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1  Introduction
In complicated electromagnetic environment, the strong interference signals 
can affect the direction of arrival (DOA) estimation of weak signals. For exam-
ple, unmanned aerial vehicle (UAV) video signals work in the 2.4  GHz or 5.8  GHz 
industrial, scientific and medical (ISM) frequency band, which is often affected by 
the strong interference signals such as WiFi, Bluetooth and other interference sig-
nals [1–4]. When the amplitudes of the interference signals are small, the traditional 
spectral estimation or sparse representation algorithm can be used to estimate the 
DOA of multiple signals simultaneously [5–7]. If the amplitudes of the interference 
signal are much larger than the desired signal, the spectrum peak of weak signals may 
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be annihilated by either strong interference spectrum peaks or spurious peaks in the 
algorithm, which will significantly affect the DOA estimation of weak signals [8].

There are two DOA estimation methods for weak signals under strong interfer-
ence: one is to separate and estimate strong and weak signals simultaneously, and 
the other is to suppress strong interference signals and then estimate the DOA of 
weak signals. For the first method, Li et  al. [9] proposed the RELAX algorithm, 
which uses the concept of signal separation to divide the array data into multiple 
data blocks, and then estimate the DOA of the desired signal. Tsao et  al. [10] pro-
posed a signal separation algorithm based on CLEAN technology. This method is 
realized by an iterative technique, which requires considerable computation and is 
difficult to implement in practical applications. For the second method, the jam-
ming jam method (JJM) was proposed based on the DOA estimation of the multi-
ple signal classification (MUSIC) algorithm [11] by constructing a block matrix to 
form a new array data. Reference [12] improved the JJM algorithm to be suitable 
for arbitrary arrays. The method in [13] used weighted Bartlett beamforming, which 
divides the array into multiple subarrays. A null was formed in the interference space 
direction of these subarrays, and weighted subarrays were used to construct a new 
array for DOA estimation. In [14], the direction vector of strong interference was 
projected into an orthogonal subspace to eliminate interference. However, the above 
methods require the interference direction to be as a priori information. Therefore, 
the extended noise subspace (ENS) method was proposed in [15]. It combines the 
interference subspace with the noise subspace to form a new noise subspace, and 
then estimates DOA according to the MUSIC algorithm. An improved ENS for weak 
signal DOA estimation under strong interference and coloured noise was presented 
in [16]. Gong et al. [17] proposed a DOA estimation algorithm based on the elimina-
tion of the eigenvectors of interference (EEOI). The eigenvectors of the weak signals 
are determined by the ratio of the eigenvalues to eliminate interference, the noise 
subspace is reconstructed, and then the DOA of the weak signal is estimated by the 
MUSIC algorithm. These methods are effective in a certain range of signal-to-inter-
ference ratios (SIRs). However, when less than or greater than a certain SIR, the ratio 
of spectrum peak to the average noise spectrum value is small. This increases the 
spurious peak, which would not be conducive to the DOA estimation of weak sig-
nals. Yang et  al. [18] proposed the sparse spectrum fitting-matrix filter algorithm 
and sparse spectrum fitting-matrix filter with the nulling algorithm [19] to sup-
press interference. These two algorithms require passband or stopband range as a 
priori knowledge, which is not applicable for blind DOA estimation in real-world 
scenarios.

This paper proposes a novel DOA estimation for strong interference source suppres-
sion and weighted l1-norm sparse representation. A parallel adaptive beamforming algo-
rithm based on power inversion (PI) is used to suppress interference and form new array 
data, and the weighted matrix is determined by the optimized subspace algorithm of the 
subspace projection. Then, the weighted l1-norm sparse representation DOA estima-
tion is formed by the weighted matrix and the new array signal data. The proposed algo-
rithm does not require the interference direction as a priori knowledge, and has strong 
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adaptability to different SIRs. In addition, it can effectively suppress strong interference 
and achieve better DOA estimation performance for weak UAV video signal.

