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1  Introduction
With the progress of the sensor technologies and radar detection methods [1–3], mul-
tiple measurements may be gotten from a point source target. These measurements not 
only reflect the target state but also its shape. We call the target as an extended target [4]. 
Group targets are usually composed of multiple targets that cooperate with each other 
[5], and a group produces multiple measurements if each group member produces at 
least one measurement. In general, the extended target and the group targets have simi-
lar characteristics in dynamic modeling, state estimation, and shape estimation. Specifi-
cally, first, they have certain shapes and thus produce multiple measurements. Second, 
these measurements have close distance. For simplicity, we call these two kinds of tar-
gets as group targets and do not make any distinctions.

In the classical estimation theory approach, Koch and Feldmann et al. [6, 7] used ran-
dom matrix estimation of second-order moments to obtain approximate elliptical shape 
and centroid of group targets in a Bayesian framework, but they focus on a single group 
targets without considering clutter. In contrast to using random matrices, Baum et al. 
[8–10] introduced the random hypersurface model, assuming that each measurement 
source is an element in a random hypersurface, and verified the applicability by ellip-
tical-shaped targets. Literature [11] improved the estimation results of the star convex 
model for the shapes of group targets by introducing constraints. In reference [12], a 
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random matrix-based Probability hypothesis density (PHD) filter was proposed to track 
multiple group targets. In 2005, Gilholm et al. proposed an group targets model based 
on Poisson distribution [13, 14], which treats the group model as a Poisson distribution 
rather than a point, and can estimate the group targets without constructing explicit 
association assumptions.

Random finite set (RFS) is another major theory to deal with group targets tracking 
problems. In 2009, Mahler proposed the extended target probability hypothesis density 
(ET-PHD) filter [15], which can estimate the states and the number of group targets. 
In 2011, Orguner et al. proposed the extended target cardinality probability hypothesis 
density (ET-CPHD) filter [16], which solves the sensitivity problem of the ET-PHD filter 
on the number of group targets. In addition, some other group targets tracking algo-
rithms based on PHD filter have also been proposed in recent years, such as Gaussian 
mixture PHD (GM-PHD) filter [17] and Sequential Monte Carlo PHD (SMC-PHD) filter 
[18]. In addition to the PHD filter, the cardinality-balanced multi-target multi-Bernoulli 
(CBMeMBer) filter is also popular, and some scholars have been studying the filter to 
track group targets [19–21]. The above filters cannot estimate the trajectories of the tar-
gets. In 2013, Vo et al. proposed a Generalized Labeled Multi-Bernoulli (GLMB) filter 
[22], which can not only estimate the states and the number of the targets, but also esti-
mate the trajectories of the targets. Reuter et al. improved the GLMB filter and proposed 
the Labeled Multi-Bernoulli (LMB) filter [23]. However, both the GLMB filter and the 
LMB filter can only track point targets. In 2015, Beard et al. proposed the gamma Gauss-
ian inverse Wishart-LMB (GGIW-LMB) algorithm [24], which can estimate the number, 
states, and trajectories of the group targets. In the literature [25–27], graph theory is 
introduced to describe the relationship between group targets, and collaborative noise is 
proposed. Reference [28] proposed a resolvable group targets tracking algorithm based 
on graph theory and GLMB filter. In addition, some other group targets tracking algo-
rithms based on GLMB filter have been proposed in recent years, such as literature [29] 
proposed a finite mixture modeling and tracking learning algorithm, literature [30] pro-
posed a multi-extended targets tracking algorithm, and literature [31] proposed a multi-
ple extended targets-based GLMB spline (ET-GLMB-S) filter.

The characteristics of large-batch and multi-structure group targets are mainly 
reflected in two aspects: large-batch means that there are a large number of subgroups; 
and multi-structure refers to many subgroups of different structure types. When track-
ing large-batch and multi-structure group targets, the data association between targets 
and measurements becomes very complicated due to the large number of group mem-
bers and the close distances between target nodes. Therefore, the RFS-based tracking 
method is more suitable for tracking large-batch and multi-structure group targets. The 
ideal value of the difference between the states of the group members is called the stand-
ard deviation vectors(SDVs), and the parameters in this paper mainly refer to it. Least 
squares method is usually used to estimate the unknown parameters.

In the literature [25], a tracking algorithm for resolvable group targets is pro-
posed, which considers the sum of deviation noise and process noise as collaborative 
noise, so that the GLMB filter can be applied to track resolvable group targets. The 
SDVs are assumed to be known in this algorithm, however, in practice the SDVs are 
often unknown; in addition, as the number of tracked group members increases, the 
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computational cost of the GLMB algorithm increases exponentially during the predic-
tion and update iterations, which makes the algorithm cannot directly track large-batch 
and multi-structure group targets. To deal with the problems above, some preliminary 
results were presented in [32], and this paper is a more complete version.

In this paper, we first use a serial GLMB filter to track large-batch and multi-struc-
ture group targets when the SDVs are known; then use a two-stage estimation method 
to jointly estimate the SDVs and the group target states. In addition, this paper intro-
duces an average optimal sub-pattern assignment (OSPA) distance, to evaluate the per-
formance of the filter tracking large-batch and multi-structure group targets. The paper 
is organized as follows: Sect. 2 introduces the foundations of L-RFS, graph theory, and 
recursive least squares (RLS); Sect.  3 models the motion model of group targets and 
shows the problem description; Sect. 4 introduces the algorithms; Sect. 5 conducts sim-
ulation experiments; Sect. 6 concludes the paper.

2 � Background
This section briefly reviews the necessary background knowledge.

