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1  Introduction
Surfaces and higher-dimensional manifolds can be endowed with extrinsic, well-defined, 
geometric structures. Utilizing properties of surface geometry can be advantageous in 
the development of algorithms that involve mappings for the purpose of assessment of 
similarities by means of meaningful geometry-based distortion measures, and in their 
efficient computations [1, 2]. We have previously presented a complete framework of 
this approach, along with its practical applications in computer graphics and computer 
vision [1, 3, 4]. The purpose of our present work is to adopt this powerful approach for 
the benefit of processing, similarity assessment, feature engineering, and classification 
of one-dimensional signals, such as pulmonary sounds and speech. Our novel approach 
to feature engineering that emerges as a by-product of our approach can enrich the 
representation of signals that are fed into the classification stage of a machine learning 
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architecture and thereby enhance the merit of application of machine learning in signal 
processing and classification. To take advantage of our approach, and benefit from the 
rich geometric feature space that characterizes a surface, we have to first embed the one-
dimensional signal in, or represent it by a surface. This is accomplished by utilizing one 
of the handful of transformations of a signal into a combined space [5], such as the time–
frequency (i.e., the spectrogram [6]), or any other two-dimensional combined space (e.g., 
Gaborian, or time scale, i.e., wavelets [7]). In this study, we adopt the spectrogram rep-
resentation that has been shown repeatedly to be effective in processing, detection, and 
classification of speech [8] and lung sounds [9], which we use as examples.

We consider the spectrogram to be a geometric object, embedded in a three-dimen-
sional Euclidean space, wherein the x- and y-axis represent the time and frequency, and 
the z-axis, the so-called instantaneous spectrum. Surfaces are characterized by their 
geometric properties, such as distances and curvatures. The representation of signals by 
surfaces allows us, therefore, to extract features that are based on a metric that quantifies 
geometric distances between surfaces. In the context of signal processing and classifica-
tion, such geometric properties can enrich the set of features that are used for signal 
recognition and classification. For example, with reference to our test case of speech, 
we validate the advantages of utilizing our approach in recognition and classification of 
speakers’ accents. In the case of pulmonary sounds, we demonstrate how powerful our 
approach is in classifying patients into equivalence classes of various diseases.

It is of interest to note, in the context of the geometrical structure of the spectro-
gram representation by a surface, that the curvature corresponds to the bandwidth or 
‘local bandwidth’ of a signal represented by the surface [10]. Thus, our approach to one-
dimensional signal processing and classification is based on the idea of representing a 
given signal segment by a unique geometric object. It allows us to combine existing sig-
nal processing methodologies and/or classical, ad hoc, feature selection, that is widely 
used in feature engineering for the purpose of classification by machine learning meth-
odologies and architectures, with geometry-based formalism and its by-product of the 
well-defined features that have geometrical meaning, elsewhere used in shape analysis, 
mappings, and classification [11]. To further enhance the strength of our geometric-
based feature engineering in the context of sound signals classification, we incorporate 
and combine the classical features of mel-frequency cepstrum coefficient that are widely 
used in speech recognition [12–14], with shape descriptors that characterize our geo-
metric objects.

As is the case in computer graphics, computer vision or any computational processing 
that is applied to manifold surfaces embedded in R3 , the first step of the processing is 
the sampling and triangulation resulting in a triangle mesh (Sect. 2.1 for further details). 
Given two meshes, representing two surfaces, i.e., geometric objects and, in turn two 
one-dimensional sound (or other one-dimensional) signal segments, we define a metric, 
suitable for quantifying the similarity between these two meshes. This is accomplished 
by optimally deforming one of the meshes onto the other one and assessing the extent of 
deformation required for this matching process (Sect. 2.2).

Given a large set of geometric objects, i.e., signal segments represented by meshes, 
which are the discrete versions of the manifold surfaces, it is not practical to estimate 
the required deformations and corresponding similarities by pairwise comparisons; 
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this would not be computationally feasible. Instead, we map each one of the geomet-
ric objects onto a reference, target, domain by a process known as surface flattening, or 
parametrization [1], and assess in doing so the transitive similarity. Such a target domain 
(actually a canonical domain [1]) may, for example, be a circle [15]. To execute this non-
convex mapping of geometrical data ‘optimally,’ we adopt a recently proposed adaptive 
block coordinate descent (ABCD) algorithm [2]. The geometric distortions induced by 
the mapping of the geometric objects are then used as measures of the dissimilarity of 
the geometric objects and, in turn, of the signal segments that they represent. This is the 
essence of our clustering into equivalence classes and of the classification.