The remainder of this paper is organized as follows: Sect. 2. introduces the array signal 
model. Section 3 provides the DOA estimation method under strong interference, and 
Sect. 4. presents the effectiveness of the proposed method in simulation and real-world 
scenarios. Finally, Sect. 5 concludes this work.

Notation Vectors and matrices are shown in bold lowercase and bold uppercase, 
respectively. Symbols vec(·), (·)T and (·)H denote the matrix vec operator, transpose and 
conjugate transpose. The symbol (·)* represents conjugation. The symbol E(·) denotes 
expectation. Symbols ||(·)||l1 and ||(·)||l2 denote the l1-norm and l2-norm of the vector, 
respectively.

2 � Array signal model
Assume that K far-field narrowband desired signals and Q far-field narrowband strong 
interference signals impinge on a uniform linear array with M elements (K + Q < M), and 
the spacing of adjacent antenna elements is half wavelength. Then, the received signal of 
the mth element can be expressed as

where

where a(θk) is the M × 1 steering vector of the desired signal, a(θq) is the M × 1 steering 
vector of strong interference, d is the distance of the adjacent antenna elements, and λ 
is the signal wavelength. θk is the incident angle of the desired signal, θq is the incident 
angle of the desired signal, and T is the number of snapshots. sk(t) is the kth desired sig-
nal, jq(t) is the qth strong interference signal, and nm(t) is Gaussian random noise. The 
vector of Formula (1) can be represented as

where X(t) = [x1(t), x2(t), …, xM(t)]T, Ak(θ) = [a(θ1), a(θ2), …, a(θK)] is the M × K dimen-
sional steering matrix of the desired signal, and Aq(θ) = [a(θ1), a(θ2), …, a(θQ)] is the 
M × Q dimensional steering matrix of the strong interference signal. S(t) = [s1(t), s2(t), 
…, sK(t)]T and J(t) = [j1(t), j2(t), …, jQ(t)]T are the K × T dimensional desired signal matrix 
and the Q × T dimensional strong interference signal matrix, respectively. N(t) = [N1(t), 
N2(t), …, NM(t)]T is an additive white Gaussian noise matrix with zero mean and σn

2 var-
iance. Formula (4) can be simplified as

(1)xm(t) =

K

k=1

a(θk)sk(t)+

Q

q=1

a θq jq(t)+ nm(t)(t = 1, 2 · · ·T )

(2)a(θk) =

[

1, e
−i2πd sin θk/�, · · · , e

−i2π(M − 1)d sin θk/�

]T

(3)a
(

θq
)

=

[

1, e
−i2πd sin θq

/

�, · · · , e
−i2π(M − 1)d sin θq

/

�

]T

(4)X(t) = Ak(θ)S(t)+ Aq(θ)J(t)+N(t)
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3 � Methods
Our goal is to estimate DOA of weak signals under strong interference. Based on the 
array signal model proposed in Sect. 2, the proposed method is illustrated in this sec-
tion. Figure 1 presents the flow chart of the proposed algorithm. The parallel adaptive 
beamforming algorithm based on PI is applied to the received signal in Formula (3) to 
suppress strong interference and form new array data. To reduce the spurious peaks in 
the spectrum under strong interference, the weighted matrix is determined according to 
the optimized subspace algorithm of the subspace projection. Then, the DOA estima-
tion, which is calculated by weighted l1-norm sparse representation, is formed by the 
weighted matrix and new array data.

