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1  Introduction
Nowadays, more than 80 countries and territories around the world have highways with 
a total distance of more than 230,000 km in operation. The USA, with a total length of 
88,000 km of highways, has completed an interstate highway grid with a core of inter-
state highways. While China also has a huge network of highways and roads where 
cracks in the road surface form and infiltration of rainwater accelerates the expansion 
of defects creating traps for moving vehicles. If not timely detection and access to road 
damage information and repair damaged roads, poor road conditions can lead to exces-
sive wear and tear on vehicles and can increase the likelihood of traffic accidents, leading 
to additional financial losses. According to data, poor road conditions are responsible 
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for 16% of traffic accidents [1]. To protect the lives of pedestrians and reduce property 
damage, it is urgent to address the issue of road damage detection.

Current methods of detecting road damage are classified into three categories, manual 
inspection, automated inspection, and image processing techniques. Pavement inspec-
tion in developing countries usually relies on manual inspection, but traditional manual 
inspection suffers from poor safety, low efficiency, high costs, and relies on the experi-
ence of the inspector, which can lead to inconsistent judgment. With the development of 
technology, the use of automated road inspection is gradually increasing, such as road 
inspection vehicles equipped with infrared or sensor equipment [2, 3], but the complex-
ity of the road environment makes it difficult for automated inspection equipment to 
meet the needs of practical engineering in terms of recognition accuracy and speed, and 
such equipment requires high hardware costs so that the corresponding inspection costs 
are also higher. Image processing technology has the advantages of high efficiency and 
low cost, and recognition accuracy is also gradually increasing with the development 
of technology. As a result, many researchers have used image processing techniques 
to detect pavement damage [4–6]. Traditional image processing techniques usually 
use manually selected features, such as color, texture, and geometric features, to seg-
ment pavement defects and then use machine learning algorithms for classification and 
matching to achieve the detection of pavement damage. For example, Fernaldez et al. [7] 
first preprocessed the crack image of road to emphasize the main characteristics of the 
crack, and then applied a decision tree heuristic algorithm to perform the final classifica-
tion of the image. However, due to the complexity of the road environment, traditional 
image processing methods cannot achieve the requirements for model generalization 
capability and robustness in practical engineering through manually designed feature 
extraction. Compared with traditional image processing techniques, image processing 
techniques based on deep learning theory have been widely used in pavement defect 
detection with higher accuracy, faster speed, and embeddability [8].

The object detection system has been variedly used in military and health sectors for 
efficient assistance in various fields [9]. Deep learning-based models are increasingly 
being widely used under their powerful feature extraction capabilities, such as convolu-
tional neural networks [10] being widely used in tasks such as image classification [11], 
object detection [12], and semantic segmentation [13]. The current object detection net-
works for road damage are generally divided into two categories, one with a two-stage 
model based on candidate regions, for example. Xu et  al. [14] propose a novel tunnel 
defect inspection method based on the Mask R-CNN. To improve the accuracy of the 
network, they endow it with a path augmentation feature pyramid network (PAFPN) 
and an edge detection branch. Wang [15] detected and classified damaged roads on the 
faster R-CNN-based network model and to address the problem of an unbalanced distri-
bution of data across different defect classes, proposed to introduce data augmentation 
techniques before training to obtain an average F1-Score score of 62.5%. Another type 
of regression-based is single-stage network. Jeong et al. [16] applied test-time data aug-
mentation (TTA) on a YOLOv5x-based model, which generates a large number of new 
images for data augmentation by horizontally flipping each training image, increasing 
the image resolution, etc., and adding the existing images together with the augmented 
images to the trained u-YOLO. The model scored 67% in F1 and won the first place in 
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the Global Road Damage Detection Challenge (GRDDC) competition, but the detection 
speed was not satisfactory and not real time. Wang et al. [17] targeted the characteris-
tics of road damage with elongated and microminiature and used the model based on 
The YOLOv3 model combining low-level features with high-level features and improv-
ing the loss function to improve the detection accuracy. However, this model is only 
highly accurate in detecting transverse or longitudinal cracks, but in reality, road dam-
age types are often very diverse and this proposed method is not universal for road dam-
age detection.