Among the conceptual and practical contributions of our approach to representation 
and analysis of 1D signals, we wish to stress already at the outset the importance of the 
novel interpretation of the spectrogram (or representation of a 1D signal in one of the 
alternative combined spaces [5]) as a surface embedded in a Euclidean space. Further, 
based on our empirical evidence, and theoretical considerations to be presented else-
where, it is asserted that the two-dimensional (2D) surfaces which represent the 1D sig-
nals do not self-intersect and constitute 2D manifolds [16]. Therefore, as a consequence 
of our interpretation, geometric properties of the 2D manifolds can be used to derive a 
metric for similarity assessment, change detection and quantification and similar tasks. 
We accomplish these tasks by adopting and modifying our previously presented adaptive 
block coordinate descent (ABCD) algorithm [2], developed for robust geometric optimi-
zation, and by extracting distortion measures from the optimal mappings of the discrete 
surfaces, i.e., meshes. Whereas in our previous studies we measured distortions on tet-
rahedral meshes of volumetric domains, for assessing similarities in medical images [11, 
17], and for analyzing shapes in computer graphics [4], here we use for the first time dis-
tortion measures for 1D signal processing, by representing the 1D signals as meshes of 
surfaces. In terms of enriching the toolbox available to the signal processing community, 
our method is the first to fully integrate geometric algorithms and distortion estimation 
techniques with classical machine learning tools, to obtain an end-to-end framework for 
classification. Further, our study is the first to perform statistical analysis of distortion 
features and to quantitatively measure precision of various classifiers that employ distor-
tion features. Previous methods have only demonstrated qualitative results in the form 
of distortion scatter plots or distortion heatmaps.

Results obtained in the classification of speech accents and of sounds characteristic 
of lung diseases are presented in Sect.  4. Encouraged by these results, we address in 
the discussion potential promising extensions of our approach, by considering higher-
dimensional distortion measures, for example, sound signals characterized by three-
dimensional distortions, induced by tetrahedral meshes that are mapped onto canonical 
domains. We also address possible extension of our methodology by curvature-based 
sampling of the surface [10], that is likely to enhance its quality in certain applications.

2 � Methods
Figure 1 depicts a high-level schematic overview of the proposed algorithm. The sche-
matic framework of our approach is divided into two major parts. The first one (Panel 
(a)) is concerned with the representation of the 1D signal by a geometric object. This 
is the essence of the ‘embedding’ process, i.e., the conversion of the one-dimensional 
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signal into a ’geometrical object,’ i.e., a surface. Subsequent to the preprocessing that 
combines straightforward conditioning and denoising, the spectrogram is computed 
and represented as a surface embedded in a three-dimensional Euclidean space. The 
original problem of conventional 1D signal analysis and classification is thereby con-
verted to geometric analysis of surfaces or higher-dimensional manifolds.

The second part (Panel (b) of Fig. 1) highlights how is the geometric object used in 
the extraction of highly descriptive geometric features and how the latter are imple-
mented eventually in pairwise similarity assessment (upper branch) or signal clas-
sification lower branch. To this end, the 3D spectrogram has to be presented by its 
discrete surface, which is obtained by implementing an algorithm of triangulation. 
[Note that this discretization process results in a non-uniform discrete representation 
of the surface.] The obtained mesh is then deformed onto another mesh for assess-
ment of their similarity (top branch) or, alternatively, mapped into a reference domain 
(bottom branch), wherein all inter-distances between all the meshes corresponding 
to the 1D signals are clustered with reference to a well-defined metric. Utilizing the 
proposed approach in the context of machine learning, surface distortion measures 
extracted in the process of mapping onto the reference domain become available 
for capability of feature engineering utilized in the design of the machine learning 
architecture.

The first two stages are aimed at computing a discrete geometric representation 
of the signals, whereas the goal of the last two stages is to compare these discrete 

Fig. 1  High-level schematic overview of the proposed model. a Highlights the ‘embedding’ process. 
Subsequent to the preprocessing, the spectrogram of the 1D signal is computed and presented as a surface. 
This allows the conversion of the original problem of 1D signal analysis to geometric analysis of manifolds. 
The second part of the proposed method begins with this ‘geometric object,’ which is the output of the first 
part. b Summarizes how this geometric object is used for the extraction of features. First, the spectrogram 
is converted to a mesh, by means of the Delaunay algorithm. Then, the meshes are projected into a target 
domain by using the ABCD algorithm. The meshes are clustered in this target domain, with reference to a 
well-defined metric. Finally, distortions measures are computed from the obtained meshes
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representations. The technical details of the above stages of the algorithm are pre-
sented in the sequel.

2.1 � Sampling and triangulation

Assume that S is a manifold surface, embedded in R3 , and that V is a finite set of points 
(vertices) sampled on S. Then, a common way to discretize S is to divide it into a finite 
set of triangles ℑ such that: (i) vertices of the obtained triangles belong to V ; (ii) for any 
pair of non-disjoint triangles t1, t2 ∈ ℑ the intersection t1 ∩ t2 is either a common edge of 
t1 and t2 or a common vertex of these triangles. We will refer to the pair (V ,ℑ) as to the 
triangle mesh of a surface S.

In our case, each input signal I is represented by a spectrogram surface S = S(I) that 
can be written in the following parametric form:

where X and Y are the time and frequency ranges of the signal I. We divide X and Y into 
a number of uniformly distributed points x1, . . . , xN and y1, . . . , yN , and the vertex set V 
of S is defined by

However, in some scenarios, using adaptive sampling can potentially yield even better 
results. (See Sect. 5 for the discussion on more advanced sampling schemes.)

The triangle set ℑ of S is constructed by the standard algorithm of Delaunay triangula-
tion [18] that minimizes the minimal angles in all of the triangles in ℑ . This triangulation 
algorithm avoids generation of slim triangles whose appearance may lead to numerical 
issues at the stage of the feature extraction.

Subsequent to representing data by triangular meshes, we proceed to the next step of 
analyzing geometric properties of these meshes.