2.1 � Notation

In this paper, some standard mathematical formulas and symbols are used: General-
ized Kronecker can measure whether a given two sets are equal, which can be defined as 
follows:

and the inclusion function, by:

 The inner product function used is expressed as follows:

The exponential symbol of multi-objective is shown as follows:

especially,

2.2 � Labeled random finite sets (L‑RFS)

At time k, if there are multiple targets, the states and number of targets can be represented 
by a RFS as: Xk =

{
xk ,1, · · · , xk ,Nk

}
∈ F(X) , where the states and number of targets are 

random, and thus the order in which they appear bears no significance. The random finite 

(1)δY (X) =
1 ifX = Y
0 otherwise

(2)1Y (X) =

{
1, ifX ⊆ Y
0, otherwise

.

(3)�f , g�
△
=

∫
f (x)g(x) d x.

(4)hX
△
=

∏

x∈X

h(x)

(5)h∅ = 1



Page 4 of 29Liu et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:110 

variable Xk describes all the dynamic information of the targets, including the changes in 
the states of the targets, the disappearance of the targets, the appearance of new targets, etc. 
Similarly, the observation set of the targets represented by RFS is: 
Zk =

{
zk ,1, · · · , zk ,Mk

}
∈ F(Z) . At time k, the measured RFS includes not only the meas-

urement of the targets themselves, but also the clutter and missed detection. Nk and Mk 
represent the number of targets and the number of measurements at time k, respectively. 
F(X) and F(Z) represent a set composed of all finite subsets of X and Z , respectively. 
Z
g
k ⊆ Zk , Z

g
k represents a set of measurements of the group targets at time k, 

Z
g
k =

{
z
g
k ,1, · · ·, z

g
k ,mk

}
 , where zgk ,mk

 represents the measurement generated by the mk th 

group member at time k.
The labeled RFS indicates that the multi-target state x ∈ X in the set is expanded by add-

ing a label l ∈ L , so as to characterize the uniqueness of the state in the set, where X , L 
represents the state space and the label space, i.e., x = (x, l) , where l = (k , i) , k is the target 
birth time and i is a positive integer, representing the new target index at this time. There-
fore, a labeled RFS can be considered as a finite subset of X× L.

Let L : X× L → L be the mapping of label RFS to label value space, i.e., L((x, l)) = l . 
L(X) = {L(x) : x ∈ X} is the set of label values corresponding to X . Because the target 
state and the label value are in one-to-one correspondence, the total number of targets 
should be equal to the total number of labels. Further, the following expressions can be used 
as label constraints:

2.3 � Labeled multi‑Bernoulli (LMB) RFS

The density of the labeled multi-Bernoulli RFS on the X× L is expressed as follows:

and for convenience the abbreviated π =
{(

r(ζ ), p(ζ )
)}

ζ∈ψ
 is usually used for the density 

of an LMB RFS.

2.4 � GLMB RFS

The density of the GLMB RFS on the X× L is expressed as follows:

where C is a discrete space, ω(c)(L) represents the weight coefficient, p(c) represents the 
probability density function, and satisfy: 

∑
L∈L

∑
c∈C ω(c)(L) = 1,

∫
p(c)(x, l) d x = 1.

(6)�(X) =

{
1, |L(X)| = |X|
0, |L(X)| �= |X|

.

(7)

π(
{
(x1, l1), . . . , (xn, ln)

}
) = δn(|

{
l1, . . . , ln

}
|)

×
∏

ζ∈ψ

(1− r(ζ ))

n∏

j=1

1α(ψ)(lj)r
(α−1(lj))p(α

−1(lj))(xj)

1− r(α
−1(lj))

(8)π(X) = △(X)
∑

c∈C

ω(c)(L(X))

[
p(c)

]X
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2.5 � Graph theory

The collaborative relationship between group targets is very similar to graph theory, 
which provides the theoretical basis for dealing with the dependencies within group 
targets. At time k, the graph is composed of some vertices and the lines between 
them, which are called edges. The graph is usually described as: Gk = (Vk ,Ek) , where 
Vk =

{
vk ,1, . . . , vk ,Nk

}
 represents vertex set; Ek = Vk × Vk represents the edge of the 

graph, which represents the dependency between two vertices. According to whether 
the edge has direction, the graph can be divided into directed graph and undirected 
graph. Adjacency matrix can describe whether there is a relationship between vertices in 
the graph, as shown in Eq. (9). The adjacency matrix of a directed graph is asymmetric, 
while the adjacency matrix of an undirected graph is symmetric.

In this paper, the adjacency matrix of digraph is used to describe the parent–child rela-
tionship between targets. When the im th target is the parent node of the in th target, 
a(m, n) = 1 , and in other cases, a(m, n) = 0 . For example, if the group relationship com-
posed of three targets is shown in Fig. 1, the adjacency matrix of the group is expressed 
as:

From the perspective of graph theory, the vertices in graph theory are composed of 
group elements, and the edges of the graph imply the dependent relation between group 
elements. When there are many groups, these groups can be regarded as forests in the 
graph theory.

2.6 � Recursive least squares(RLS)

Estimating the SDVs between group members can be regarded as a problem of estimat-
ing unknown parameters when the measurements of the group members are known. Least 
squares method is a mathematical optimization technique. It finds the best functional 
match of the data by minimizing the sum of squares of the difference between the output 
of the measurement model and the output of the actual measurement data. It requires data 
at all times when estimating unknown parameters, therefore it is only suitable for offline 

(9)Ad =




0 · · · a(1, n)
...

. . .
...

a(n, 1) · · · 0



.

(10)Ad =




0 1 0
0 0 1
0 0 0



.

Fig. 1  Structural model of group targets
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estimation. Recursive least squares can estimate these unknown parameters online using 
the estimated values from the previous step and the measured values from the current step.

For linear equations:

where yk and hk represent the observed data and the observation matrix at time k, 
respectively, x represents the parameter to be estimated, and υk represents the observa-
tion noise at time k.