Recently, many researchers are dedicated to proposing lightweight road damage detec-
tors. Shim et al. [18] designed a lightweight semantic segmentation network. They opti-
mized the parameters of the model but did not consider whether the detection speed of 
the model has an impact. Sheta et al. [19] developed a lightweight convolutional neural 
networks model to detect pavement cracks, which architecture performs well in detect-
ing cracks. However, the usage scene is too simple to adapt to the multiple damage types 
on the road. Guo et al. [20] improved YOLOv5s model used to detect various road sur-
face diseases, which can improve the accuracy of object detection. However, there are 
models with a low degree of lightweight, which is more difficult to meet the require-
ments of embedded devices than other lightweight models. The above methods have 
made a reasonable contribution to lightweight models in the road damage detection 
field. Unfortunately, the lightweight models designed by these studies do not have a good 
balance between detection precision and detection speed.

Previous datasets on road defects suffer from unclear labeling, sparse defect catego-
ries, or unbalanced sample sizes of defect types. Studies have shown [21] that the quality 
of the dataset and the number of sample distributions play a crucial role in the perfor-
mance of the network model. Although the dataset used in this paper can solve some of 
these problems, the problem of the unbalanced number of samples for different defects 
still exists. To address this problem, Shim et al. [22] proposed technology that includes a 
super-resolution and semi-supervised learning method based on a generative adversarial 
network, which can improve road image quality and enhance detection performance. 
Maeda et al. [23] used a data augmentation method combining PG-GAN with the Pois-
son hybrid method to increase the pothole data, and this method improved the F1-Score 
by 5% on pavement pothole detection. The above findings suggest that data augmen-
tation techniques can effectively improve the network’s ability to extract features from 
samples.

Nowadays, the existing deep learning model cannot meet the requirements of detec-
tion and real-time road damage detection. So, it is urgent to find a suitable model that 
can improve the detection precision and reduce the complexity of the model. YOLOv5 
is an advanced single-stage object detection model, which can realize real-time detec-
tion with high prediction precision. YOLOv5 is an advanced single-stage object detec-
tion model, which can realize real-time detection with high prediction accuracy. Its 
mAP can reach up to 72% in COCO 2017 val set. The YOLO model gradually increases 
according to the network depth and the dimension of the feature map and is divided 
into YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. However, although the YOLOv5s 
method has high precision for road damage detection tasks, it still has the disadvan-
tage of a large number of calculations. Therefore, we proposed the YOLO-LRDD model 



Page 4 of 18Wan et al. EURASIP Journal on Advances in Signal Processing         (2022) 2022:98 

to improve the prediction precision and achieve real-time detection while reducing the 
complexity of the model based on the improved YOLOv5s model.

In our approach, we propose a lightweight model that is more suitable for road dam-
age detection. In order to achieve the goal of achieving a good balance between detec-
tion precision and speed while keeping the model lightweight. Overall, this study makes 
four contributions: (1) We propose YOLO-LRDD, a novel lightweight model for road 
damage detection. (2) We design a new backbone network, which can effectively allevi-
ate the situation that the model is lightweight and the detection precision reduced. (3) 
In order to enhance the feature description ability of the model and obtain high-quality 
anchor boxes, we replace the original YOLOv5s neck network and position loss func-
tion. (4) The original road damage dataset has been expanded with local road damage 
samples in China. The rest of this article is organized as follows. Section 2 describes the 
proposed YOLO-LRDD detection scheme in detail. Section 3 reports and discusses the 
experimental results. Section 4 concludes this paper. Section 5 describes the importance 
of our work to the world scientific community and directions for future work.

2 � Method
2.1 � The overview of YOLO‑LRDD

In view of the insufficient number of road samples about China in the road damage 
detection dataset, we have expanded the dataset so that the model can be applied in 
road detection in China. The currently used YOLOv5s network applied to road damage 
detection has the disadvantages of large model parameters and slow detection speed. 
To solve these problems, we propose a lightweight backbone network called Shuffle-
ECANet, which combines ShuffleNetV2 [24] with the ECA-Net [25] attention mecha-
nism, it can make the model lightweight, and the detection speed is much faster than 
the original YOLOv5s. However, after we replaced the backbone network of YOLOv5s, 
we found that the detection accuracy of the model decreased, especially when faced 
with areas with insignificant damage features. Our analysis is that the feature pyramid 
network of YOLOv5s uses PANet [26], and it fails to fuse features well. In this regard, 
we use BiFPN [27] to replace PANet and find that it can achieve more efficient multi-
scale feature fusion to improve detection accuracy. In the model training stage, since the 
original YOLOv5s uses the CIOU [28] loss function, it cannot solve the problem of sam-
ple imbalance. Therefore, we replace the CIOU with the Focal-EIOU [29] loss function. 
After experiments, it is found that it can solve the CIOU problem and also improve the 
quality of anchor boxes.