2.2 � Shape descriptors

Given two meshes of spectrogram surfaces, we wish to define a metric suitable for quan-
tifying geometrical similarities between these meshes. [In computer vision, such metrics 
are often referred to as shape descriptors.] We use here the deformation-based method. 
In such methods, a distance between two shapes S1 and S2 is estimated by computing 
an optimal deformation f12 of S1 while projecting it onto S2 , and by measuring changes 
in various geometric features induced by f12 . There exist many criteria for definition of 
map’s optimality. Most of these criteria are targeted at preserving the map injectivity and 
avoiding visual distortions, as much as possible.

Note that for a large collection {S1, . . . , Sm} of shapes it may be very demanding to 
compute optimal deformations fij , for each 1 ≤ i < j ≤ m . Therefore, instead of match-
ing all the pairs of shapes, a more practical approach is to compute an optimal mapping 
fi of each shape Si into a simple target domain. Such a target domain (actually a canoni-
cal domain [1]) may, for example, be a sphere [19], a circle [15], or a plane. In the two 
examples shown in this paper, our source domains are spectrogram surfaces. Since these 

(1)S(I) = x, y, z(x, y) |x ∈ X , y ∈ Y ,

(2)V =
{

(xi, yj , z(xi, yj))| i, j = 1, 2, . . . ,N
}

.
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surfaces have a disk topology, we map them into a plane by a process known as surface 
flattening, or parametrization [1].

Our model employs deformation-based descriptors for measuring similarities between 
triangular meshes. Note that all the meshes that constitute a peak surface of spectro-
grams have the topology of a planar disk. Therefore, a natural candidate for the optimal 
deformation of such a mesh M is a length-minimizing mapping of M into the plane. We 
refer to this mapping process as to the surface flattening, for short. In our model, surface 
flattening algorithms are used for computing deformation-based descriptors of spectro-
graphic shapes.

If f is a flattening of a mesh M, we select the shape descriptors of M to be the geometri-
cal distortions that measure how Euclidean lengths are deformed under f. In such a case, 
each mesh M can be associated with its signature vector (E1, . . .E2) , where numbers Ei 
are various estimates of the metric deviations induced by flattening M into the plane.

In the sequel, we address in detail the surface flattening and the distortion estimation 
processes.

2.3 � Surface flattening

Surface parametrization tasks can be reduced to the following optimization problem:

where f ∗ is a piecewise affine mapping of a mesh (V ,ℑ) that minimizes the chosen dis-
tortion criteria E under the following constraints: For each mesh triangle t, the compo-
nent of f ∗ on t is an orientation preserving map. These constraints are expressed by the 
determinant signs of Jacobian matrices dft , t ∈ ℑ . Negative determinants of the Jacobians 
yield inverted triangles in the image of f. Satisfying the orientation constraints is there-
fore the necessary condition for inducing one-to-one parametrization of surface meshes.

We adopt the recently proposed adaptive block coordinate descent algorithm [2] 
(ABCD), combined with the Tutte embedding method [20], to solve the optimization 
problem (3) and thereby the parametrization problem. In particular, we initialize the 
parametrization problem (3) by mapping triangular meshes onto a circle via the method 
of [20]. We then employ the ABCD algorithm to induce locally injective parametrization 
characterized by minimal length distortions.

The ABCD algorithm performs a high-quality mapping of geometrical data, using 
inversion-free simplicial mappings with low shape distortions. This is done by an alter-
native optimization process of modified distortion measures (isometric and conformal) 
and inversion penalties. The algorithm starts with block coordinate descent optimiza-
tion, which modifies the subset of vertices and converges to global solver. Figure 2 pre-
sents a high-level flowchart of the algorithm.

Note that, since (3) is a non-convex problem, solving it with different initial maps may 
lead to distinct local minima. Therefore, choosing an appropriate initialization method is 
crucial for adequate approximation of the global minimizer f ∗.

We tested a number of different initialization schemes and found that using a convex 
combination mapping of meshes [20] onto a planar disk yields the best results. Note that 

(3)
f ∗ = argmin

f

E(f );

s.t. det dft > 0, t ∈ ℑ ,
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the algorithm of [20] is actually a variant of the classical Tutte embedding algorithm that 
is widely used in shape processing applications. This method guarantees a bijective map-
ping onto convex planar domains, and it has a low computational cost (see Additional 
file 1: Sect. 7.1). Figure 3 demonstrates this initialization scheme and the related process 
of distortion minimization.

We proceed to discuss the process of feature extraction. It includes the local sub-step 
of extracting features of individual triangles and the global sub-step in which local fea-
tures are summed over large subsets of mesh triangles.

2.4 � Measuring local distortions

If M = (V ,ℑ) is a triangle mesh and f is a simplicial mapping of M, then a local distortion 
induced by f, on a triangle t, is defined to be a function E(σ1, σ2) of the singular values 
σ1(dft) and σ2(dft) of the Jacobian dft.

The Jacobian singular values uniquely define the shape of a triangulated surface, up 
to rotation and sliding of mesh triangles. Generally speaking, local distortions estimate 
how extensively is the shape of t distorted under f.

