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1  Introduction
In many tensor applications, we only have an element-wise or a slice-wise descrip-
tion of our data/signal model. For instance, there exists only a slice-wise description 
of the PARA​TUC​K2 decomposition and the PARAFAC2 decomposition correspond-
ing to a certain unfolding of the overall tensor [1–3]. In the same way, some proposed 
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tensor-based models for MIMO-OFDM communication systems have only an element-
wise or a slice-wise representation [4]. Further examples include the slice-wise descrip-
tion of MIMO communication systems using two-way relaying [5, 6]. This description of 
the signal models does not reveal the tensor structure explicitly. Hence, the derivation of 
all tensor unfoldings is not always obvious. Therefore, we propose to express the slice-
wise multiplication of two tensors in terms of the double contraction operator and use it 
to derive an explicit tensor structure of the received data tensor in the form of a CP-like, 
or Tucker-like, model in a systematic way. These explicit tensor models reveal all the 
possible generalized unfoldings at the same time and can subsequently be exploited to 
estimate the model parameters. One of our main contributions is to provide a systematic 
way to derive such an explicit tensor representation.

OFDM is the most widely used multi-carrier technique in current wireless commu-
nication systems. It is robust in multipath propagation environments and has a simple 
and efficient implementation [7, 8]. Using the fast Fourier transform (FFT), the complete 
frequency band is divided into smaller frequency subcarriers. Moreover, the use of the 
cyclic prefix mitigates the inter-symbol Interference (ISI) and the inter-carrier Interfer-
ence (ICI). Typically, the OFDM receiver is implemented in the frequency domain based 
on a zero forcing (ZF) filter. Other more advanced solutions are proposed in [9], as well 
as optimal training and channel estimation for OFDM systems are proposed in [10, 11].

Tensor-based signal processing offers an improved identifiability, uniqueness, and 
more efficient denoising compared to matrix-based techniques. In [4], a MIMO multi-
carrier system is modeled using tensor algebra and the PARA​TUC​K2 tensor decomposi-
tion resulting in a novel space, time, and frequency coding structure. Similarly in [12], 
trilinear coding in space, time, and frequency is proposed for MIMO-OFDM systems 
based on the CP tensor decomposition. By exploiting tensor models, semi-blind receiv-
ers are introduced for multi-carrier communication systems in [13, 14]. All these works 
use additional spreading that leads to a significantly reduced spectral efficiency to create 
the tensor structure. Moreover, previous publications on tensor models for multi-carrier 
communication systems [4, 12–14] do not exploit the channel correlation between the 
adjacent subcarriers. The previously mentioned publications rely on the subcarrier-wise 
description of the MIMO-OFDM system. This description of the signal models does not 
reveal the tensor structure explicitly. Hence, the derivation of all tensor unfoldings is not 
always obvious. In [15], a PARAFAC model and a Tucker model are proposed for joint 
channel, data, and phase noise estimation in MIMO-OFDM system, taking into account 
the phase noise due to inter-carrier interference. The author of [16] also proposes a ten-
sor model for filter bank-based multi-carrier (FBMC) communication systems. How-
ever, this model is derived from a PARA​TUC​K2 decomposition, which is not based on 
tensor contractions. This derivation, although popular, is as not as general as the deriva-
tion proposed in this paper. Otherwise stated, the tensor modeling approach of [16] is 
restricted to FBMC systems, while our approach is valid for any MIMO-OFDM system 
with orthogonal or nonorthogonal subcarriers.

In this paper, we propose a new approach to model MIMO-OFDM communication 
systems and to design semi-blind receivers. The idea is built upon a double contrac-
tion model that allows to replace the slice-wise multiplication of two tensors so that the 
explicit tensor structure of the data model can be derived. We provide the mathematical 
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tools to derive such an explicit tensor structure in general. The received data in a 
MIMO-OFDM system are derived from such an explicit tensor structure, which is effi-
ciently exploited at the receiver for a joint channel and symbol estimation. More spe-
cifically, we first present the double contraction between an uncoded signal tensor and a 
channel tensor for OFDM systems, yielding the same spectral efficiency as matrix-based 
approaches (since no additional spreading is used) [17]. We propose an application of 
the double contraction operator to Khatri–Rao-coded MIMO-OFDM systems [18]. Due 
to the Khatri–Rao coding, the signal tensor has a richer structure and can be recast as a 
constrained CP-like model. In fact, the Khatri–Rao space–time coding concept has been 
introduced in [19]. Later, it has been extended in [20] to Khatri–Rao space–time–fre-
quency coding. In contrast to the state of the art [4, 13, 14, 20], in this work we exploit 
the structure of the channel and the contraction properties using the transmit signal ten-
sor and the known coding matrix to propose a receiver based on the LS-KRF. In addi-
tion, we reduce the number of required pilot symbols by exploiting the correlation of the 
channel in the frequency domain, which has not been exploited in these previous works. 
Finally, we propose a more spectrally efficient cross-coding model for MIMO-OFDM 
systems. In this case, the known and fixed Khatri–Rao coding matrix is eliminated, and 
two useful symbol matrices are cross-coded by means of the Khatri–Rao product. By 
exploiting the CP-like tensor structure of the received signal, we also design two types of 
receivers for the cross-coded MIMO-OFDM systems.