The least squares method can be expressed as:

From the above equation, it can be seen that the least squares method requires data at all 
times to estimate the parameters, while the recursive least squares method can estimate 
the parameters online and its steps can be described as [33]:

where Kk represents the gain of RLS at time k, x̂k represents the parameter estimated at 
time k, Pk represents the covariance matrix at time k, and rk represents the variance of 
the measurement noise at time k.

3 � Problem description
3.1 � The dynamic models of resolvable group targets

In a linear motion scenario, if the ith member has multiple parent nodes, its motion model 
is modeled as follows:

where xk+1,i represents state of the target i at time k + 1 , including the position and 
speed; zk+1,i denotes the measurement of the target i at time k + 1 ; l represents the 

(11)yk = hkx + υk

(12)x̂ = argmin
x

n∑

k=1

(yk − hkx)
T (yk − hkx).

(13)Kk =
Pk−1h

T
k

rk + hkPk−1h
T
k

(14)Pk = (I − Kkhk)Pk−1

(15)x̂k = x̂k−1 + Kk(yk − hk x̂k−1)

(16)rk =
1

k

{
(k − 1)rk−1 + [Pk − hTk x̂k−1][Pk − hTk x̂k−1]

T
}

(17)xk+1,i =
∑

l∈P(i)

wk(l, i)
[
Fk ,lxk ,l + bk(l, i)

]
+ Bk ,iωk ,i

(18)zk+1,i = Hk+1xk+1,i + vk+1,i

(19)xk ,i ∈ Xk ,
∑

l∈P(i)

wk(l, i) = 1,ωk(l, i) ∈ [0, 1]
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parent node of the target i, bk(l, i) is the SDV between the target i and its parent node l. 
P(i) denotes a set of all parent nodes of the target i, wk(l, i) is the weight coefficient. Fk ,i 
and Hk+1 represent the state transition matrix and the observation matrix, respectively, 
and Bk ,i is a matrix of process noise, Both ω and υ obey normal distributions, they repre-
sent process noise and observation noise, respectively.

If a target has no parent node, it is called the head node. The head node’s motion is not 
affected by other targets. Therefore, the bk(l, i) = 0 in the head node motion model, linear 
motion model of the head node is:

If the target has only one parent node, its linear motion model is:

Group targets are trending toward a larger number and more complex structure. When 
tracking large-batch and multi-structure group targets, it is necessary to not only esti-
mate the number, states, and trajectories of each subgroup members, but also estimate 
the number of groups and the structures of each subgroup. Assuming that gk subgroups 
appear at time k, Xk =

{
Xk ,1, . . .Xk ,gk

}
 , the problem of estimating all group members 

can be described as:

X̂k ,g represents the estimation of the gth subgroup at time k, including the number, 
states, and trajectories of the subgroup members. X̂k represents the estimation of the 
states of all group members at time k. Zk represents the measurement RFS at time k, Xk ,g 
represents the states and number of all members of the gth subgroup at time k, xngk ,g rep-
resents the state of the ng th member in the gth subgroup at time k.

3.2 � Estimating parameters problem description

In current resolvable group target tracking algorithms, it is assumed that the SDV 
between parent target and child target is known; but in practice, the SDV is often 
unknown due to the influence of observer accuracy and other factors such as environ-
ment. If the SDV is estimated, on the one hand, the roles of each target can be further 
inferred; on the other hand, the states of group members can be estimated more accu-
rately. The relationship between the parent–child nodes and the SDV at time k can be 
described as:

(20)xk+1,i = Fk ,ixk ,i + Bk ,iωk ,i.

(21)xk+1,i = Fk ,lxk ,l + bk(l, i)+ Bk ,iωk ,i.

(22)X̂k ,g = argmax
Xk ,g

P(Xk ,g | Zk)

(23)Xk ,g =
{
x1k ,g , . . . , x

ng
k ,g

}

(24)X̂k =

gk⋃

g=1

X̂k ,g .

(25)xlk − xik = bk(l, i)



Page 8 of 29Liu et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:110 

where xlk and xik represent the states of parent node l and child node i at time k, 
respectively.

From Eq. (25), it can be seen that if want to get the bk(l, i) , we have to get the states 
of the parent node and child node first. However, due to there is a cooperative rela-
tionship between group members, the current algorithm cannot estimate the state of 
the child node, so it is also impossible to estimate the bk(l, i) in advance. It is assumed 
that there are gk subgroup centers Ok =

{
ok ,1, . . . , ok ,gk

}
 consisting of Nk group mem-

bers Xk =
{
xk ,1, . . . xk ,Nk

}
 at time k. Estimated the SDVs can be described by the 

equation:

Ok represents a set of all subgroup centers at time k, og ,k ∈ Ok represents the position of 
the gth subgroup center at time k, Zk represents the measurement RFS at time k, and bk 
is the estimated parameters.

4 � Methods
4.1 � Algorithm for large‑batch and multi‑structure group targets tracking when SDVs are 

known

Tracking Large-batch and multi-structure group targets require a lot of computing 
cost. To save the computing cost, we could divide them into multiple subgroups for 
serial tracking, as shown in Fig. 2. Serial refers to tracking n subgroups successively at 
a step, which needs to be tracked n times.

(26)b̂k = argmax
bk

P(bk |Zk ,Ok )

(27)bk =
⋃

1≤i≤nk ,1≤j≤nk ,i �=j

bk(i, j).

Fig. 2  Serial tracking algorithm for large-batch and multi-structure group targets
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4.1.1 � Estimate number of subgroups

(1)	Estimate deviation matrix: Zk =
{
zk ,1, . . . , zk ,nk

}
 represents the measurement of the 

group members at time k. The deviation matrix is introduced to represent the differ-
ence between the state estimates of each target:

where dk(i, j) is defined as the 2 norm of the vector (i, j):

In this paper, we obtain the adjacency matrix for each time by:

where d� represents the threshold value of dk(i, j) , and when the 2 norm between 
target i and target j is less than the threshold value d� , the two targets are considered 
to belong to the same subgroup.

