstruction method can obtain the the source 
targets DOA with smaller reconstruction error. It expolits the observation matrix to 
reconstruct the signals and then the reconstructed signals are used to realize the DOA 
and polarization parameters estimation.

3 � Methods
The sparse reconstruction methods [30, 31] make use of the sparsity of signal in the spa-
tial domain to reconstruct true signals. In this section, we propose a sparsity-prompting 
CPSA-VSBL method to realize DOA estimation based on the MMV array output formula-
tion given in (17). Meanwhile, the CPSA-OMP method is also proposed.

3.1 � Dimensionality reduction of received data

From (17), it is easy to note that the large dimension of the received data will degrade the 
computational efficiency. So, SVD is conducted on X , we have

where U  , Σ and V  is denoted as the left singular matrix, eigenvalue matrix and right 
singular matrix, respectively. Let V = [V 1,V 2] , V  is divided into V 1 and V 2 matrix 
according to the first K and the rest T − K  columns. In the presence of noise, we have 
XV = [X sv,XV 2] by the SVD, where X sv preserves most true sources information while 
the XV 2 is abandoned. Denote Y = X sv , Ssv = SV 1 and N sv = NV 1 , then we have

where Ssv and N sv are the new matrices of sparse direction weights and measurement 
noise, respectively. Y ∈ C6MK 2×K  represents the observation data matrix after reducing 

(15)X̄(t) = Ā(θ ,ϕ, γ , η)S̄(t)+ N̄ (t),

(16)X̄ = ĀS̄ + N̄ ,

(17)X = ÃS + N ,

(18)X = UΣVH,

(19)Y = ÃSsv + N sv,
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the dimension of X , and K ≤ T  . Hence, by using Y  in the following signal reconstruc-
tion process, the computational complexity of the algorithm is reduced greatly.

3.2 � The proposed CPSA‑VSBL method

The posterior distributions of all unknown parameters can be calculated by using the 
Bayesian criterion [32], we have

Assume that all the variables are mutually independent, the joint probability density 
function (PDF) p(Y , Ssv,α,β) is expressed as

where α and β are hyperparameters, τ ≥ 0 is shape parameter and ν ≥ 0 denotes rate 
parameter. The directed graphical model [33] of the factorization of the joint PDF is 
depicted in Fig. 3. N sv obeys complex zero-mean stationary Gaussian noise with known 
variance σ 2 . Thus, we have

As a result, a Gaussian likelihood function model of Y  can be obtained by

The non-zero rows of Ssv contain all the angular information of the incident signals. The 
CPSA-VSBL method is employed to update the hidden variables and hyperparameters 
to approximate the posterior probability [34]. We apply a three-layer hierarchical prior 
[35] to Ssv . A zero-mean complex Gaussian (Gauss) distribution imposed on Ssv as the 
first layer of prior

where Λ−1 = diag
(

1
/

α1, 1
/

α2, · · · , 1
/

αj , · · ·, 1
/

αJ
)

 , αj = σj
−2 and αj is the j-th noise 

precision. The exponential (Exp) distribution is applied to the hyperparameter α as the 
second-layer prior

(20)p(Ssv,α,β|Y ) =
p(Y , Ssv,α,β)

p(Y )
.

(21)p(Y , Ssv,α,β) = p
(

Y
∣

∣

∣
Ssv, σ

2
)

p(Ssv|α )p(α|τ ,β )p(β|ν ),

(22)p
(

N sv

∣

∣

∣σ
2
)

=

K
∏

t=1

CN

(

nsv(t)|0 , σ
2I
)

.

(23)p
(

Y
∣

∣

∣Ssv, σ
2
)

=

K
∏

t=1

CN

(

Y (t)
∣

∣

∣ÃSsv(t), σ
2I
)

.