In Sect. 2, we organize the article as follows. In Sect. 2.2, we illustrate the problems 
with the current dataset and expand it, and show the types of road damage detected 
in this paper. After first describing the overall network structure of YOLO-LRDD in 
Sect.  2.3, we detail the backbone network and neck network of YOLO-LRDD in 2.3.1 
and 2.3.2, and finally explain the Focal-EIOU loss function in detail in 2.3.3.

2.2 � Data collection and processing

In this paper, we have constructed a road damage dataset called RDDC, which is based 
on the RDD2020 [30] dataset. RDDC is an extension of the RDD2020 dataset about Chi-
nese road samples. As far as we know, there are various problems with the road damage 
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images that exist today, such as inconsistent resolution, the equipment used to capture 
the image data, and a range of external factors such as lighting shadows; these seriously 
affect the quality of the dataset we use to train our models, so we decided to build our 
road damage dataset based on the RDD2020, and the quality of the RDDC dataset was 
improved by using field collection. Four common types of road damage are mainly stud-
ied in our dataset. Thus, for this study, the damage categories considered are D00 to rep-
resent longitudinal cracks, D10 for lateral cracks, D20 for alligators cracks, and D40 for 
potholes. Figure 1 shows four typical damage types in RDDC.

To make full use of the dataset and to improve the generalization ability of the model, 
the images containing multiple types of defects were preferentially used. After careful 
selection, the collected images were standardized before model training, and the images 
were reduced to 640 × 640 size so that the YOLO model could exert the best training 
performance. After standardization, according to different types of road damage, labe-
ling was used to manually label data. The file format of the labeling was txt, and a total 
of 13,780 pieces of data were formed. According to the needs of the experiment, it was 
randomly divided into a training set, a validation set, and a test set, according to 8:1:1. 
The details of the damage distribution of the dataset are shown in Fig. 2.

2.3 � The proposed YOLO‑LRDD

The overall schematic of YOLO-LRDD is shown in Fig. 3. The network architecture of 
YOLO-LRDD is mainly composed of four parts: input module, backbone network, neck 
network, and prediction network. In the first part, the input module enhances features 
through mosaic data augmentation, adaptive anchor box computation, and adaptive 

Fig. 1  Examples of damages types

Fig. 2  Number of damage instances
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image scaling. In the second part, we replace the backbone network of the original 
YOLOv5s with the proposed backbone network Shuffle-ECANet. In the third part, we 
use bidirectional feature pyramid network (BiFPN) instead of path aggregation network 
for instance segmentation (PANet). The last part is the prediction network, which per-
forms object detection and classification tasks, which ultimately reveal the road damage 
type and predicted probability. In the model training phase, the focal and efficient IOU 
(Focal-EIOU) loss is used instead of the complete IOU loss to solve the problem of sam-
ple imbalance and improve the quality of the bounding box.

2.3.1 � The backbone of YOLO‑LRDD

The original YOLOv5s backbone feature extraction network adopts the C3 structure, 
which will bring a large number of parameters and cause the problem of slow detec-
tion speed. In addition, when the model faces the complex application scenario of road 
damage detection, there are often problems of insufficient memory and high detection 
delay in embedded devices. Therefore, it is crucial to study lightweight feature extraction 
networks. According to the ability of attention mechanism to obtain global information, 
we created a new feature extraction network ShuffleECA-Net, which combines Shuffle-
NetV2 and ECA-Net attention mechanism, which not only makes the model lightweight, 
but also improves the detection speed.