(2)	 Estimation of the number of subgroups

	 Due to the cooperative relationship between group members, the state of one mem-
ber can be represented by the states of other members, and this relationship can 
be described by linear dependence. The linear dependence can be expressed by the 
formula:

where 
{
k1, k2, . . . , kn−1

}
 is the set of weight coefficients, and at least one of them is 

not equal to zero; {v1, v2, . . . , vn} is the set of matrices or vectors.

	 Without considering the process noise Bk ,i , Eq. (17) can be expanded as follows:

let Fk ,mxk ,m + bk(m, i) = xm, m = 1, 2, . . . , n , then formula (32) reduces to:

From Eqs. (31) and (33), it can be seen that the members in the same subgroup are 
linearly dependence.

	 Eigenvectors corresponding to different eigenvalues are linearly independent. 
The number of subgroups can be estimated by calculating the number of eigenvectors 
of the deviation matrix.

(28)Dk(Zk) =





0 dk(1, 2) · · · dk(1, nk)
dk(2, 1) 0 · · · dk(2, nk)

...
...

. . .
...

dk(nk , 1) dk(nk , 2) · · · 0





(29)dk(i, j) =� zk ,i − zk ,j �2, i �= j .

(30)Âdk(i, j) =

{
1, dk(i, j) ≤ d�, i �= j
0, otherwise

(31)vn = k1v1 + k2v2 + · · · + kn−1vn−1

(32)
xk+1,i = ω1

[
Fk ,1xk ,1 + bk(1, i)

]
+ ω2

[
Fk ,2xk ,2 + bk(2, i)

]

+ · · · + ωn

[
Fk ,nxk ,n + bk(n, i)

]

(33)xk+1,i = ω1x1 + ω2x2 + · · · + ωnxn.
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4.1.2 � Estimation of group members

The GLMB filter can estimate the number, states, and trajectories of independent targets. 
However, there are dependencies between group members. In other words, the states of 
targets are not independent of each other. In order to analyze the relationship between 
Eqs.  (17) and (20), the true deviation variable b̌k(l, i) is introduced [25]. The relationship 
between true deviation vector and the SDV is shown in Fig. 3.

In Fig. 3, the ellipse represents the difference between true deviation vector and the SDV. 
b̌k(l, i) represents the real offset between the target i and its parent node l at time k, that is:

combining Eqs. (34) and (17), we can get the following formula:

In general, we assume that the state transition matrix of target in the same subgroup is 
the same, i.e., Fk ,l = Fk . The above formula can be simplified as:

where △bk ,i can be seen as a displacement noise between group members, which reflects 
the dependency between group members. Different from Eqs. (20), (36) involves process 
noise ωk ,i and displacement noise △bk ,i . Together, the two noises are called collaboration 
noise ωo

k ,i , i.e., ωo
k ,i = △bk ,i + Bk ,iωk ,i . We can replace the original state noise ωk ,i with 

collaboration noise ωo
k ,i in GLMB filter, so that GLMB filter can work normally.

Since the GLMB algorithm requires a large computational cost to implement, we use the 
δ-GLMB filter for computational convenience:

The δ-GLMB filter tracks multiple targets in two parts: the prediction step and the 
update step.

(34)xk ,i = xk ,l + b̌k(l, i)

(35)

xk+1,i =
∑

l∈P(i)

ωk(l, i)Fk ,lxk ,i +
∑

l∈P(i)

ωk(l, i)
[
bk(l, i)− Fk ,l(xk ,i − xk ,l)

]
+ Bk ,iωk ,i

(36)
xk+1,i = Fkxk ,i +△bk ,i + Bk ,iωk ,i

△bk ,i =
∑

l∈P(i)

ωk(l, i)
[
bk(l, i)− Fk b̌k(l, i)

]

(37)π(X) = △(X)
∑

(I ,ξ)∈F(L)×Ξ

w(I ,ξ) × δI (L(X))

[
p(ξ)

]X
.

Fig. 3  The relationship between true deviation vector and the SDV
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Prediction step:

where

where wB(I+ ∩ B) denotes the weight of the newborn label I+ ∩ B , ws
(ξ)(I+ ∩ L) denotes 

the weight of the surviving label I+ ∩ B . pB(·, ℓ) denotes the probability density of the 
newborn target, the density p(ξ)s (x, ℓ) of the surviving target is obtained from the prior 
density pS(·, ℓ) , and f (x|·, ℓ) denotes the probability density of the surviving target.

Update step:

where � is the space of mapping θ:L → {0, 1 · · · , |Z|} , θ(i) = θ
(
i′
)
> 0 denotes i = i′ . 

�(M) =
{
ξ (1), . . . , ξ (M)

}
 denotes the M elements of � in a fixed (I , ξ) at maximum weight 

w(I ,ξ ,θ(i)) . Its associated parameters are defined as follows:

(38)π+(X+) = △(X+)
∑

(I+,ξ)∈F(L+)×Ξ

w
(I+,ξ)
+ × δI+(L(X+))

[
p
(ξ)
+

]X+

(39)w+
(I+,ξ) = wB(I+ ∩ B)ws

(ξ)(I+ ∩ L)

(40)p+
(ξ)(x, ℓ) = 1L(ℓ)p

(ξ)
S (x, ℓ)+ (1− 1L(ℓ))pB(x, ℓ)

(41)p
(ξ)
S (x, ℓ) =

〈
pS(·, ℓ)f (x|·, ℓ), p

(ξ)(·, ℓ)
〉

η
(ξ)
S (ℓ)

(42)η
(ξ)
S (ℓ) =

∫ 〈
pS(·, ℓ)f (x|·, ℓ), p

(ξ)(·, ℓ)
〉
d x

(43)wS
(ξ)(L) =

[
η
(ξ)
S

]L∑

I⊆L

1I (L)
[
qS

(ξ)
]I−L

w(I ,ξ)