3.1 � The parallel algorithm of adaptive beamforming based on PI

It can be seen in Sect. 1 that many interference suppression algorithms, such as DOA 
estimation, require prior knowledge, and the performance is affected by SIR. To sup-
press strong interferences in the mixed signal, we propose a parallel algorithm of adap-
tive beamforming based on PI. We assumed that the signal received by the first array 
element is used as the reference signal, and the weighted output of the remaining M-1 
array elements is expressed as

In the above formula, wM-1 = [w2, w3, …, wM]T is the weighted vector, and the signal 
of the 2nd to Mth array elements is XM-1 = [x2, x3, …, xM]T. According to the minimum 
mean square error criterion [20], the 2nd to Mth channel can be used as input to obtain 
the weighted matrix

where Rb = E[XM-1XH M-1] is the autocorrelation of the second to M array element 
data, and Ra = E

[

XM−1x
∗

1

]

 is the cross-correlation between the second to M array ele-
ment data and the first array element data. Therefore, the optimal weighted vector under 
this model is

(5)X = AkS+ AqJ+N

(6)y1,M−1 = wH
M−1XM−1

(7)wM−1=R−1
b Ra

(8)wopt1=

[

1
wM−1

]

=

[

1

R−1
b Ra

]

Received 

signal

Parallel algorithm of 
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Fig. 1  Flow chart of the proposed algorithm
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To obtain the best weight vector and update it in time, we use the least mean square 
algorithm to achieve adaptive weight calculation [21]; that is, the weight at time n + 1 is 
determined by the weight and correction number at time n. The adaptive weight is

where μ is the convergence factor, and the weighted output signal of M array elements 
can be expressed as

At this time, y1 is the signal vector after suppressing strong interference, but the signal 
vector cannot form a steering vector, which is unable be processed by spatial array signal 
processing. Therefore, the DOA estimation cannot be performed with y1. To solve this 
problem, we propose a parallel PI algorithm as shown in Fig. 2. One of the array elements is 
used as the reference signal and other M−1 array elements to solve the weight vector. Each 
of the reference array data and other M−1 array data are substituted into Eqs. (6)–(10) to 
obtain the new M-channel data Y = [y1, y2, …, yM]T after interference suppression. For the 
reference array data, woptm is a fixed constant (m = 1, …, M), so the phase of yM is the same 
as original signal xm according to Eq. (10). That is, the spatial processing cannot change the 
phase of the original signal, and the phase of the original signal is basically unchanged after 
the M-line parallel PI algorithm. Therefore, the output signal can be used as the input for 
subsequent DOA estimation.

(9)
wM−1(n+ 1)=wM−1(n)+µXM−1(n)

[

x1(n)− wH
M−1(n)XM−1(n)

]

∗

, µ(0 < µ < tr(Rb))

(10)y1 = wopt1X

Fig. 2  Flow chart of the parallel PI algorithm
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We derive the new array signal obtained by the M-line parallel PI algorithm as a matrix 
form

where Ny = [Ny1, Ny2, …, NyM]T is an M × T additive white Gaussian noise matrix with 
zero mean and σn

2 variance, and Nym is the noise received by the mth antenna. The 
sparse signal S contains the angle of the desired signal. Remarkably, DOA estimation 
is the process of reconstructing signal S by using the new array signal Y and steer-
ing matrix Ak. Therefore, we can determine the DOA estimation of the desired signal 
according to the number of nonzero elements in S. Equation (11) can be expressed as a 
l0-norm model, but the l0-norm is an NP-hard problem, which can often be expressed as 
a l1-norm model. Therefore, Eq. (11) can be expressed as

where h is the regularization parameter, which is affected by noise. Sl2 is the l2-norm of 
each row in the matrix S. ||Y-AkS||2 F =||vec(Y − AkS)||2 l2 is used to straighten matrix 
Y − AkS by the matrix vec operator and calculate the l2-norm. To reduce the calculation, 
the array signal can be sparsely represented as [22]

where Ysvw = Ry
−1/2 Ysv, Akw = Ry

− 1/2 Ak, Ssv = SVyDyk, Ry is the covariance matrix of Y, 
Ysv = YVyDyk is the dimension reduction matrix after the singular value decomposi-
tion of Y, Vy is a T × T dimensional right singular value matrix after the singular value 
decomposition of Y, Dyk = [Iyk, 0], Iyk is a K × K dimensional identity matrix, and 0 is a 
K × (T − K) dimensional zero matrix.