ShuffleNet [31] is a convolutional neural network with high computational efficiency 
deployed on mobile devices. It uses pointwise group convolution and channel shuffle to 
provide better performance and faster-running speed for mobile devices. ShufflenetV2 
is an improved version of ShuffleNet, which structure is shown in Fig. 4. It introduces 
the channel splitting operation, changes the element addition to concatenation, and then 
uses the channel shuffling operation to mix features. In this article, ShufflenetV2 is used 
as the basic backbone network.

ECA-Net is a network of attention mechanisms based on Squeeze and Excitation Net-
works (SENet) [32]. ECA-Net uses the one-dimensional sparse convolution filter which 
is used to generate channel weights to replace the full connection layer in the SENet. 
This solves the problem caused by the operation of dimension reduction, which signifi-
cantly reduces the complexity of the network and can maintain the same performance as 
the original. ECA-Net is a novel, lightweight, and efficient attention mechanism module. 
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The research shows that it can improve the prediction accuracy without increasing the 
computational complexity, and can be easily deployed to the mobile network. The struc-
ture of the ECA-Net module is shown in Fig. 5.

ECA-Net converts the input feature map X ∈ R(W×H×C) into a single real 
value through global average pooling and the obtained features are expressed as 
Xavg ∈ R(1×1×C) , where W, H, and C are, respectively, expressed as the width, height, 
and channel of the feature, as shown in formula (1). The one-dimensional convolution 
kernel with the size of K  is used to extract the feature from Xavg by convolutional opera-
tion. K  is shown as formula (2).

Then, the sigmoid activation function is used to activate the output result after convo-
lution to obtain the weight parameter W ∈ R(1×1×C) , which reflects the correlation and 
importance of each channel. Finally, the weight parameter W  is multiplied by the origi-
nal input feature map to complete the recording of each channel feature of the feature 
map. In this way, important features are enhanced by giving larger weights, while invalid 
features are suppressed by giving smaller weights.

The backbone network of YOLOv5s is replaced by the combination of ShufflenetV2 
and ECA-Net. Meanwhile, the CBS module and SPPF module in the original YOLOv5s 
model are retained to reduce the pixel loss from the feature map in the initial stage, 
which can ensure the learning ability of the model and enhance the feature expression 
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ability of the feature map. We proposed that the backbone network of Shuffle-ECANet 
can not only ensure the road damage detection effect which is unchanged, but also 
greatly reduce the amount of model calculation and achieve real-time detection. How-
ever, we found that the detection accuracy of Shuffle-ECANet is not high for areas 
with small damage areas or unclear damage features, because such features carry little 
information and are easy to cause information loss in the process of forwarding calcula-
tion. To solve this problem, we replace the feature pyramid in YOLOv5s with BiFPN to 
enhance the ability to describe features.

2.3.2 � The feature pyramid network of YOLO‑LRDD

The purpose of the feature pyramid used by YOLOv5s is to extract features from differ-
ent scales and further generate a feature pyramid network to detect targets from differ-
ent scales by using the feature maps of different scales. YOLOv5 uses the architecture of 
PANet which adds a bottom-up channel based on the top-down (feature pyramid net-
works) FPN [33] structure, as the neck network. This makes the prediction layer have 
both high-level semantic information and bottom-level location information. However, 
in road damage detection, the characteristics of cracks are often long and discontinuous, 
and the damage is slender and tiny, which requires the network to have a strong ability 
of feature extraction. BiFPN was proposed by EfficientDet and is based on the structure 
of PANet. Through bidirectional connection and weighted feature fusion, it can enhance 
the feature extraction ability of the network, and introduce learnable weights to learn 
the importance of different input features. The network structure of PANet and BiFPN is 
shown in Fig. 6.

Bidirectional connection is consisted of three-part. To begin with, deleting the nodes 
with only one input, because the featureless fusion of such nodes has little contribution 
to the feature network, and will not have a great impact and simplify the network after 
deletion. Furthermore, an additional edge is added between the original input and out-
put nodes to fuse more features. Finally, each top-down and bottom-up path is regarded 
as a repeated stack of feature network layers to achieve higher-level feature fusion.