These measures are instrumental in many applications in computer vision, including 
shape classification and shape analysis [17, 21]. In our algorithm, geometric distortions 
are used as measures of dissimilarity of triangulated surfaces.1

Note that for a dense triangulation, feeding singular values 
{

σi(dft)|t ∈ ℑ, i = 1, 2
}

 
to a deep learning model preserves all the information contained in the pixels of the 

Fig. 2  High-level flowchart of the ABCD algorithm. First, a global descend field is applied alternatively on 
modified distortion measures and inversion penalties. Then, the vertex is partitioned and each block is locally 
optimized

Fig. 3  Visualization of the process of measuring distortions associated with the parametrization problem. 
The figure depicts, from left to right: a sound spectrogram, a triangular mesh (V ,ℑ) representation of 
the spectrogram surface, an initial mapping of (V ,ℑ) onto the plane and the final flattening of the mesh, 
computed by means of the ABCD algorithm

1  In the context of the representation on the surface of the local spectrum, the geometric distortions assess how much 
the local spectrum of the sound is affected by the simplicial mapping f.
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spectrogram. Our algorithm employs several distortion measures. These distortions 
belong to the following major classes of geometric measures:

Isometric distortions: These measures estimate distortions of the Euclidean 
length. We use the following isometric distortions:

•	 As-Rigid-As-Possible (ARAP) energy [22] 

•	 Symmetric Dirichlet energy [23] 

•	 Quasi-isometric (qi) dilatation [4, 24] 

Conformal distortions: These distortions estimate how far f is from being an angle-
preserving mapping. Our algorithm uses the following estimates of conformal 
distortions:

•	 Quasi-conformal (qc) dilatation [3] 

•	 MIPS energy [25, 26] 

 Most isometric parametrizations (MIPS) is a quadratic function, widely used for 
optimizing conformal distortions over triangular domains [26].

Area distortions: These distortions estimate dilatation and compression of triangle 
areas induced by f. We use the following measure of the area distortion:

•	 Unsigned area distortion [27] 

Scale distortions: These distortions assess the degree to which mesh triangles are 
scaled by f. Scale distortions are closely related to discrete harmonic mappings [28] 
and to stretch minimization mappings. We use the following scale distortions:

•	 Dirichlet energy [25] 

•	 Conformal factor [21] 

(4)EARAP(σ1, σ2) = (σ 2
1 − 1)2 + (σ 2

2 − 1)2 ;

(5)ESD(σ1, σ2) =
1

4
(σ 2

1 + σ
−2
1 + σ 2

2 + σ
−2
2 ) ;

EQI(σ1, σ2) = max {σ1, σ
−1
2 } ;

(6)EQC(σ1, σ2) = max

{

σ1

σ2
,
σ2

σ1

}

;

(7)EMIPS(σ1, σ2) =
σ1

σ2
+

σ2

σ1
=

σ 2
1 + σ 2

2

σ1σ2
;

(8)EAD(σ1, σ2) = max
{

|σ1σ2|, | σ1σ2|
−1

}

;

(9)EDirichlet (σ1, σ2) =
1

2
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σ 2
1 + σ 2

2
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 Note that conformal factors are closely related to conformal distortions such as 
quasi-conformal dilatation and MIPS energy. Indeed, according to the uniformiza-
tion theorem [29], any disk topology surface S can be mapped into the plane by a 
conformal map fS . The map fS can be described by its conformal factors, up to a 
composition of fS with a rigid transformation. For this reason, the conformal factor 
has been used by [21] as a geometric signature for a collection of 3D surfaces.

All of these distortion measures are rotation invariant, since they are functions of signed 
singular values of the Jacobian. This work aims to show that the dimensionality of the 
data can be considerably reduced by employing weighted sums of local distortions over 
different subsets of ℑ . The obtained quantities will be referred to as a global distortions.

2.5 � Measuring global distortions

Let f be a simplicial map of the mesh (V ,ℑ) , E be a local distortion, and ℑ0 be a subset 
of ℑ . The global distortion of f, computed with respect to E over ℑ0 , is then defined as 
follows:

where dft is the Jacobian of f on t, σ1(dft) and σ2(dft) are the Jacobian singular values and 
area(t) denotes the area of a triangle t.

In many cases, values of local distortions are distributed non-uniformly over mesh tri-
angles. As demonstrated by Figs. 4 and 5, a small number of highly distorted triangles 

(10)ECF(σ1, σ2) =
σ1 + σ2

2
.

(11)Dℑ0(f ,E) =

∑

t∈ℑ0
E
(

σ1(dft), σ2(dft)
)

area(t)
∑

t∈ℑ0
area(t)

,

Fig. 4  Flattening surfaces and measuring the resultant geometrical distortions, attained as shape descriptors. 
The process is visualized for the MIPS distortion energy, defined by (7). We first use ABCD algorithm [2], 
initialized with Tutte embedding, to map the triangulated surfaces into the plane. We then compute the 
Jacobian singular values σ1(t) and σ2(t) over each mesh triangle t. Finally, we compute for each distortion 
measure E(σ1, σ2) and mapping f the two quantities E1(f ) and E2(f ) , defined according to (11) and (14)
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may have more impact on the global distortion Dℑ(f ,E) than the rest of the mesh trian-
gles. Therefore, in order to extract more information from each distortion measure, one 
can divide the triangle set ℑ into a number of disjoint subsets. We employ this approach 
to extract more features for each distortion measure E(σ1, σ2) and to compensate for the 
adverse effects of a non-uniform distribution of distortions. In particular, we divide tri-
angles into the two subsets according to triangle frequency.