3.2 � Weighted l1‑norm sparse representation DOA estimation for subspace projections

According to Formula (10), we can estimate the DOA of weak signals under strong 
interference. However, the l1-norm will destroy the sparsity of the solution and cre-
ate more spurious peaks in the spectrum under low SNR, resulting in poor accuracy 
of weak signals DOA estimation and even failure. To solve this problem, we propose 
a weighted l1-norm sparse representation DOA estimation for subspace projection. 
Since the desired signals, interference signals and noise received in the original array 
are not correlated with each other, the covariance matrix of the received array signals is 
expressed as

where Rs, Rj and Rn are the covariance matrices of the desired signals, interference sig-
nals and noise, respectively. The covariance eigenvalue of the received array signal is 
decomposed as

(11)Y = AkS+Ny

(12)min �Y − AkS�
2
F + h

∥

∥

∥
Sl2

∥

∥

∥

l1

(13)min �Ysvw − AkwSsv�
2
F + h

∥

∥

∥
Sl2

∥

∥

∥

l1

(14)Rx = E
{

X(t)XH (t)
}

= Rs + Rj+Rn
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where λm(m = 1,2, …, M, λ1 > λ2 > … > λM) is the M eigenvalue of Rx, and um is the 
eigenvector. ∑j = diag{λ1, λ2, …, λQ}, ∑s = diag{λQ+1, λQ+2, …, λQ+K} and ∑n = 
diag{λQ+K+1, λQ+K+2, …, λM}are eigenmatrices of the interference signals, desired sig-
nals and noise, respectively. Uj = span{u1, u2, …, uQ}, Us = span{uQ+1, uQ+2, …, uQ+K}, 
and Un = span{uQ+K+1, uQ+K+2, …, uM} are the interference subspace, desired signal sub-
space and noise subspace, respectively. Since the eigenvalues of the strong interference 
are much larger than desired signal, we can select the eigenvector Uj after selecting the 
eigenvalue. Therefore, the orthogonal complement space of the interference subspace is

We project the array data onto this space to obtain the signal after suppressing 
interference

In the l1-norm sparse representation DOA estimation algorithm, the l1-norm is 
used to replace the l0-norm. There are only 0 or 1 in the l0-norm model, and their 
contributions to the objective function are equal [23]. The l1-norm model represents 
the minimum modulus, where the large number is the large modulus value and the 
small number is a small modulus value in S. To make the contribution of S to the 
objective function equal and the l1-norm closer to the l0-norm, a small weight pun-
ishment is applied to the large modulus, and a large weight punishment is applied to 
the small modulus in S, thus the reconstructed signal can obtain the same constraint. 
Therefore, S needs to be weighted so that the large modulus in Formula (13) is mul-
tiplied by the small weight, and the small modulus is multiplied by the large weight. 
The signal obtained by Formula (17) is used as the input to obtain the quotient of the 
l2-norm of the products of the direction vector with the noise subspace and the signal 
subspace. The weighted value of the l1-norm under a strong interference signal is

where b(θi) is the steering vector, Ezn is the noise subspace and Ezs is the desired signal 
subspace. The weighted matrix is expressed as

Substituting Formula (19) into Formula (13), the weighted l1-norm sparse represen-
tation of the array signal can be derived as

(15)

Rx =

M
∑

m=1

�mumu
H
m=

Q
∑

m=1

�mumu
H
m +

K+Q
∑

m=Q+1

�mumu
H
m

+

M
∑

m=K+Q+1

�mumu
H
m , �m(m = 1, 2, · · · ,M, �1 > �2 > · · · > �M)

=Uj�jU
H
j +Us�sU

H
s +Un�nU

H
n

(16)U⊥

j = I−UjU
H
j

(17)z = U⊥

j X

(18)wzi =

∥

∥EH
znb(θi)

∥

∥

2
/

∥

∥EH
zsb(θi)

∥

∥

2

(19)Wz = diag{wzi}
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Formula (20) is solved by the following second-order cone programming problem

The DOA estimation can be obtained by optimizing S from Formula (21). The 
detailed steps are as follows:

(1)	 According to the PI adaptive beamforming algorithm, y1 is calculated from the 
original received array signal in Formula (10).