2.3.3 � The position loss of YOLO‑LRDD

The loss function of YOLOv5 includes position loss, classification loss, and confi-
dence loss. We keep the original binary cross-entropy loss [34] in YOLOv5 is used for 

PANet

Repeated blocks

BiFPN

Fig. 6  Structure of PANet and BiFPN network
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confidence loss and classification loss, while Focal-EIOU loss is used to replace the 
original CIOU loss for positioning loss. The most common position loss function is 
the IOU loss function, which calculates the intersection union ratio of the prediction 
boundary box and the ground truth box as shown in formula (3).

where the 
∣

∣B ∩ Bgt
∣

∣ is the intersection of the prediction boundary box and the ground 
truth box, and 

∣

∣B ∪ Bgt
∣

∣ is the union of the prediction boundary and the ground truth 
box. However, there are two problems with IOU loss. First, when the prediction bound-
ary box and the ground truth box do not intersect, the IOU loss value is equal to 0, which 
makes the error unable to backpropagate. Furthermore, it cannot accurately reflect the 
area of overlap between the prediction boundary box and the ground truth box.

The current YOLOv5 model mainly uses the CIOU loss, which takes into account 
the distance between the center points of the predicted box and the center points 
of the ground truth bounding box and the aspect ratio of the predicted box and the 
ground truth box as shown in formula (4).

where ρ2
(

b, bgt
)

 is the distance between the center points of the predicted box and the 
center points of the ground truth bounding box. c is the diagonal length of the smallest 
enclosing box covering the predicted box and the ground truth bounding box. αν takes 
into account the aspect ratio between the predicted box and the ground truth bounding 
box.

However, as the road damage types are diverse and the damaged area is not fixed, 
it is impossible to accurately predict the ground truth bounding box by CIOU loss. 
EIOU loss uses the calculation method of overlap loss and center distance loss in 
CIOU for reference, but the width and height loss use the minimum value of the 
difference between the width and height of the predicted box and the ground truth 
bounding box, which makes the model converge faster and obtains greater accuracy. 
The EIOU loss function is defined in formula (5).

Cw and Ch are the width and height of the smallest enclosing box covering the predicted 
box and the ground truth bounding box. However, there is a problem of unbalanced data 
samples in the road damage dataset, which will make the number of high-quality anchor 
boxes with small regression errors in the image far less than that of low-quality samples 
with large errors. The samples with poor quality will produce large gradients and affect 
the training process. Therefore, Focal-EIOU loss is used to improve loss of accuracy, 
which is shown in formula (6), where γ is the parameter that the degree of inhibition of 
outliers.

(3)LIOU = 1−

∣

∣
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∣
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∣
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∣
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ρ2
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3 � Results and discussion
3.1 � Experiment environment and metrics

The experiment environment is based on the Pytorch 11.0 framework, CUDA 11.3, 
and CUDNN 8.2, and the training model is based on an NVIDIA GeForce RTX 3060 
(12 GB). An SGD optimizer was used in the training phase with an initial learning rate of 
1E-5 and a weight decay of 5E-3, in addition to three warm-up periods of 0.8 momenta 
and a cosine annealing method to decay the learning rate, with 150 epochs per experi-
ment and a batch size of 32, and the training process of the whole model took about 7 h. 
To better train the model, the mosaic method was used in the training phase to crop four 
images from the original dataset into one image after random scaling and stitching, and 
then an adaptive image scaling operation was performed to obtain a uniform 640 × 640 
size image for training.

We use the RDDC dataset mentioned in Sect. 2.1 to validate the performance of the 
YOLO-LRDD method. Two commonly used metrics, Precision and Recall, are used to 
measure the performance of the model with an IOU threshold of 0.5 and a confidence 
threshold of 0.4 in order to objectively assess the experimental results. Precision is the 
probability of correctly predicting a positive sample out of all predicted positive sam-
ples, and recall is the probability of predicting a positive sample out of the actual posi-
tive samples. The formulas for precision and recall are shown in formulas (7), (8), TN 
(predict negative samples as negative samples), FN (predict positive samples as nega-
tive samples), TP (predict positive samples as positive samples), and FP (predict negative 
samples as positive samples).

In object detection, Precision and Recall interact with each other and cannot be used 
to evaluate the detection directly. Therefore, we introduce the AP to represent the detec-
tion precision and the comprehensive evaluation metric F1-Score to evaluate the model 
more comprehensively. Higher AP and F1-Score values imply higher network accuracy, 
and the mAP represents the average accuracy for n types of defects. The equations for 
AP, mAP, and F1-Score are shown in formulas (9), (10), and (11).