(44)qS
(ξ)(ℓ) =

〈
qS(·, ℓ), p

(ξ)
S (·, ℓ)

〉

(45)π(X|Z)=�(X)
∑

(I ,ξ)∈F(L)×�

∑

θ∈�

w(I ,ξ ,θ)(Z)× δI (L(X))

[
p(ξ ,θ)(·|Z)

]X

(46)w(I ,ξ ,θ)(Z) =
δθ−1({0:|Z|})(I)w

(I ,ξ)
[
η
(ξ ,θ)
Z

]I

∑
(I ,ξ)∈F(L)×�

∑
θ∈�

δθ−1({0:|Z|})(I)w
(I ,ξ)

[
η
(ξ ,θ)
Z

]I

(47)p(ξ ,θ)(x, ℓ|Z) =
p(ξ)(x, ℓ)ψZ(x, ℓ; θ)

η
(ξ ,θ)
Z (ℓ)

(48)η
(ξ ,θ)
Z (ℓ) =

〈
p(ξ)(·, ℓ),ψZ(·, ℓ; θ)

〉
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where PD(x | ℓ) is the detection probability, g(· | x, ℓ) is the likelihood function, and κ(·) 
is the clutter intensity.

4.1.3 � Estimation of group structure

The adjacency matrix obtained in 4.1.1 is symmetric, and the graph obtained from the 
symmetric adjacency matrix is an undirected graph, which cannot describe the parent–
child relationship between members. In this paper, we use the inner product of velocity 
and position offset vectors between nodes to further describe the parent–child relation-
ship. Specifically, if the inner product is positive, the target is the parent node, and if it is 
negative, the target is the child node. That is:

where Vi denotes the velocity of target i, △di,j denotes the position offset vector between 
target i and target j, αk represents the inner product of velocity and position offset vec-
tors. The results are divided into the following 3 cases:

For example, in Fig. 4, target A is the parent node of target B.

Definition 1:  Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. We call G1 and 
G2 isomorphic, and write G1 ≃ G2 , if there exists a bijection φ : V1 → V2 with side 
vivj ∈ E1 ⇔ φ(vi)φ(vj) ∈ E2 for all vi, vj ∈ V1.

(49)ψZ(x, ℓ; θ) =δ0(θ(ℓ))qD(x, ℓ)+ (1− δ0(θ(ℓ)))
pD(x, ℓ)g

(
zθ(ℓ)|x, ℓ

)

κ
(
zθ(ℓ)

)

(50)Vi = [Ṗi,x, Ṗi,y]
T

(51)△di,j = [Pi,x − Pj,x,Pi,y − Pj,y]
T

(52)αk = �Vi,△di,j�

(53)αk =






> 0 parent node
< 0 child node
0 unknown

.

Fig. 4  The velocity VA and position vector PA of target A, and the velocity VB and position vector PB of target B
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Since the members of target state set have no any significance with the sequence, the 
same group targets may have different adjacency matrix. We introduce the concept 
of isomorphism to judge whether two different adjacency matrices describe the same 
group. The isomorphism of the adjacency matrix can be judged by matrix equivalence, 
if the adjacency matrix A and the adjacency matrix B are isomorphic, there exists a 
replacement matrix P with PAP −1 = B.

A pseudocode of the Serial tracking algorithm for large-batch and multi-structure group 
targets is provided in Algorithm 1.

4.2 � Joint estimation algorithm of SDVs and target states

In this paper, a two-stage estimation algorithm is proposed to jointly estimate the states 
of the group members and the SDVs. In the first stage, the states of the subgroup centers 
are estimated. In the second stage, the states of the group members and the SDVs are esti-
mated. The specific flow of the algorithm is shown in Fig. 5.

4.2.1 � Tracking of subgroup centers based on k‑means clustering and GLMB algorithm

In this paper, k-means clustering and GLMB algorithm are used to estimate the states of 
subgroup centers. At time k, assume that the group targets’ measurement set is 
Z
g
k =

{
z
g
k ,1, . . . , z

g
k ,mk

}
 , the mixing distribution function of the ith member is shown below:

(54)f
(
z
g
k ,i|Θk

)
= ωk ,1f

(
z
g
k ,i

∣∣θk ,1
)
+ · · · + ωk ,gk

f
(
z
g
k ,i

∣∣θk ,gk
)

Fig. 5  Two-stage estimation algorithm
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where 
{
θk ,1, . . . , θk ,gk

}
 represents the parameters of each distribution element, and {

ωk ,1, . . . ,ωk ,gk

}
 represents the mixture weights of each element, gk represents the num-

ber of subgroups at time k.
It is assumed that all measurements consist of group members and clutter, i.e., 

Zk = Z
g
k ∪ Zc

k , Zc
k represents the set of clutter measurements. It is assumed that the 

group members obey multiple Gaussian distributions, and the clutter obeys a uni-
form distribution. The mixture distribution of ith measurement can be expressed as:

The purpose of clustering using k-means is to divide the measurements into 
the most probable classes. Introducing a label variable Ek =

{
0, 1, . . . , gk

}
 , 0 

denotes clutter label. The complete set of measurements can be expressed as: 
Zk =

{(
zk ,0, ek ,0

)
, . . . ,

(
zk ,Mk

, ek ,Mk

)}
 . 
(
zk ,j , ek ,j

)
 represents the jth measurement origi-

nating from the ek ,j class at time k. The specific steps of the k-means algorithm [34] are 
as follows: 

	(1).	 Initialize the positions of the gk clustering centers at time k, ck ,1, . . . , ck ,gk.
	 (2).	 Let f  : Zk → Ek be the mapping of measurement RFS to label variable space. 

Calculate the class to which the jth measurement belongs, 

dηdenotes the threshold value of the distance between the measurement and the 
center of the group.