(2)	 The proposed parallel algorithm is used to calculate y2, y3, …, yM, and construct a 
new array signal Y after suppressing strong interference.

(3)	 The new array signal Y is converted into Formula (13) according to the sparse rep-
resentation model.

(4)	 The original received array signal is projected onto the subspace, and the weighted 
matrix Wz is obtained from Formulas (18), (19).

(5)	 The DOA estimation is obtained from Eq. (21) using second-order cone program-
ming.

4 � Results and discussion
Since the UAV video signal works in the ISM frequency band with complicated elec-
tromagnetic environments, WiFi is the most common interference source. In this sec-
tion, WiFi is used as the interference signal, and the UAV video signal is considered the 
desired signal for the simulation and experiment. In the simulation, the performance 
of the proposed algorithm is verified by comparison with the JJM algorithm, ENS algo-
rithm and EEOI algorithm using high SIR, low SIR, multi strong interference, RMSE and 
success rate of DOA estimation under different SIRs or snapshots. In the experiment, we 
demonstrate the DOA estimation performance of a UAV video signal and a strong WiFi 
interference in different algorithms.

(20)min �Ysvw − AkwSsv�
2
F + h

∥

∥

∥
WzS

l2
∥

∥

∥

l1

(21)

min p+ hq

s.t.�Ysvw − AkwSsv�
2
F ≤ p

∥

∥

∥
WzS

l2
∥

∥

∥

l1
≤ q

Table 1  Simulation parameters

Simulation parameters WiFi UAV video signal

Number of symbols 6 10

Number of subcarriers (Nc) 64 256

Number of effective subcarriers (Nm) 52 192

Effective symbol time (Tu (us)) 3.2 12.8

Cyclic prefix time (Tg (us)) 0.8 3.2

Subcarrier bandwidth (Δf(KHz)) 312.5 78.125
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4.1 � Simulation results and discussion

WiFi and UAV video signals are based on an orthogonal frequency division multi-
plexing (OFDM) modulation scheme with a 20  MHz bandwidth covering frequencies 
between 2430 and 2450  MHz. As shown in Table 1, WiFi includes 6 OFDM symbols, 
and each symbol is composed of 64 subcarriers and 52 effective subcarriers. The band-
width of the subcarrier is 312.5 kHz, and the effective symbol time and the cyclic prefix 
time are 3.2 μs and 0.8 μs, respectively. While the UAV video signal is composed of 10 
OFDM symbols, in which each symbol includes 256 subcarriers and 192 effective sub-
carriers. The subcarrier bandwidth is 78.125  kHz, with the effective symbol time and 
the cyclic prefix time being 12.8 μs and 3.2 μs, respectively. A uniform linear array with 
8 omnidirectional antennas spaced at half-wavelength (0.06  m) is considered, and the 
array received signal is added with white Gaussian noise. In the proposed algorithm, the 

Fig. 3  Normalized spectrum when SIR = − 50 dB

Fig. 4  Normalized spectrum when SIR = − 15 dB

Table 2  DOA estimates in Figs. 2 and 3

SIR (dB) ENS JJM EEOI Proposed 
method

− 15 50° 50° 50° 50°

− 50 53° 53° 52° 52°
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regularization parameter is h = 2.7, and the angle grid is searched in a range of 0° to 180° 
with 1° intervals.