(6)LFocal−EIOU = IOUγLEIOU

(7)P =
TP

TP+ FP

(8)R =
TP

TP+ FN

(9)AP =

∫ 1

0
P(R)dR

(10)mAP =
1

n

m
∑

i=1

APi
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When evaluating the superiority of the algorithm, we need to define the detection 
speed, where we use the frame rate (FPS) to indicate the detection speed, which is an 
important indicator; if the FPS ≥ 30, it satisfies the requirements, and a video detec-
tion function with FPS ≥ 60 is superior.

3.2 � Ablation experiments on YOLO‑LRDD

To demonstrate the validity and necessity of each improved module in the YOLO-
LRDD model, we use YOLOv5s as the baseline and gradually add improved modules 
for ablation experiments. Using, Precision, model size, F1-Score, and inference time 
per image as evaluation metrics, the experimental results are shown in Table 1.

We divided the ablation experiments into four steps to prove the superiority of 
the YOLO-LRDD model. (1) We first modified the original backbone network of 
YOLOv5s to a lightweight backbone ShuffleNetV2 network, and the parameter size 
and detection time of each image,  respectively. The reductions are 45% and 34%, 
while the accuracy is reduced by 1.4%. The results show that using ShuffleNetV2 
as the backbone network is more likely to be applied in practice and deployed on 
embedded devices. (2) Then, on the basis of the ShuffleNetV2 backbone network, 
the original PANet feature fusion network was replaced with BiFPN, the parameter 
size was reduced by 29% compared with the original YOLOv5s, and the accuracy was 
increased by 0.5% compared with the ShuffleNetV2 backbone network, which indi-
cates that the BiFPN network. In this experiment, better fusion features can be used 
for road defect detection. (3) Secondly, the ECA-Net attention mechanism was inte-
grated into the ShuffleNetV2 network, and a new backbone network named Shuffle-
ECANet was created. Compared with the original YOLOv5s, the accuracy remained 
unchanged but the number of parameters was reduced, indicating that ECA-Net can 
be more focused on extracting useful information from features. (4) Finally, the Focal-
EIOU loss function was used to replace the original CIOU localization loss function 
in the training phase. On the Shuffle-ECANet and BiFPN structures, the accuracy 
was improved by 0.3%, which proves that the Focal-EIOU loss function can make the 
model perform better regression and obtain higher-quality anchor boxes.

(11)F1 - Score = 2×
P × R

P + R

Table 1  Ablation study on YOLO-LRDD

The best results are marked in bold

Method Precision (%) #Param. (M) F1-Score (%) Inference time 
per image (ms)

Backbone Neck Loss

CSPdarknet + SPPF PANet CIOU 56.8 27.6 57.5 4.4

ShuffleNetV2 PANet CIOU 55.4 15.2 55.6 2.9
ShuffleNetV2 BiFPN CIOU 55.9 18.5 56.5 3.1

Shuffle-ECANet BiFPN CIOU 56.8 19.6 57.1 3.2

Shuffle-ECANet BiFPN Focal-EIOU 57.1 19.8 58.7 3.4
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3.3 � Comparison with various methods

In this section, we compare the performance of the proposed YOLO-LRDD model with 
five other state-of-the-art models, including two one-stage lightweight models with 
YOLOv5s as the baseline, MobileNetv3-YOLOv5s, and GhostNet-YOLOv5s, respec-
tively, two one-stage models including YOLOv5s and YOLOv5m.

3.3.1 � Numerical analysis of the RDDC dataset

The loss represents the difference between the predicted value and the actual value. 
With the gradual narrowing and convergence of the gap, it means that the model is close 
to the upper limit of performance determined by the dataset. The comparison of the 
training loss function curves of the six methods is shown in Fig. 7.