	 (3).	 Update the positions of clustering centers: 

	(4).	 Repeat (2) and (3) until the objective function J converges: 

 We assume that the subgroups are independent of each other, and if the center 
of each subgroup is regarded as a special target, its state can be estimated by the 
GLMB algorithm. The specific algorithm framework is shown in Fig. 6, in which, 
xom,k represents the state of the mth subgroup center at time k, x̄om,k+1 denotes the 
predicted state of the mth subgroup center by GLMB at time k + 1 , and x̂om,k+1 
represents the updated state of the mth subgroup center by GLMB at time k + 1.

(55)
f
(
zk ,i|Θk

)
= ωk ,0U

(
zk ,i|Vk

)
+ ωk ,1N

(
zk ,i;µk ,1,Dk ,1

)
+ · · ·+

ωk ,gk
N
(
zk ,i;µk ,gk ,

Dk ,gk

).

(56)

f(zk ,j , ek ,j) = ek ,j ,






ek ,j = g if argmin
g

�zk ,j − ck ,g�
2 ≤ dη

ek ,j = 0 if argmin
g

�zk ,j − ck ,g�
2 > dη

g = 1, . . . , gk , j = 1, . . .Mk .

(57)ck ,g =

∑mk
j=1 zk ,j∑mk

j=1 δg
(
f(zk ,j , ek ,j)

) for ek ,j = g , g = 1, . . . , gk

(58)Jg =

mk∑

j=1

�zk ,j − ck ,g�
2 for ek ,j = g , g = 1, . . . , gk .
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4.2.2 � Joint estimation algorithm of SDVs and target states based on RLS

Before estimating the target states and the SDVs, the displacement vectors between the 
targets and the subgroup centers need to be estimated. In the gth subgroup, xmk ,g repre-
sents the state of the mth target at time k, xok ,g denotes the state of the subgroup center at 
time k, and b′mk ,i represents the displacement vector between the mth target and the sub-
group center at time k. Zk ,g denotes a set of all measurements from the gth subgroup at 
time k, zmk ,g ∈ Zk ,g , and zmk ,g represents the measurement generated by the target m at 
time k. The relationship between them can be described as:

 where ω′
k and ν′k represent the process noise and observation noise at time k, respec-

tively. Substitute Eq. (59) into Eq. (60):

 Considering Hω′
k + ν′k as a new noise ω′′

k:

The estimation of the displacement Vector using the least squares method can be 
described by the equation:

(59)xmk ,g = xok ,g + b′
m
k ,g + ω′

k

(60)zmk ,g = Hxmk ,g + ν′k

(61)zmk ,g = H(xok ,g + b′
m
k ,g + ω′

k)+ ν′k = Hxok ,g +Hb′
m
k ,g +Hω′

k + ν′k .

(62)zmk ,g = Hxok ,g +Hb′
m
k ,g + ω′′

k

(63)zmk ,g −Hxok ,g = Hb′
m
k ,g + ω′′

k .

Fig. 6  Tracking of subgroup centers based on k-means clustering and GLMB
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let 
∂J (b̂′

m

k ,g )

∂ b̂′
m

k ,g

= 0:

that is:

 Assuming that HTH is full rank, both sides of Eq. (68) are simultaneously left multiplied 
by the inverse of HTH :

 The state of the gm th target in the gth subgroup at time k can be estimated as follows:

 The SDV between the gm th member and the gn th member can be estimated as follows:

A pseudocode of the two-stage estimation is provided in Algorithm 2.

5 � Results and discussion
5.1 � Experiment 1: large‑batch multi‑structured group targets tracking with known SDVs

It is assumed that there are 100 group targets in the observation area containing clut-
ter, and they are composed of 9 subgroups, which have three different structures, as 
shown in Fig. 7, (a) indicates the subgroup with “Chain” formation, which consists of 

(64)J (b̂′
m

k ,g ) = (zmk ,g −Hxok ,g −Hb̂′
m

k ,g )
T (zmk ,g −Hxok ,g −Hb̂′

m

k ,g )

(65)
∂[(zmk ,g −Hxok ,ig −Hb̂′

m

k ,g )
T (zmk ,g −Hxok ,g −Hb̂′

m

k ,g )]

∂ b̂′
m

k ,g

= 0

(66)−2HT (zmk ,g −Hxok ,g −Hb̂′
m

k ,g ) = 0

(67)HT (zmk ,g −Hxok ,g −Hb̂′
m

k ,g ) = 0

(68)HT (zmk ,g −Hxok ,g ) = HTHb̂′
m

k ,g .

(69)b̂′
m

k ,g = (HTH)−1HT (zmk ,g −Hxok ,g ).

(70)x̂mk ,g = xok ,g + b′
m
k ,g .

(71)b̂k(m, n) = b′
m
k ,g − b′

n
k ,g .



Page 17 of 29Liu et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:110 	

10 group members; (b) represents a subgroup with a “triangle” formation consisting 
of 15 group members; (c) represents a subgroup with a “herringbone” formation con-
sisting of 10 group members. In the figure, the arrows point from the parent node to 
the child node.

All group members move in the 2-D plane with constant velocity (CV). The 
probability that each group members is detected is PD = 0.98, and the clut-
ter is uniformly distributed, with the intensity �c = 30. The observation area is 
S = [−20000, 0]× [0, 30000] m 2 , and the detection time is 100 steps in total. At the 
1st step, there are 3 groups of “Chain” formations with 30 targets appearing at dif-
ferent locations, and their survival time is [1–100] steps; At the 10th step, there are 4 
groups of “herringbone” formations with 40 targets appear at different locations, and 
their survival time is [10–100] steps; At the 20th step, there are 2 groups of “trian-
gle” formations with 30 targets appear at different locations, and their survival time is 
[20–100] steps.