This paper is organized as follows. In Sect. 2, we introduce the tensor algebra nota-
tion and provide the mathematical tools to derive an explicit tensor structure from the 
slice-wise multiplication of two tensors. Section 3 describes the system model using the 
double contraction formalism for the traditional MIMO-OFDM transmission. In Sect. 4, 
we recast the tensor signal model for the Khatri–Rao-coded MIMO-OFDM case and 
present the two closed-form receiver designs for this system, which are based on the 
Khatri–Rao factorization. In Sect. 5, we consider a cross-coded MIMO-OFDM system 
with enhanced spectral efficiency and derive the corresponding semi-blind receivers. A 
discussion on the computational complexity of the different receivers is also carried out. 
In Sect. 6, numerical results are presented, and the paper is concluded in Sect. 7.

2 � Tensor algebra and notation
2.1 � Notation

We use the following notation. Scalars are denoted either as capital or lower-case italic 
letters, A, a. Vectors and matrices are denoted as bold-faced lower-case and capital let-
ters, a,A , respectively. Tensors are represented by bold-faced calligraphic letters A . 
The following superscripts, T , H,−1 , and + denote transposition, Hermitian transposi-
tion, matrix inversion, and Moore–Penrose pseudo-matrix inversion, respectively. The 
outer product, Kronecker product, and Khatri–Rao product are denoted as ◦ , ⊗ , and 
⋄ , respectively. Moreover, we denote the Hadamard product (element-wise multiplica-
tion) and the inverse Hadamard product (element-wise division) between two arrays 
of equal dimensions as ⊙ and ⊘ , respectively. The operators ||.||F and ||.||H denote the 
Frobenius norm and the higher order norm of a tensor that is defined as the square root 
of the sum of the squared absolute values of its elements, respectively. Moreover, the 
n-mode product between a tensor A ∈ C

I1×I2...×IN and a matrix B ∈ C
J×In is denoted as 
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A×n B , for n = 1, 2, . . .N  [21]. The identity N-way tensor of dimension R× R · · · × R 
is denoted as IN ,R . Similarly, an identity matrix of dimension R× R is denoted as IR 
and we denote a vector of ones of length R as 1R . The nth three-mode slice of a ten-
sor A ∈ C

I×J×N is denoted as A(.,.,n) and accordingly one element of this tensor is 
denoted as A(i,j,n) . The operator diag(.) transforms a vector into a diagonal matrix and 
the operator vec(.) transforms a matrix into a vector. Note that we distinguish between 
a super-diagonal or an identity tensor and a diagonal tensor. A diagonal tensor is a ten-
sor that consists of diagonal slices along one dimension. For instance, a diagonal tensor 
DA ∈ C

M×N×N that is diagonal along the first dimension has diagonal one-mode slices, 
i.e., DA(m,.,.) = diag(am) , for m = 1, . . . ,M , where am is an n-dimensional vector. The 
concatenation of two tensors along their mth dimension is denoted as ⊔m [22]. For two 
tensors A ∈ C

I×I2×I3 and B ∈ C
J×I2×I3 , after the concatenation along the first dimen-

sion, we get A ⊔1 B ∈ C
I+J×I2×I3.

2.2 � The CP decomposition and generalized tensor unfoldings

The CP tensor decomposition decomposes a given tensor into the minimum num-
ber of rank one components. The CP decomposition of a four-way, rank R tensor 
A ∈ C

I×J×M×N can be written as

where F1 ∈ C
I×R,F2 ∈ C

J×R , F3 ∈ C
M×R , and F4 ∈ C

N×R are the factor matrices [21, 
23]. In addition to the n-mode unfoldings, generalized matrix unfoldings can be defined 
by using two subsets of any of the N dimensions [24, 25]. For instance, the set of modes 
(1, 2, . . . ,N ) of an N-way tensor A can be divided into two non-overlapping subsets with 
cardinality P and N − P , α(1) = [α1 . . . αP] and α(2) = [αP+1 . . . αN ] , respectively. This 
leads to the generalized unfolding [A](α(1),α(2)) , where the indices contained in α(1) vary 
along the rows and the indices contained in α(2) vary along the columns. Here, the index 
α1 varies the fastest between the rows, the index αP+1 varies the fastest between the col-
umns, P is any number between one and N, and αn is any of the tensor dimensions. For 
instance, let us assume the four-way tensor A ∈ C

I×J×M×N defined in Eq.  (1). In the 
generalized unfolding [A]([1,2],[3,4]) the first mode varies faster than the second mode 
along the rows and the third mode varies faster than the fourth mode along the columns. 
Moreover, for a tensor with a CP structure, its unfoldings and generalized unfoldings 
can be expressed in terms of the factor matrices. For instance, the generalized unfolding 
[A]([1,2],[3,4]) of the tensor A satisfies [18, 25]

In a similar way, the rest of the tensor unfoldings and generalized unfoldings can be 
defined.