Simulation 1 Weak signal DOA estimation under high/low SIR.
This simulation compares the DOA estimation performance of the four algo-

rithms at high SIRs and low SIRs. Assume that the angle of WiFi is 110°, and the 
SNR is 30  dB. The angle of the UAV video signal is 50°, and the SNR is − 20  dB 
(SIR = − 50  dB) or 15  dB (SIR = − 15  dB). The number of snapshots is set as 3840. 
Two scenarios with different levels of SIR are considered herein. Figure 3 shows the 
normalized spectrum when SIR = − 50 dB, while Fig. 4 depicts the normalized spec-
trum when SIR = − 15 dB. Table 2 presents the estimated results of these two cases. It 
is seen that when SIR = − 50 dB or SIR = − 15 dB, the four algorithms can eliminate 
the influence of strong interference and estimate the DOA of the weak signal, but the 
average noise spectrum value of the other three algorithms is much larger than that 
of the proposed algorithm. When the SIR is low, the average noise spectrum value is 
approximately − 15 dB in the proposed algorithm, and a deep null will be formed at 
the strong interference. The average noise spectrum values of the other three algo-
rithms are approximately − 3.4 dB (JJM), − 4.7 dB (ENS), and -4.6 dB (EEOI). Their 
interference suppression is insufficient, which will lead to spurious peaks and affect 
the DOA estimation. When the SIR is high, the average noise spectrum value is 
approximately − 124.8 dB in the proposed algorithm, and the average noise spectrum 
values are approximately − 13 dB (JJM), − 19.8 dB (ENS), and − 19.5 dB (EEOI) in the 
other three algorithms, Besides, the ENS algorithm cannot suppress the interference 
completely and produce spurious peaks. As a comparison, the main lobe is sharper 
and the average noise spectrum value is lower in the proposed algorithm. As the SNR 
of the UAV video signal decreases, the suppression effect of the algorithms declines, 
and spurious peaks are easily generated. However, the proposed algorithm not only 
suppresses the interference, but also weights the desired signal desired signal. There-
fore, there is a larger weight in the direction of the desired signal and the opposite in 
noise, while the other three algorithms are not weighted.

Simulation 2 RMSE and success rate of DOA estimation with different SIRs.
This simulation compares the DOA estimation accuracy and success rate of the four 

algorithms under different SIRs. Where the DOA estimation accuracy is represented 
by RMSE

where Nc is the number of Monte Carlo iterations, θp is the actual angle of the signal, 
∧

θp (nc) is the DOA estimate of ncth Monte Carlo iterations. The success rate of DOA esti-
mation is expressed as

(22)RMSE =

√

√

√

√

1

NcP

Nc
∑

nc=1

P
∑

p=1

(

∧

θp (nc)− θp

)2

(23)SR =

1

Nc

Nc
∑

nc=1

δs
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where

and ε is a constant.
Assume that the incidence angle of WiFi is 94°, SNR is 30 dB, and the angle of UAV 

video signal is 80° and the SNR of UAV video signal varies from − 20 to 20 dB with 
step-size of 5 dB. The number of snapshots is set as 3840. We performed 200 Monte 
Carlo experiments for each SIR and calculated the RMSE and success rate of DOA 
estimation. Figure  5 presents the relationship between different SIRs vs RMSE and 
different SIRs vs success rate. We consider the DOA estimation successful when the 
estimation error is less than or equal to 3°. The proposed algorithm has the same suc-
cess rate as the EEOI algorithm and has a higher success rate than the other two algo-
rithms. The proposed algorithm has the best DOA estimation accuracy. Specifically, 
when SIR = − 50 dB, the DOA estimation accuracy (11.92°) of the proposed algorithm 
is greater than those of the other three algorithms (ENS: 12.16°, JJM: 12.35°, EEOI: 
12.94°). When SIR > − 45, the DOA estimation accuracy of the proposed algorithm is 
the same as that of the EEOI algorithm and greater than those of the other two algo-
rithms. As the SIR increases, the RMSE gradually decreases and tends to be stable, 
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Fig. 5  RMSE or success rate of DOA estimation versus different SIRs. a RMSE. b Success rate
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and the success rate gradually increases and tends to 100% in the proposed algo-
rithm, the JJM algorithm and the EEOI algorithm. However, the accuracy and success 
rate of DOA estimation first increase and then decrease in the ENS algorithm. This 
is because as the SIR decreases, the ENS algorithm cannot suppress the interference 
completely as shown in Fig.  3, or the spurious peaks are greater than the spectrum 
peaks of the weak signal, resulting in a decrease in accuracy and success rate.