(24)p(Ssv|α ) =

K
∏

t=1

CN

(

Ssv(t)
∣

∣

∣0,Λ−1
)

=

K
∏

t=1

J
∏

j=1

CN
(

ssv(t)j
∣

∣0,αj
)

,

Fig. 3  Block diagram of variational Bayesian principle
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The hyperparameter β obeys the chi-square (Chi2) distribution as the third-layer prior

However, p(Ssv,α,β|Y ) is not easy to solve. CPSA-VSBL minimizes Kullback-
Leibler (KL) divergence [36] between approximate PDF q(Θ) and its posterior 
p(Ssv,α,β|Y ) , where Θ = {Ssv,α,β} . The independent variables in q(Θ) can be 
rewritten into the product form of the distribution function which is described as 
q(Θ) = q(Ssv,α,β) = q(Ssv)q(α)q(β) . We can get the mean, variance of Ssv , and hyper-
parameters through the following steps.

The posterior distribution q(Ssv) is updated by q(Ssv) ∝ (p(Y , Ssv,α,β))q(α) , where 
(·)q(α) denotes the subset of Θ that removes α . p(Y , Ssv,α,β) can be obtained by the joint 
distribution of p(Y |Ssv ) and p(Ssv|α ) . We can acquire the approximate posterior for 
q(Ssv) as

The parameters of the approximate posterior in (27) can be renewed according to

The q(α) is updated according to q(α) ∝ (p(Ssv|α )p(α|τ ,β))q(Ssv)q(β) and can be approx-
imated as the product of the PDF of the generalized inverse Gaussian distribution, and 
thus, we have

where 
〈

h2j

〉

= µ2
j + Γj , κp(·) is referred to the third kind Bessel function with order p. 

When n = -1, the estimated Γ  and 〈Λ〉 in (29) are obtained.
The posterior distribution q(β) is updated by q(β) ∝ (p(α|τ ,β)p(β|ν ))q(α) and com-

plies with Gamma distribution as

Thus, the mean value of β can be expressed as

(25)p(α|τ ,β ) =

J
∏

j=1

Exp
(

αj|τ ,β
)

.

(26)p(β|ν ) = χ2(β|ν ).

(27)q(Ssv) =

K
∏

t=1

CN (Ssv(t)|µ(t),Γ ).

(28)µ(t) = σ−2Γ −1Ã
H
Y (t),

(29)Γ =
(

σ−2Ã
H
Ã+ �Λ�

)−1
,

(30)
�

αn
j

�

=





�

h2j

�

2τ �β�





n
2 κ n−1

2

��

2τ �β�
�

h2j

�

�

κ− 1
2

��

2τ �β�
�

h2j

�

� ,

(31)β ∼ Gamma



J +
ν

2
, τ

J
�

j=1

�

αj
�

+
1

2



.
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CPSA-VSBL firstly carries out the initialization of constant variables in the selected 
distribution function, and then iteratively update the hidden variables and hyperparam-
eters in turn until the set convergence conditions are satisfied [37]. The CPSA-VSBL 
algorithm in this paper is summarized in Table 1.

3.3 � The proposed CPSA‑OMP method

In the CPSA-OMP method, S can be reconstructed from the known matrix Y  and Ã 
based on the idea of dictionary atomic matching. In each iteration of CPSA-OMP, a col-
umn of Ã is selected by orthogonal projection method, which is most relevant to the Y  
. Then we subtract off its contribution to Y  and iterate over the remaining residual w

i
resi . 

The algorithm will identify the index set of the correct column when the residual is zero. 
The minimization of w

i
resi is selected by as follows

where wi
resi is the residual matrix in the i-th iteration, Ã

i

resi denotes the remaining part 
of Ã after the i-th iteration. The execution steps of CPSA-OMP algorithm are shown in 
Table 2.

(32)
�β� =

J + v
2

τ
J
∑

j=1

〈

αj
〉

+ 1
2

.

(33)wi
resi

= arg min
Y
resi

∥

∥

∥Y − Ã
i

resiY resi

∥

∥

∥

2

2
,

Table 1  The execution steps of CPSA-VSBL algorithm

Table 2  The execution steps of CPSA-OMP algorithm
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Some remarks of specific implementation of CPSA-VSBL and CPSA-OMP are shown 
as follows.