Let’s define fcg (t) the frequency of the center of gravity of triangle t, and

the median over the frequencies of all the triangles of the surface. We then define

The global distortions are computed for the two subsets of triangles. We will denote 
these features by E1(f ) and E2(f ) , for short. That is,

where Dℑi is defined according to (11).
To summarize, we measure global distortions over the two subsets of triangles and 

use the obtained quantities as shape descriptors of spectrogram surfaces. This approach 
has the following advantages over the distortion-based models, previously proposed for 
shape analysis [17, 21]: 

1.	 A wider set of distortion measures is used.
2.	 The overall number of features is further increased by dividing distortions into the 

low and high frequencies.
3.	 The method operates on triangular meshes instead of tetrahedral meshes. Compared 

with the volumetric method of [17], extracting features by our algorithm results in a 
lower computation cost.2

(12)fcg = median(fcg (t)), t ∈ ℑ ,

(13)
ℑ1 = {t|t ∈ ℑ, fcg (t) < fcg },

ℑ2 = {t|t ∈ ℑ, fcg (t) >= fcg } ,

(14)Ei(f ) = Dℑi(f ,E), i = 1, 2 ,

Fig. 5  Visualization of a simplicial map f with color-encoded local distortions ESD , defined by (5). We show 
how an individual triangle t is mapped under an affine component ft of the map f 

2  We use triangular meshes because our data is represented by disk topology surfaces. However, it is possible to rep-
resent this data by tetrahedral meshes and to estimate volumetric distortions of these meshes. [See Sect.5 for more 
details.].
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3 � Related work
There exist several approaches to computing shape descriptors for a collection of 3D 
objects, other than the deformation-based method that we prefer. Among them are: 

1.	 Spectral methods, whereby shape descriptors are derived from discrete representa-
tions of the Laplace–Beltrami operator, defined on surfaces [30]. Cotangent weights 
are most commonly used for approximating Laplace–Beltrami operators over 
meshes. By using cotangent weights, the Laplace operator action on a mesh M can 
be represented by a sparse Laplacian matrix L = L(M) . In such a case, the spectral 
descriptors of M = (V ,ℑ) are often defined as n-largest eigenvalues of L, for a con-
stant number n < |V| [31].

2.	 Metric methods. These methods represent each mesh M by a matrix G of pairwise 
distances between vertices of M. Usually, these are the Euclidean or geodesic dis-
tances. A dissimilarity measure between two meshes M1 and M2 is defined in the 
metric approaches as a function of the distance matrices G1 and G2 of these two 
meshes. For example, metric descriptors of triangulated surfaces can be obtained 
by solving the problem of the general multi-dimensional scaling (GMDS) [32], or by 
solving other related problems that involve computations of geodesic distances [33, 
34].

Global changes of geometric structures have been also studied in the context of medical 
images [11].

Furthermore, the problem of flattening triangular meshes into the plane, also referred 
to as the parametrization problem, constitutes one of the central issues in geometry pro-
cessing. Consequently, there exist many algorithms for flattening triangulated surfaces 
[35]. These algorithms are aimed at computing a locally injective parametrization that 
minimizes distortions of fundamental geometric quantities, such as angles and lengths.

4 � Experiments
The first experiment reported is concerned with detecting respiratory pathologies by 
analyzing lung sounds. There exist several deep learning- and model-based methods for 
automatic classification of lung pathologies based on their fingerprints that are hidden 
in the pulmonary sounds. For instance, the recent method of [36] implements a deep 
transfer learning-based multi-class classifier for diagnosis of COVID-19, using cough 
recordings. Chanbres et  al. [37] employ the algorithm of the Essential library [38] for 
extracting sound features from cough recordings. This system was trained on the dataset 
of the ICBHI 2017 challenge [39] by using a boosted decisional tree algorithm to classify 
sounds like crackles and wheezes.

For the second use-case, we selected accent detection from speech sounds. Hossain 
et al. [40] have used the MFCC features and then applied classical machine learning clas-
sifiers (k-nearest neighbors and support vector machine) to detect the accent. Another 
study [41] used a convolutional neural network directly on the raw speech. They trained 
their model on Wildcat Corpus of Native and Foreign-Accented English [42] and got an 
accuracy of 88%.
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4.1 � Lung sounds

4.1.1 � Database

The Respiratory Sound Database [39] was used for the first experimental implementa-
tion of our approach. A total of 918 lung sounds recordings from 126 patients were 
used. This database incorporates seven different pathologies: URTI, Asthma, COPD, 
LRTI, Bronchiectasis, Pneumonia, Bronchiolitis, and healthy recordings.

The histogram depicted in Fig. 6 presents the distribution of the pathologies among 
the cases included in the database. Due to the very low occurrence of the Asthma and 
LRTI pathologies, the corresponding recordings were excluded.

4.1.2 � Preprocessing

One of the major problems that one must overcome in the process of analysis of lung 
sounds is the low S/N level. Sounds generated by instruments and other ambient 
activities affect significantly the quality of the lung sound signal. It is therefore crucial 
to improve the level of the S/N without distorting the stethoscope’s signal.

Our algorithm employs the classical Savitzky–Golay filter [43] for denoising lung 
sounds. The purpose of this filter is to smooth the signal and improve the SNR with-
out altering the desired lung sounds signal. This filter has been widely used in the 
field of time series analysis [44], especially for lung sound analysis [45]. The filter aims 
to fit a specific polynomial suitable for a signal frame, using least squares method. 
The central point of the window is replaced with that of the polynomial, producing a 
smoother signal.