As shown in Fig. 7, the loss values for each category fluctuate considerably at the begin-
ning of the training, indicating that the initial hyperparameters were reasonable. After 
a certain number of iterations, the fluctuation of the loss curve gradually decreases. In 
Fig. 7a, it can be seen that the results compared with the other five methods can be seen 
that the Box curve converges faster and more stably when the Focal-EIOU loss is used 
in YOLO-LRDD than the CIOU loss in YOLOv5s. The trained loss curves are more con-
vergent and stable compared to the other methods, providing higher position precision 
and greater stability and robustness in road damage detection.

Fig. 7  Comparison of training losses of six types of methods

Table 2  Comparison of detection results between YOLO-LRDD and the other five methods

The best results are marked in bold

Model mAP0.5 (%) mAP0.95 
(%)

Precision 
(%)

Recall (%) F1-Score 
(%)

#Parama. 
(M)

FLOPs (G) FPS

YOLOv5s 56.9 29.4 58.9 56.2 57.5 27.6 28.4 72

YOLOv5m 57.3 38.9 58.5 57.3 57.8 33.2 32.2 64

Mobile-
Netv3-
YOLOv5s

51.2 25.8 54.7 53.8 54.2 19.2 24.2 78

GhostNet-
YOLOv5s

49.5 24.5 53.6 52.5 53.0 20.4 23.4 77

Faster 
R-CNN

60.2 31.8 62.7 59.3 60.1 38.3 34.6 51

YOLO-LRDD 57.6 30.6 59.2 58.2 58.7 19.8 17.4 86
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To comprehensively verify the proposed YOLO-LRDD network’s performance, the six 
object detection methods are quantitatively compared, and the comparison results are 
shown in Table 2.

By analyzing the experimental results, it can be seen that the model Precision of 
YOLOv5s and YOLOv5m is 58.9% and 58.5%, respectively, while the Precision of our 
proposed YOLO-LRDD model is 59.2%, an improvement of 0.7%, which is the result of 
the lightweighting of the model. (The size of the model is reduced from 32.2G to 17.4G.) 
This means that the YOLO-LRDD algorithm can still be highly accurate in embed-
ded applications, and the frames per second transmitted (FPS) by the model has also 
improved significantly, from 64 to 86 FPS, an improvement of 25.6%, which will result in 
smoother and more consistent detection of road damage images.

3.3.2 � Visualization results on the RDDC dataset

In this section, we compare YOLO-LRDD with another five detection methods in four 
distinct circumstances and display the predicted labels and predicted values in these 
samples in order to more intuitively observe the detection effect of YOLO-LRDD. The 
accuracy of the model prediction increases with the size of the projected value in these 
samples. Comparing the six prediction models to the actual results in the samples allows 
one to easily see how accurate the prediction anchor box is. These are the detecting 
instructions.

The general road environment is very complex, especially on rural roads. In order to 
comprehensively measure the performance of the YOLO-LRDD model, we used a single 
small target and unevenly exposed targets for visual experiments. As shown in Fig. 8, we 
found that the detection performance of the Yolov5m and GhostNet-Yolov5s models was 
significantly disturbed by rutting and lane boundaries and was less resistant to interfer-
ence. YOLO-LRDD was highly resistant to interference in this environment.

As shown in Fig.  9, we have conducted a series of experiments on the performance 
of the six detection models in the case of multiple small targets, in which the image 
has the reflection effect. It can be seen from this that the detection performance of 

Fig. 8  Comparison of the detection of longitudinal cracks and lateral cracks
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GhostNet-YOLOv5s is general, and the small lateral cracks nearby are omitted, indicat-
ing that the model is insensitive to small targets, and the performance of the GhostNet-
YOLOv5s model is the worst. Recently, the hole has been leaked, and the performance 
has serious defects. YOLO-LRDD model performs best in this test. It can detect pot-
holes in this range and show an absolute advantage in performance.

As shown in Fig.  10, a series of experiments were carried out on the road dam-
age detection performance of six methods under strong light. It can be seen that the 
YOLOv5s method can detect defects, but the confidence is very low. Faster R-CNN and 
GhostNet-YOLOv5s methods are greatly disturbed by light intensity, resulting in a sig-
nificant decline in detection performance. Mobilenet3-YOLOv5s has error detection 
due to the interference of lane boundary. YOLO-LRDD can detect damages with high 
reliability and accuracy. It is not affected by uneven light intensity and has strong resist-
ance to the external environment.