�Remark 1

The number of target sources K is used as known condition. Estimation K as a signifi-
cant study topic is outside the scope of this paper. Furthermore, the scenarios of coherent 
sources and colored noise are not considered.

�Remark 2
Compared with the conventional two-layer prior, the CPSA-VSBL method benefits from 
the selected three-layer prior (Gauss-Exp-Chi2) with the property of a sharp peak at the 
origin and heavy tails. It has the effect of prompting the sparsity of its solutions.

�Remark 3
In this paper, CPSA-VSBL and CPSA-OMP methods only discussed the CPSA-based 
structure. It is noted that the proposed methods can be generalized to arbitrary array 
geometries.

�Remark 4
According to empirical, the hyperparameters 

α
 and β are initialized to the 

1
T

∑K
t=1 ÃY (t) 

and 0.1, respectively. τ = 1.5 and ν = 1 are set in the third level prior distribution. 
ε = 10−3 and imax = 2000 represent the termination threshold and maximum iterative 
number, respectively.

3.4 � Refined DOA estimation

The mean and variance of S̄ can be output in {[µ1,Γ1], [µ2,Γ2], · · · ,
[

µJ ,ΓJ

]}

 after 

the iteratively update termination criterion 
∥

∥

∥

〈

αj
〉(i)

−
〈

αj
〉(i−1)

∥

∥

∥/

∥

∥

∥

〈

αj
〉(i−1)

∥

∥

∥ < ε or 

i > imax is reached. The powers from different directions are obtained by substituting 
the estimated [µ,Γ ] into the power function, where the power of the j-th impinging 
signal in the Ω is expressed as P̂j

We use all the estimated signal powers to form a power spectrum. Similar to other 
spectral-searching-based methods, the DOA is estimated by finding the posi-
tions of the highest peaks of the spectrum. Suppose that the grid indices of the high-
est K power values are the position of the true sources. The estimated K DOA will be 
{[

θ̂1, ϕ̂1

]

,

[

θ̂2, ϕ̂2

]

, · · · ,
[

θ̂K , ϕ̂K

]}

(34)P̂j =
1

L

〈

∥

∥

∥Ssvj

∥

∥

∥

2

2

〉

=
1

L

(

∥

∥

∥

〈

Ssvj

〉∥

∥

∥

2

2
+

〈

∥

∥

∥Ssvj −
〈

Ssvj

〉∥

∥

∥

2

2

〉)

=

∥

∥µj

∥

∥

2

2

L
+ Γj .
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3.5 � The polarization parameters estimation

Consider that the true sources S̄ = [s1, s2, · · · , sK ]
T impinge on the surface of the 

CPSA as shown in Fig. 1. Then the steering vector of the k-th source is 

 where g(θk ,ϕk) = [g1(θk ,ϕk), g2(θk ,ϕk), · · · , gM(θk ,ϕk)] , gi(θk ,ϕk) is the response of 
unit signal by the i-th array element to the k-th signal, and 
⌢
a(θk ,ϕk) =

[

e−j 2π
�
uk•r1 , e−j 2π

�
uk•r2 , . . . , e−j 2π

�
uk•rM

]T

 is phase delay vector.

The array manifold matrix of the CPSA is shown as

The received data model of polarization parameters estimation could be written as

In order to catch the noise subspace UN of X̂ , by taking the eigenvalue decomposition 

of the covariance matrix R = 1
L X̂ X̂

H

 and let the K eigenvectors corresponding to the K 
significant eigenvalues to form the signal subspace US . Hence, UN can be expressed as

where IMT symbolizes MT ×MT  identity matrix. The K estimated DOA in section 3.4 
are substituted into the constructed conventional spatial spectrum function to obtain 
the K functions as follows

The polarization parameters can be calculated by the eigenvector corresponding to the 
minimum eigenvalue of W  [38].

where ρk(i) denotes the i-th element in the eigenvector.

4 � The computational cost analysis
It is obviously that the proposed methods based on the sparse model will be more time 
consuming than the subspace-type methods. The reason is the dimension of the output 
matrix X in sparse signal model is too large to iteratively update the mean, variance and 
hyperparameters in (28), (29), (30) and (32) quickly. As a result, SVD is utilized to reduce 
the dimension of X to improve computational efficiency before the sparse component 
learning and inner product.