Denote a polynomial of the degree N by

Fig. 6  Distribution of the pathological and healthy cases included in the database. The database is 
imbalanced. About 50% of the patients have COPD disease
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then, the aim of Savitzky–Golay filter is to minimize the following error:

where 2M + 1 is the width of the window and x[i] is the corresponding sample of the 
signal.

A large value of M will yield a smoother signal, but it may neglect some important 
variations in the signal. A low value of M may ‘over fit’ the data. Secondly, N, which spec-
ifies the degree of the polynomial may produce a smooth signal for low values. On the 
other hand, high value of N may ‘over fit’ the data. By experimenting with various com-
binations of these filter parameters, we converged on the values of N = 3,M = 11 that 
yielded the best results. Figure 7 shows an example of a filtered signal, superimposed on 
the corresponding raw data.

4.1.3 � Implementation

Two examples of classification tasks are presented: a multi-class classification, incorpo-
rating five pathologies and healthy recordings, and a binary classification. Each of the 
five pathologies is presented against the class of healthy recordings.

The dataset was subdivided into training set (80%) and test set (20%). For each task, 
several classifiers were experimented with: logistic regression (LR), support vec-
tor machine (SVM), random forest (RF), K nearest neighbors (KNN), AdaBoost (AB), 
and XgBoost (Xb). For all of these models, we used 16 engineered features. For each 
model, hyper-parameters such as the number of estimators or number of neighbors 

(15)p(n) =

N
∑

k=1

akn
k ,

(16)EN =

M
∑

i=−M

(

p(i)− x[i])2
)

,

Fig. 7  Effect of the Savitzky–Golay filter on lung sounds recording. The signal is very noisy; over the segment 
of the time period 530–580 s, the Savitzky–Golay filter eliminates the sharp spurious changes
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were optimized using fivefold cross-validation. A large random grid of hyper-parameters 
was searched for. In the case of the multi-class classification, the performance measure 
used for optimization was the accuracy, whereas for the binary tasks the area under the 
receiver operating characteristics curve (AUROC) was used. A weight has been assigned 
to each class, inversely proportional to the class frequencies in the training set.

Training examples were divided into training and validation set, for each iteration of 
the cross-fold, by stratifying among patients, which means that several recordings from 
the same patient are always included in the same set. All the models were trained on the 
same test set. That is, for all the models, the database was split into the same training 
and test subsets.

The following metrics were used for the performance evaluation:

where TP, TN, FP, and FN are the true positives, true negatives, false positives, and false 
negatives , respectively. P denotes the number of positive samples, and N is the number 
of negative samples. The area under the ROC curve, AUROC, is computed.

4.1.4 � Baseline

A baseline (i.e., a reference mode) has to be created for comparison of the model created 
with. A different approach has been selected for this purpose, based on a set of features 
that have been handcrafted. Twelve mel-frequency cepstrum coefficients (MFCCs) were 
extracted from the audio files: MFCC is the most widely used feature extraction method 
in automatic speech recognition [46]. In the feature extraction phase, six statistical 
parameters have been extracted from each of the 12 MFCC coefficients as follows: mean, 
standard deviation, min, max, mean of the absolute difference, and standard deviation of 
the absolute difference, altogether 72 features.

The reference model has been applied to all classifiers, with the same training process 
as for the proposed model. The models that we use for comparison have been trained 
and tested on the same train/test subdivision of the data.

Finally, the MFCC-based model has been combined with the proposed model (based 
on distortion measures). For each recording, 88  features have been computed: 16 fea-
tures based on distortion measures (2 for each distortion) and 72  features based on 
MFCC coefficients. As the number of features increased significantly, a feature selection 
step has been applied, based on the ranking of features, determined by implementation 
in the random forest classifier. Altogether, 45 features have been selected.

A second baseline has been created, to benchmark the proposed method, wherein the 
model adopted from Fraiwan et al. [47] was implemented. It is in essence a combination 
of 1D convolutional neural network and a bidirectional long short-term memory.

(17)Accuracy =
TP+ TN

TP+ TN + FP+ FN
,

(18)Recall =
TP

TP+ FN
,

(19)Jaccard =
TP+ TN

2(P+N)− (TP+ TN)
,
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4.1.5 � Results

The results obtained by the different models are summarized in Table 1 for the multi-
class classification task, and in Table  2 for the binary task. Ranking of the features 
according to their importance, as determined by random forest classifier, is depicted 
in Fig. 8.

The proposed model obtains a better AUROC than the baseline models for almost 
all the binary tasks. For differentiation of pneumonia pathology from the rest of dis-
eases, the proposed model yields a lower AUROC value than the two baseline models 
(0.87 for our model, versus 0.90 for MFCC and 0.88 for Fraiwan).

Figure 9 presents the ranking of the features, for each of the five binary tasks and 
the multi-class task of identifying the five pathologies. Although there are 16 distor-
tion measures features and 72 MFCC features, for most of the pathologies the occur-
rence of the distortion measure features is relatively high. In particular, there are six 
distortion measures out of ten most highly ranked features for the bronchiectasis and 
URTI pathologies. Likewise, distortion measures appear among the four most highly 
ranked features used in classification of the bronchiolitis and COPD diseases. Indeed, 
for this pathology the MFCC-based model outperformed the proposed model. How-
ever, in the case of identifying the pneumonia, then only a single distortion measure 
appears in the feature ranking list. Indeed, for this pathology the MFCC-based model 
outperformed the proposed hybrid model.