Simulation 3 RMSE and success rate of DOA estimation compared with different 
number of snapshots.

Assume that the DOA of WiFi is 94°, the SNR = 30  dB, the DOA of the UAV video 
signal is 80°, and the SNR = − 15 dB. The number of snapshots changes from 500 to 3000 
in 500 step-size. We performed 200 Monte Carlo experiments for each snapshot and cal-
culated the RMSE and success rate. Figure 6 provides the relationship between different 
SIRs vs RMSE and different SIRs vs success rate. We also consider the DOA estimation 
successful when the estimation error is less than or equal to 3°. This shows that the pro-
posed algorithm has the best success rate and accuracy of DOA estimation. As the num-
ber of snapshots increases, the RMSE gradually decreases and tends to be stable, and the 
success rate increases gradually. Since the proposed algorithm is based on the weighted 
l1-norm sparse representation DOA estimation, the required number of snapshots is 
smaller than that of the classic super-resolution algorithm under the same conditions.

Simulation 4 Weak signal DOA estimation under multiple interference.
This simulation compares the DOA estimation performance of four algorithms under 

two strong interference signals and one weak desired signal. Assume that the DOA of two 
WiFi and one UAV video signal are 60°, 110° and 80°, respectively. Assume that the SNRs 
of two WiFi signals are 30 dB and 25 dB, and the SNR of the UAV video signal is 10 dB. 
Besides, the number of snapshots is set as 3840. Figure 7 depicts the normalized spectrum 
of the weak signal DOA estimation under two interference signals. The DOA estimations 
of the proposed algorithm, the ENS algorithm, the EEOI algorithm and the JJM algorithm 
are 80°, 80°, 80° and 82°, respectively. The average noise spectrum value is approximately 
− 1.3 dB (JJM), − 11.6 dB (ENS), − 7.7 dB (EEOI) and − 117 dB (the proposed algorithm), 
and spurious peaks appear in the ENS algorithm. The JJM algorithm uses the direction 
information of the interference signal to construct the blocking matrix, and it reduces the 
rank of the array matrix. With the increase in the number of interference signals, the rank 

Fig. 7  DOA estimation of a weak signal under two strong interferences
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of the array matrix decreases. This is equivalent to decreasing the number of array anten-
nas and leads to a decrease in the average noise spectrum value. However, the ENS algo-
rithm and the proposed algorithm do not rely on the rank reduction of the array matrix 
to suppress strong interference. Moreover, the proposed algorithm adopts the weighted 
l1-norm sparse representation for DOA estimation, which has larger weight value in the 
desired signal direction and a smaller weight value in the noise direction. Therefore, the 
proposed algorithm has a sharper main lobe and lower average noise spectrum value.