Fig. 7  Structures of subgroup targets
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The state equation of the group member is shown in Eq. (17), where it is assumed that 
the number of parents of each group member does not exceed at most one. The state 
transition matrix Fk ,i and process noise matrix Bk ,i are, respectively:

where sampling time △t = 1 s, xk =
[
qk ,x q̇k ,x qk ,y q̇k ,y

]
 represents the position and speed 

of the target in the x direction and y direction, respectively.
The observation equation of the target is Eq. (18), where H represents the observa-

tion matrix, and H =
[
1 0 0 0 ; 0 0 1 0

]
 , the covariance matrix of observation noise is 

diag
[
100 ; 100

]
 . The initial states of head nodes of the 9 subgroups are shown in Table 1.

Fig. 8 shows the real motion trajectories of 100 group targets. The black circles and tri-
angles indicate the starting and ending points of the group targets’ motion, respectively, 
and the straight lines indicate the motion trajectories of the group targets.

Fig. 9 shows the state estimation results for all group members, where (a) is the result 
estimated by the serial GLMB filter, points with different colors represent the tracking 
results of different group members, and the colors of the points represent the labels of 
the targets. When tracking the same target in the x–y domain, the trajectory color of 
the target is the same, but since the motion trajectories of the 9 subgroups overlap in 
the x–y domain, their trajectory colors also overlap. The existence of points with sig-
nificantly different colors in the trajectory indicates the appearance of new target labels, 
which may be caused by the interference of clutter. In order to show the trajectories of 
targets born at different times more clearly, the left side of Fig. 9b shows the trajectories 
of targets born at time 0, the middle shows the trajectories of targets born at time 10, 
and the right side shows the trajectories of targets born at time 20. Fig. 9c is the result 
estimated by the serial CBMeMBer filter, and the black dots indicate the estimated states 
of group members. In Fig. 9, the black lines indicate the real trajectories of the group 
members, and crosses indicate clutter. The upper picture shows the tracking trajectories 
of the group members in the x-axis direction, and the lower picture shows the tracking 
trajectories of the group members in the y-axis direction. It can be seen that the esti-
mated states of the two filters are basically consistent with the real states of all targets.

(72)Fk,i =





1 △t 0 0
0 1 0 0
0 0 1 △t
0 0 0 1



 , Bk,i =





△t2

2 0
1 0

0 △t2

2
0 1





Table 1  Target initial states and birth/death time

Targets Target initial states [m;m/s;m;m/s] Birth time [s] Death time [s]

x1 [− 18000; 20; 27000; 0 ] 1 100

x11 [− 11000; 20; 27000; 0] 1 100

x21 [− 4000; 20; 27000; 0] 1 100

x31 [− 18000; 20; 21000; 0 ] 10 100

x41 [− 11000; 20; 21000; 0] 10 100

x51 [− 4000; 20; 21000; 0 ] 10 100

x61 [− 18000; 20; 14000; 0 ] 10 100

x71 [− 11000; 20; 14000; 0] 20 100

x86 [− 4000; 20; 14000; 0 ] 20 100
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Fig.  10 shows the real number and estimated number of all group members. The 
black line indicates the true number of group members at each step, and the black 
dots indicate the estimated number of group members at each step. As can be seen 
from the figure, the number of group members estimated by the serial GLMB filter is 
more accurate than that estimated by the serial CBMeMBer filter. Due to the appear-
ance of new group members at the 10th and 20th steps, the estimated number of 
group members deviates significantly from the true number of group members, and 
this problem may be related to the setting of the initial filter parameters.

When the number of tracked targets is small, the OSPA distance [35] is usually used 
to evaluate the performance of the tracking algorithm with the following equation:

where X denotes the true set of states with m targets and X̂ denotes the estimated set of 
states with n targets, and m ≤ n, 1 < p < +∞, d(c)(x, x̂) = min

{
c, d(x, x̂)

}
, c > 0,

∏
n denotes a set consisting of various permutations of 1, 2, . . . , n.

(73)d̄(c)p (X , X̂) =

{
1

n

[
min
π∈

∏
n

m∑

i=1

d(c)(xi, x̂π(i))
p + cp(n−m)

]} 1
p

Fig. 8  True trajectories of all targets
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Fig. 9  States estimation of all targets
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When a large number of group targets exist, calculating OSPA distance requires a 
large computational cost. To save computational cost, this paper proposes a new method 
for applying the OSPA distance:

where b denotes the number of groups, X and X̂ denote the true state set and estimated 
state set of ith subgroup, respectively.

Figure 11 shows the average OSPA results after 100 Monte Carlo simulations, it can be 
seen that the serial GLMB filter performs better than the serial CBMeMBer filter.

To compare the estimation accuracy of the algorithms, we introduce the following 
formula:

where NAcc represents the average accuracy rate of the estimated target number, Ni 
and N̂i represents the true target number and the estimated target number at ith step, 
respectively, and S represents all steps.

From Table 2, it can be seen that among the three algorithms, the GLMB algorithm 
takes the longest time and has the highest accuracy in estimating the number of targets 
because it has to estimate all the targets in each step; The serial GLMB algorithm takes 
more time in each step than the serial CBMeMBer algorithm because the serial GLMB 

(74)OSPA ( avg ) =
1

b

b∑

i=1

d̄
(c)
p,i (X , X̂)

(75)N Acc =
1

S

S∑

i=1

1−
| Ni − N̂i |

Ni

Fig. 10  Estimation of the number of all targets
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algorithm adds label to each target in order to estimate the trajectories of targets, result-
ing in higher computational complexity, but the serial GLMB algorithm is more accu-
rate in estimating the number of targets than the serial CBMeMBer algorithm; Both the 
serial GLMB algorithm and the serial CBMeMBer algorithm have lower accuracy in esti-
mating the number of targets than the GLMB algorithm. This may be because the serial 
algorithm regards the targets that do not belong to the subgroup as clutter when esti-
mating the each subgroup members, which leads to an increase in the number of clutter.