As far as the computational complexity, CPSA-VSBL in this paper mainly derives from 
solving for the hidden variables and hyperparameters. Among the mean and variance of Ssv 

(35)

(36)Â(θ ,ϕ, γ , η) =
[

â(θ1,ϕ1, γ1, η1), â(θ2,ϕ2, γ2, η2), · · · , â(θK ,ϕK , γK , ηK )
]

.

(37)X̂ = ÂS̄.

(38)UN = IMT −USUS
H,

(39)W =
1

Â
H
(θ ,ϕ, γ , η)UN Â(θ ,ϕ, γ , η)

.

(40)γk = arctan
(

abs
(

ρk(2)/ρk(1)
))

,

(41)ηk = angle
(

ρk(2)/ρk(1)
)

,
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is approximately 2J3 − 2J2 + 6J2M + 4JM2 +M3 − 3JM and J3 + 2J2M + 2JMK − JM , 
respectively. Then the hyperparameters 

〈

αj
〉

 and 
〈

αj
−1

〉(

j = 1, 2, · · · , J
)

 are about 4J and 
10J. The most time consuming of the CPSA-OMP is the selection of atoms in the dictionary 

Ã , and the computational complexity of each inner product is MJ. An appended computa-
tional load for the SVD of X is 6MKT 2 . The computational complexity of covariance matrix 
and eigenvalue decomposition in Tensor-MUSIC and MUSIC is 36M2T  and 

216M3 , and 

the spectral searching of subspace methods is n2[6M(6M − K )] . In addition to, Tensor-
MUSIC also needs higher order singular value decomposition. The computational com-
plexity of the above methods is given in Table 3 when an arbitrary conformal array with 
M=25, K=2, J=16471, T=50 and n=5000, where n is the number of angle searches. The 
computational complexity is represented as Ot.

5 � Results and discussion
In this section, the simulation results of CPSA-VSBL and CPSA-OMP based on CPSA 
are analyzed, and compared with MUSIC and Tensor-MUSIC. As shown in Fig. 4, the 
array structure in the simulation is a cylindrical carrier and there are Mc ×Mz sensors 
are uniformly distributed over the surface of the cylinder. The distance between the 

Table 3  Comparison of computational load

Algorithms Computation cost Ot

MUSIC Ot

(

36M2
T + 216M3 + n

2[6M(6M− K)]
)

Ot

(

5.55× 1011
)

Tensor-MUSIC Ot

(

36M2
T + 216M3 + n

2[6M(6M− K)]+ 10.67TMK
)

Ot

(

5.55× 1011
)

CPSA-OMP Ot(KMJ) + O
(

6MKT
2
)

Ot

(

1.57× 106
)

CPSA-VSBL Ot

(

3J3 − 2J2 + 8J2M+ 4JM2 + 2JMT + 6MKT
2
)

Ot

(

1.35× 1013
)

Fig. 4  Uniform cylinder CPSA



Page 13 of 18Lan et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:93 	

adjacent sensors along the Z-axis is �2 . For simplicity, we assume 
Mz = 5

 and Mc = 5 . 

The range of azimuth and elevation is sampled with 1◦ interval to form the direction set 
{(

θ̃ , ϕ̃
)}

 . The RMSE of DOA estimation by independent Monte Carlo simulations is 
defined as

where Q denotes the number of Monte Carlo simulations, uk is one of the parameters 
(θk ,ϕk , γk , ηk) , and ûkq is the estimation of uk in the q-th simulation.