Fig. 9  Comparison of the detection in multiple small lateral cracks and alligators

Fig. 10  Comparison of the detection of alligators and potholes under strong light
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As shown in Fig. 11, in the case of low exposure and partial shadow occlusion, these 
methods have similar detection ability, and a small part of shadow has little impact on 
the model. However, in the test, we found that GhostNet-YOLOv5s method has the low-
est confidence, while YOLO-LRDD method has the highest detection confidence, and 
only this method with YOLOv5s can detect pits of small objects. This shows that Focal-
EIOU loss’s treatment of sample imbalance enhances the detection ability of the model 
for small objects to a certain extent. It can be seen that by using BiFPN to enhance 
feature extraction, the detection precision of the model can be improved to a certain 
extent. In addition, by optimizing the sample imbalance processing method, the sensi-
tivity of small object recognition can be improved, the missed detection rate of targets 
with unclear features can be reduced, and better road defect detection performance can 
be achieved. By further testing the performance of our improved model, we confirmed 
its performance advantages. Compared with GhostNet-YOLOv5s, YOLOv5s, and Faster 
R-CNN methods, YOLO-LRDD shows stronger practical advantages. In the quantitative 
evaluation results and qualitative analysis, the YOLO-LRDD method proposed in this 
paper has strong anti-interference ability, high sensitivity to small targets, low missed 
detection rate of multiple targets, little influence by external environmental interference, 
good robustness, and strong versatility.

4 � Conclusion
Firstly, in this paper, we have compiled a new dataset, RDDC, that is based on the 
RDD2020 and includes a notable sample of Chinese road damage photographs. This 
dataset contains four sorts of frequent damage situations, such as longitudinal cracks, 
lateral cracks, alligators, and potholes. The larger RDDC dataset permits the algorithm 
to be trained to have a higher capacity for generalization, resulting in a slight gain in 
algorithmic precision. In addition, the enhanced RDDC dataset can make the algorithm’s 
strengths and flaws more apparent when comparing the algorithm’s superiority.

Secondly, we present the most appropriate YOLO-LRDD deep network learning 
model for damage identification in real-world road scenarios, which has less parameters 

Fig. 11  Comparison of the detection in multi damaged road sections
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and less computation and outperforms previous object detection models based on test 
model performance. We propose a new backbone network called ShuffleECA-Net, 
which adds an ECA lightweight attention mechanism to the lightweight network Shuffle-
NetV2. ShuffleECA-Net decreases model weights and increases the speed of detection.

To improve the accuracy of model detection, we employ BiFPN rather than PANet, 
which may enrich the description of features more efficiently. In the last phase of the 
model’s training, Focal-EIOU loss is employed to correct the imbalance of the samples 
and create anchor boxes of greater quality. In the end, compared with YOLOv5s, our 
proposed YOLO-LRDD model reduces the model size by 28.8% and improves the accu-
racy by 0.3%, which is more suitable for lightweight requirements.

5 � Future work
Our research is cutting-edge. Nowadays, many models pursue high accuracy and 
increase the number of layers of the network indefinitely. In this paper, we build a light-
weight algorithm model without significantly reducing the accuracy of the algorithm, 
and it is clear that the improvement idea of our algorithm is a reference for future model 
lightweight. The YOLO-LRDD algorithm also expands for lightweight computer vision 
models, which are informative for innovations in road defect real-world detection 
techniques. The lightweight model allows it to be equipped on mobile devices and in-
vehicle tools. It is important for the real-time detection of road defects and their timely 
maintenance.

For further research on road damage detection algorithms such as YOLO-LRDD, we 
propose beginning with the two aspects listed below:

A database of such samples will be collected and improved in the future in order to 
be able to include the added dataset in future model training. This will allow the model 
to be trained in order to produce a better and more complete road damage detection 
model. Improving the algorithm and the detection accuracy of transverse cracks in road 
damage will be accomplished by collecting and improving the database of such samples.

While maintaining a lightweight, or more lightweight, model to improve accuracy, 
there are still many variables that need to be debugged in the algorithm proposed in this 
paper, and changes in these variables can affect the accuracy of the algorithm. Future 
research should be directed toward reducing the number of uncontrollable variables in 
the algorithm so that its accuracy can be improved.
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