5.2 � Experiment 2: joint estimation of SDVs and target states with unknown SDVs

Suppose there are 6 targets consisting of 2 groups in the observation area contain-
ing clutter, and each group consists of 3 group members with a “Chain” group struc-
ture, as shown in (a) in Fig. 7. All group members move in the 2-D plane with constant 
velocity (CV). The probability that each group members is detected is PD = 0.98, and 
the clutter is uniformly distributed, with the intensity �c = 0.1, the observation area is 
S = [−2000, 20000]× [−2000, 2000] m 2 , and the detection time is 100 steps in total. At 
the 1st step, a “Chain” formation of 3 group members appears at different locations and 

Fig. 11  Average OSPA distance (100 MC runs)

Table 2  Performance analysis of algorithms

Algorithms GLMB algorithm Serial GLMB algorithm Serial 
CBMeMBer 
algorithm

Time (s/step) (2-D) 1.324 0.405 0.017

Accuracy rate 98.0% 96.0% 90.0%
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survives for [1–100] steps; at the 10th step, another “Chain” formation of 3 group mem-
bers appears at different locations and survives for [10–100] steps.

The state equation and observation equation of the group targets and their parameters 
are the same as in the simulation experiment 5.1. The initial states of the 6 group mem-
bers are shown in Table 3.

Figure  12 shows the true motion trajectories of the 6 group members in the cross-
motion scenario. The black circles and triangles indicate the starting and ending points 
of the group targets’ motion, respectively, and the straight lines indicate the motion tra-
jectories of the group targets.

Figure 13 shows the SDVs estimated by the RLS algorithm at each step. The estimated 
SDVs fluctuate widely in the first few steps, and as the number of iterations increases, 
the estimated SDVs gradually stabilize and are basically consistent with the true SDVs.

Figure  14 shows the states estimation result of the group members. The colored 
dots indicate the estimated states of group members, the black lines indicate the real 
motion trajectories of the group members, and crosses indicate clutter. In the figure 
(a), the upper picture shows the tracking trajectories of the group members in the 
x-axis direction, and the lower picture shows the tracking trajectories of the group 

Table 3  Target initial states and birth/death time

Targets Target initial states [m;m/s;m;m/s] Birth time [s] Death time [s]

x1 [− 1800; 30; − 1800; 30] 1 80

x2 [− 1900; 30; − 1700; 30] 1 80

x3 [− 2000; 30; − 1600; 30] 1 80

x4 [1800; − 30; − 1600; 30] 10 100

x5 [1700; − 30; − 1700; 30] 10 100

x6 [1600; − 30; − 1800; 30] 10 100

Fig. 12  True trajectories of all targets
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members in the y-axis direction, and it can be seen from the figure (a) that the sur-
vival time of the 1st group members is [1–80] steps, and the survival time of the 2nd 
group members is [10–100] steps. It can be seen from the figure (b) that the two-
stage algorithm estimated states of the group members are basically consistent with 
the real states of all targets.

Figure 15 shows the true number and estimated number of all group members, the 
black line indicates the real number of group members at each step, and the black 
dots indicate the estimated number of group members at each step. From the figure, 
it can be seen that the two-stage algorithm can accurately estimate the number of 
group members.

Figure  16 shows the OSPA results obtained after 100 Monte Carlo simulations. 
From the OSPA Loc, it can be seen that there are large fluctuations in the estimated 
states of group members at the 10th step, which may be related to the setting of the 
initial parameter values of the RLS algorithm.

Figure 17 estimates the structures of the group members at steps 7th, 55th, 64th, 
and 88th, respectively, from which it can be seen that the estimated group structures 
are consistent with the true group structures at the 7th, 55th, and 88th steps, but at 
the 64th step, the estimated group structure is different from the real group struc-
ture, which may be caused by crossing between two groups at this time.

Figure 18 shows the estimation of the number of groups. At [61–68] steps, the esti-
mated number of groups is inconsistent with the true number of groups, which may 
be due to the intersection of the two groups at those times.

Fig. 13  Estimation of the SDVs
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Fig. 14  States estimation of all targets
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6 � Conclusion
This paper firstly proposes a serial tracking algorithm based on GLMB to estimate the 
number, states, and trajectories of large-batch and multi-structure group targets when 
SDVs are known, which saves a large computational cost by tracking each subgroup in 
batches; Then, a two-stage algorithm is proposed for the problem of jointly estimating 
the SDVs and the target states. The experimental simulation results show that proposed 
algorithms can track the group targets effectively. However, neither this paper consider 
the case where the structure of group changes, such as group splitting and group merg-
ing; nor does it consider the case where there are collaborative relationships among vari-
ous subgroups. Further research on the above problems is needed.

Fig. 15  Estimation of the number of all targets

Fig. 16  OSPA distance (100 MC runs)
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Fig. 17  Structure estimation of group targets

Fig. 18  Estimation of the number of groups
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GLMB		�  Generalized labeled multi-Bernoulli
PHD		�  Probability hypothesis density
ET-PHD		�  Extended target probability hypothesis density
ET-CPHD		�  Extended target cardinality probability hypothesis density
GM-PHD		�  Gaussian mixture probability hypothesis density
SMC-PHD		�  Sequential Monte Carlo probability hypothesis density
L-RFS		�  Labeled random finite set
LMB		�  Labeled multi-Bernoulli
GGIW		�  Gamma Gaussian inverse Wishart
CBMeMBer		�  Cardinality-balanced multi-target multi-Bernoulli
ET-CBMeMBer	� Extended target CBMeMBer
ET-GLMB-S		�  Extended targets-based generalized labeled multiple Bernoulli spline
OSPA		�  Optimal sub-pattern assignment
RLS		�  Recursive least squares
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