4.2 � Speech sounds

4.2.1 � Database

The L2-Arctic database [48] was used for this analysis. This is a speech corpus of 
non-native English speakers. It contains 24 different speakers, whose first language is 
one of the following: Hindi, Korean, Mandarin, Spanish, Arabic, or Vietnamese. The 

Table 1  Results obtained by means of the different models in the multi-class task of classifying lung 
sounds

The best score for each metric is underlined

Accuracy Recall Jaccard

MFCC 0.76 0.80 0.69

Fraiwan 0.85 0.86 0.78

Our model 0.88 0.89 0.80

Combined 0.90 0.91 0.88

Table 2  AUROC obtained by means of the different models in the binary classification for each 
pathology

The best score for each pathology is underlined

URTI COPD Bronchiectasis Pneumonia Bronchiolitis

MFCC 0.82 0.98 0.95 0.90 0.81

Fraiwan 0.87 0.99 0.94 0.88 0.94

Our model 0.89 0.99 1.00 0.87 1.00

Combined 0.93 1.00 1.00 1.00 1.00
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database includes both male and female speakers for each accent. Each speaker was 
recorded for approximately one hour of read speech. The task of accent detection was 
applied.

4.2.2 � Preprocessing

The maximal overlap discrete wavelet transform (MODWT) [49, 50] was applied. 
This transform uses a combination of high-pass and low-pass filters to decompose the 
sequence. The threshold function proposed by [51] was adopted.

In the case of speech sound, a mel spectrogram was applied, instead of the classical 
STFT. Parameters of the mel spectrogram, such as number of mel coefficients, type of 
window and its length, were chosen by cross-validation.

Fig. 8  Ranking according to feature importance, determined by using a random forest classifier. The ranking 
provides insight into the most useful features in the classification process
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4.2.3 � Implementation

A multi-class classification task of detecting the accent was performed on the six avail-
able accents. The dataset was divided into 80% training set and 20% test set according to 
speakers. The same classifiers were used as in the following experiment, along with the 
same training process.

4.2.4 � Baseline

The model of Jiao et  al. [52] was implemented as a baseline for this experiment. The 
model was tested on the INTERSPEECH 16 Native Language Sub-Challenge, which con-
tains one speech sample from 5132 speakers and yielded an accuracy of 50.2% , with 11 
different accents. The model was composed of two parallel networks: a DNN which ana-
lyzes long-term features and a RNN which analyzes short-term features from frames of 
the speech signal. The final decision was determined by a probabilistic fusion algorithm.

4.2.5 � Results

The results obtained with the different models are summarized in Table 3, while Fig. 10 
presents the ranking of the features according to SHapley Additive exPlanations (SHAP) 
values [53, 54]. These values allow to interpret the global model structure using local 

Fig. 9  Ranking efficacy of the 10 best features of the combined model, determined by means of the 
performance of the random forest classifier. a The ranking is presented for the binary task of identifying 
bronchiectasis; bronchiolitis (b); COPD (c); pneumonia (d); URTI (e). Finally (f) presents the ranking for the 
multi-class task of classifying the five pathologies

Table 3  Results of the multi-class classification

Accuracy Recall Jaccard

Jiao 0.58 0.62 0.62

Our 0.72 0.73 0.75
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explanations. An important observation is that some features repeat among the top 10 
in both experiments (Figs.  8 and 10), e.g., EMIPS,2 , EDirichlet,2 , and ECF,2 . To summarize, 
the proposed model outperformed the baseline models under all the measured metrics.

5 � Discussion
The purpose of our present paper is to present our new geometric approach to signal 
representation, analysis, and similarity assessment in the context of 1D signals, using as 
examples the applications to lung sounds and speech signals, rather than to establish a 
benchmark for a specific signal by using impressively large dataset(s). We have applied 
our algorithm to signals with well-defined structure, which lends itself to representation 
of 2D manifold embedded in a 3D Euclidean space, endowed with extrinsic well-defined 
geometric structure. These examples represent a wide range of important applications. 
Signals with less defined structures, or even containing singularities, may have to be con-
ditioned by reproducing kernels [10, 55] in order to be represented by structured mani-
folds and thereby exploit our geometric approach. The successful results obtained so far 
by the application of our novel approach to classification, based on distortion measures, 
highlight a possible interesting extension of the present work which we intend to pur-
sue by considering higher-dimensional distortion measures, such as those that may be 
applied to complex spectrograms [56]. A spectrogram surface can be represented by the 
tetrahedral volume enclosed by the surface and the plane z = 0 . In such a case, sound 
spectrograms can be characterized by 3D distortions induced by mapping tetrahedral 
meshes into canonical domains. Although the tetrahedral approach entails a higher 
computational complexity, the extra computational cost should be justified by obtaining, 
more accurate results due to the fact that volumetric distortions can detect both of the 

Fig. 10  Ranking of the distortions measures according to their SHAP values, per class
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changes that are imposed on the boundary surface and the changes made in the interior 
volume.