4.2 � Experimental results and discussion

In this section, we validate the proposed algorithm through a real-world experiment. Fig-
ure  8 illustrates a photo taken in an outdoor experiment next to Liangzi Lake, Jiangxia 

Fig. 8  Photo taken during the real-world experiment of the outdoor scenario

Fig. 9  Photo of the receiving system



Page 14 of 16Zuo and Xie ﻿EURASIP Journal on Advances in Signal Processing        (2022) 2022:111 

District, Wuhan, Hubei Province, which includes a DJI Mavic 2 UAV, a Xiaomi 9 mobile 
phone and a receiving system. The UAV hovers 667 m away from the receiver. Its flight 
height is 50 m, and the DOA is 62.3°. The mobile phone, which is 12.7 m away from the 
receiver and 50 cm from the ground, transmits a 20 MHz bandwidth WiFi signal with a fre-
quency range of 2.4–2.5 GHz and a DOA of 128°. Figure 9 presents a photo of the receiving 
system, which is composed of an 8-element uniform linear array, a SinoGNSS differential 
GPS, an 8-channel synchronous receiver and a PC. The uniform linear array consists of 
eight omnidirectional fiberglass dipole antennas with a length of 1.2 m and a gain of 8 dBi, 
which are fixed on a tripod 150 cm from the ground, and the adjacent element distance is 
0.06 m. Differential GPS is used to calibrate north and to calculate the theoretical azimuth 
with the GPS coordinates at the UAV. The 8-channel synchronous receiver consists of four 
2 × 2 multiple input multiple output (MIMO) USRP N321software-defined radio (SDR) 
platforms, with an instantaneous bandwidth of 200  MHz covering frequencies between 
3 MHz and 6 GHz. Besides, the IQ sampling rate is set as 100 MHz.

Figure 10 displays the spectrum of the received signals. The WiFi signal has a 20 MHz 
bandwidth covering frequencies between 2402 and 2422 MHz, and the frequency range 
of the UAV video signal is 2408–2428 MHz. Figure 11 shows that the WiFi amplitude is 
greater than that of the UAV video signal and the UAV video signal is covered by WiFi. 
In the algorithm, the number of snapshots is 10000, the regularization parameter is 
h = 2.7, and the angle grid is searched in the range of 0° to 180° with 1° step-size. Figure 11 

Fig. 10  Spectrum of the received signal

Fig. 11  DOA estimation of the desired signal after suppressing WiFi interference
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provides the DOA estimation of the desired signal after suppressing WiFi interference. 
This shows that the JJM algorithm has many spurious peaks and is sensitive to the angle 
of the interference signal, which indicates that it is unable to estimate the DOA effec-
tively. The proposed algorithm shows that the DOA estimation is 65°, which is more accu-
rate than that of the other two algorithms (66°). There are many spurious peaks observed 
in the other two algorithms. The proposed algorithm presents the best performance, with 
a sharper main lobe and lower average noise spectrum value than other algorithms.

5 � Conclusion
This paper investigates the DOA estimation problem of UAV video signals affected by strong 
WiFi, Bluetooth and other interference signals in complicated electromagnetic environ-
ments. A novel DOA estimation based on weighted l1-norm sparse representation under 
strong interference is proposed. First, a parallel adaptive beamforming algorithm based on 
PI is used to suppress strong interference and from new array data, and a weighted matrix is 
obtained according to the optimized subspace algorithm of subspace projection. Then, the 
weighted l1-norm sparse representation DOA estimation is formed by the weighted matrix 
and new array data. The proposed algorithm combines the advantages of sparse represen-
tation DOA estimation with fewer snapshots, a lower average noise spectrum value and 
higher precision of super-resolution algorithm. In the field experiment, a strong WiFi source 
is taken as interference for the simulation and experiment. The simulated results show that 
the proposed algorithm has fewer snapshots, a higher DOA estimation accuracy and suc-
cess rate, sharper main lobe and lower average noise spectrum value. To demonstrate these 
results, experimental results also indicate that the proposed algorithm shows better DOA 
estimation performance than other algorithms. This proves that the proposed algorithm 
can be used for the DOA estimation of UAV video signals under strong WiFi interference in 
complicated electromagnetic environments, which has important value and consequences 
for improving the weak target detection ability. In addition, the proposed algorithm is also 
suitable for the DOA estimation of weak signals when other interference signals exist in the 
actual environment, such as the DOA estimation of a 5G signal.
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