(42)RMSE =

√

√

√

√

√

1

QK

Q
∑

q=1

K
∑

k=1

(

ûkq − uk
)2
,
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5.1 � The estimation accuracy versus SNR and the number of snapshots

In this simulations, the DOA estimation accuracy is evaluated by RMSE. The RMSE of 
the DOA estimation methods versus the SNR and number of snapshots are shown in 
Figs.  5 and 6, respectively. Consider two uncorrelated incident signals with DOA and 
polarization parameters (θ ,ϕ, γ , η) are (−14◦, 35◦, 25◦, 10◦) and (10◦, 50◦, 50◦, 45◦) , 
respectively. The number of snapshots is fixed at 50. The RMSE versus SNR from −1 
to 25 dB for the four methods is presented in Fig.  5, and the RMSE versus snapshots 
number from to 10 to 150 while SNR=5 dB is presented in Fig. 6. In each experiment, 
we run 300 Monte Carlo simulations. From Figs. 5 and 6, it can be seen that, the RMSE 
performance of four methods are improved with the SNR and snapshots increasing. In 
Fig. 5, the proposed CPSA-VSBL has a more accurate DOA estimation than other meth-
ods at every SNR. The performance of the proposed CPSA-OMP is apparently superior 
to MUSIC and Tensor-MUSIC while the SNR is relatively high. In Fig. 6, the proposed 
CPSA-VSBL offers the best performance than that of CPSA-OMP, MUSIC and Ten-
sor-MUSIC. CPSA-OMP provides an estimation with zero error when the number of 
snapshots is relatively large. We further examine the RMSE of polarization parameters 
estimation. For all the methods, it can be seen that the RMSE continuously decrease 
when SNR and the number of snapshots increase. It is observed that the RMSE γ and 
η of the proposed methods consistently outperform the Tensor-MUSIC and MUSIC 
methods in Fig. 7. From Fig. 8, the estimation performance of the proposed CPSA-VSBL 
is better than subspace methods at arbitrary number of snapshots. The CPSA-OMP 
performs better than the MUSIC and Tensor-MUSIC methods in the large number of 
snapshots.

5.2 � The resolution performance versus SNR and number of snapshots

In this subsection, the resolution performance is evaluated by the probability of success-
ful detection. For the MUSIC and Tensor-MUSIC methods, the “successful trial” is 
defined in this simulation as when both the 

∣

∣

∣θ̂ − θ

∣

∣

∣ < 2◦ and 
∣

∣ϕ̂ − ϕ
∣

∣ < 2◦ . Set the two 

uncorrelated incident signals with DOA and polarization parameters (θ ,ϕ, γ , η) are 
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(−8◦, 45◦, 10◦, 30◦) and (2◦, 45◦, 30◦, 20◦) , respectively. Set the number of snapshots is 
50, the probability of successful detection of four methods varying SNR from −5 to 20 
dB in Fig. 9. Figure 10 shows the probability of successful detection for SNR=5 dB by 
varying the snapshots from 20 to 200 under the two uncorrelated incident signals with 
DOA and polarization parameters (θ ,ϕ, γ , η) are (−4◦, 45◦, 10◦, 30◦) and 
(6◦, 45◦, 30◦, 20◦) . It is seen from Figs. 9 and 10, both the probability of successful detec-
tion improve with the increasing of the SNR and the number of snapshots, whereas the 
proposed methods have higher resolution performance than the conventional MUSIC 
and Tensor-MUSIC methods, which gives us a strong evidence of the effectiveness of the 
proposed methods.
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Fig. 8  The RMSE of γ and η versus number of snapshots
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6 � Conclusions
In this paper, we have illustrated sparse reconstruction method-based DOA and polari-
zation joint estimation for CPSA. By exploiting 2D spatial sparsity of incident signals, 
an array output model that is applicable to arbitrary CPSA is obtained. In order to 
improve the computational efficiency of the proposed methods, SVD is used to reduce 
the dimension of the array output matrix. The CPSA-VSBL and CPSA-OMP methods 
are proposed for DOA estimation. The minimum eigenvector method is used to obtain 
the polarization information of signals. As a result, both the estimation accuracy and 
the resolution of the proposed methods have been validated by a lot of simulations. The 
simulation results show that the proposed methods have low RMSE and optimal resolu-
tion than the state-of-the-art methods especially with low SNR and limited snapshots. In 
future work, we will focus on the multidimensional structural information in the array 
received data.
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