In this paper, well-constrained signals have been selected to demonstrate the added 
value of the method proposed. Indeed, speech and lung sounds are well-structured sig-
nals, which result in well-defined geometric structures. Nevertheless, the stability of the 
algorithm has been thoroughly studied. First, the geometric component of the proposed 
method, ABCD, is designed to be noise resistant and robust to inverted and collapsed 
triangles, as it has been confirmed by various tests conducted by Naitsat et al. [2]. We 
refer readers to [57] for theoretical analysis of the distortion minimization stability. In 
particular, the study of [57] has analyzed how stable is a local optimization of various 
distortion measures under noise perturbations. Further, these conclusions were used in 
[2] to propose a local–global optimization scheme for ABCD algorithm. The local/global 
optimization approach is designed to be both noise resistant and fast converging.

Regarding the important issue of the stability of our algorithm, with reference to the 
distortions used in this study, it should be noted that in general, most of distortions used 
in our paper can be divided into the two main categories: the so-called barrier distortions 
and non-barrier distortions. The former, such as ESD and EQI , are equal to their global 
minima for rigid transformations and diverge to infinity when singular values approach 
zero. In [57], we have analyzed these properties and concluded that minimizing barrier 
distortions is numerically stable under an injective initialization. In a later study, Naitsat 
et al. [2] introduced the ABCD algorithm to deal with non-injective initializations while 
maintaining numerical stability. Non-barrier distortions, such as EDirichlet , are bounded 
from above and thus are less insensitive to noise. Furthermore, according to [1], many 
non-barrier distortions are convex with respect to vertex coordinates. Minimizing these 
measures is stable and fast converging according to the convex optimization theory.

Moreover, the way we employ Delaunay triangulation has no adverse effects on the 
algorithm stability. Signals are sampled on the same 2D time–frequency grid. We then 
connect these grid points via Delaunay triangulation to get a planar mesh. Finally, we 
extend the coordinates of planar mesh vertices by adding spectrogram values as vertex 
heights. Thus, we use triangle meshes with the same connectivity and different vertex 
coordinates to represent 1D signals, limiting any potential instability that may be intro-
duced by the Delaunay algorithm. To deal with variations in triangulation of not-well-
constrained signals, we can use the following property: According to multi-resolution 
analysis of distortion measures [1], we can first minimize distortion induced by map-
ping of coarse triangulated domains and then subdivide source and target domains for 
obtaining a low distortion map in a higher resolution, without degrading the results. 
Since subdivisions reduce variations in triangle shapes and do not increase distortion 
measures, subdivisions can be used to induce regular meshes with similar structure for 
representing non-uniformly sampled signals. The robustness of the proposed algorithm 
has been tested experimentally (Additional file 1: Sect. 7.2), indicating that the algorithm 
is robust up to a level of standard deviation of 50% of the lung sounds signal, and up to 
an SNR of − 20 dB of the speech signal.

It should be interesting to combine our model with various types of shape descrip-
tors, such as the metric and spectral geometrical features, listed in Sect.  2.2. It is 
likewise interesting to examine more methods for discretizing the surface (or a 
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higher-dimensional manifold) representation. Indeed, the choice of the triangulation 
method (in this study Delaunay) has a profound effect on the results. An ideal tri-
angulation, composed of only equilateral triangles of equal size, could improve sig-
nificantly the results. In particular, a curvature-based method [10] can be used for 
a more accurate sampling of spectrogram images and for constructing triangular 
meshes with an optimal number of vertices. This can be done by viewing the spectro-
grams computed as two-dimensional Riemannian manifolds. Furthermore, the phase 
of the spectrogram should be incorporated into the discretization process. As proven 
in [58], the operator mapping a function to its spectrogram samples on a lattice is not 
injective. Several recent studies have incorporated the phase in their work on spec-
trogram (e.g., [59, 60]). Although in this paper we compare meshes by mapping them 
into the plane, our algorithm can be extended to a more general setting. In particular, 
the obtained meshes could be compared pairwise, or each mesh could be compared 
to a subset of geometric domains that represent different classes of input signals. For 
example, in the case of speaker identification, we can compute a mean shape Si for 
each of the reference speakers i = 1, . . .N  and then compare geometric distortions 
induced by mapping spectrogram surfaces onto the obtained mean shapes S1, . . . , SN .

Finally, we stress that our approach to the classification of one-dimensional signals 
is also applicable to higher-dimensional signals. Distortion measures can be extended 
in a straightforward manner to Rn and to piecewise linear manifolds embedded in 
R
n , for any n ≥ 2 . Indeed, if f : Rn → R

n is a simplicial map and s is an n-dimen-
sional simplex, then a local distortion of f  over s can be expressed by a func-
tion E(σ1, σ2, . . . , σn) , where σi denotes the ith singular value of the Jacobian matrix 
df s ∈ R

n×n . So that our distortion-based analysis of surfaces is extended to m-man-
ifolds embedded in Rn and to their discrete representations, for any 2 ≤ m ≤ n . For 
instance, consider a simultaneous recording of different time-varying signals such as 
pulmonary sounds, heart rate, oxygen saturation, and body plethysmography. Instead 
of computing a surface representation for each signal separately, one can represent a 
n-channel data stream by a 2-manifold embedded in Rn . The obtained manifold can 
be discretized using the sampling method of [10] and a Delaunay-based algorithm for 
triangulation. An extension of our approach to higher-dimensional manifolds thereby 
allows a more general analysis of multichannel biomedical (or other) sets of data, col-
lected from various devices. We therefore consider other applications of the proposed 
distortion-based model in related fields of biomedical signal processing, medical 
imaging, and voice recognition.
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