2.3 � Tensor contraction

The contraction A •mn C between two tensors A ∈ C
I1×I2...×IN and C ∈ C

J1×J2...×JN rep-
resents an inner product of the nth mode of A with the mth mode of C , provided that 
In = Jm [26]. Contraction along several modes of compatible dimensions is also possible 

(1)A = I3,R ×1 F1 ×2 F2 ×3 F3 ×4 F4,

[A]([1,2],[3,4]) = (F2 ⋄ F1) · (F4 ⋄ F3)
T.
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and accordingly the contraction along two modes is denoted as A •
m,l
n,k C . More specifi-

cally, the double contraction between the tensors A ∈ C
I×J×M×N and C ∈ C

M×N×K  is 
defined as [26],

This example represents a contraction of the third and fourth mode of A with the first 
and second mode of C , respectively.

Using the concept of the generalized unfoldings, it can be shown that the tensor con-
traction satisfies

In the generalized unfolding [A]([1,2],[3,4]) the first mode varies faster than the second 
mode between the rows and the third mode varies faster than the fourth mode between 
the columns.

2.4 � Contraction properties for element‑wise and slice‑wise multiplications

2.4.1 � Hadamard product via tensor contraction

First, let us consider a Hadamard product (element-wise multiplication) between two 
vectors a ∈ C

M×1 and b ∈ C
M×1 , c(m) = a(m)b(m) , ∀m = 1, . . . ,M ( c ∈ C

M×1 ). The Had-
amard product can be expressed via the multiplication of a diagonal matrix and a vector, 
i.e., a⊙ b = diag (a)b = diag (b)a . Using the fact that a matrix multiplication is equiva-
lent to the contraction •12 , we get a⊙ b = diag (a)•12b = diag (b)•12a.

Next, for the Hadamard product between two matrices A ∈ C
M×N and B ∈ C

M×N , 
C(m,n) = A(m,n)B(m,n) , ∀m = 1, . . . ,M and n = 1, . . . ,N  , we can show that 
C = A⊙ B = DA•

1,2
2,4B = DB•

1,2
2,4A . Here DA ∈ C

M×M×N×N and DB ∈ C
M×M×N×N 

are diagonal four-way tensors with nonzero elements DA(m,m,n,n) = A(m,n) and 
DB(m,m,n,n) = B(m,n) , respectively. As an alternative, we also have

where the diagonal three-way tensors have the following nonzero elements 
D(A)

(m,m,n) = A(m,n) and D(B)
(m,n,n) = B(m,n) . Moreover, these diagonal three-way ten-

sors can be either defined it terms of slices, D(A)
(.,.,n) = diag A(.,n) , ∀n = 1, . . . ,N  , 

D(B)
(m,.,.) = diag

(
B(m,.)

)
, ∀m = 1, . . . ,M or using tensor notation D(A) = I3,M ×3 A

T 
and D(B) = I3,N ×1 B.

2.4.2 � Slice‑wise multiplication via tensor contraction

A slice-wise multiplication between two tensors A ∈ C
M×N×K  and B ∈ C

N×J×K  is 
defined as T 1(.,.,k) = A(.,.,k)B(.,.,k) , ∀k = 1, . . . ,K  . We depict this slice-wise multiplica-
tion in Fig. 1. To express this slice-wise multiplication we can diagonalize B to obtain

(A •
1,2
3,4 C)(i,j,k) �

N∑

n=1

M∑

m=1

A(i,j,m,n) · C(m,n,k) = T (i,j,k).

(2)[A •
1,2
3,4 C]([1,2],3) = [A]([1,2],[3,4]) · [C]([1,2],3),

(3)([1,2],3) = [A]([1,2],[4,3]) · [C]([2,1],3).

C = A⊙ B = D(A)•
1,3
2,3D

(B),
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where DB ∈ C
N×J×K×K  has nonzero elements DB(n,j,k ,k) = B(n,j,k) or 

DB(n,j,.,.) = diag
(
B(n,j,.)

)
 , for n = 1, . . .N  and j = 1, . . . J  . Further combinations are 

also possible that lead to the same result, for instance, T 2 = DB•
2,3
1,4A ∈ C

J×K×M or 
T 3 = DA•

1,3
2,4B ∈ C

M×K×J with DA(m,n,k ,k) = A(m,n,k) as diagonal elements (nonzero 
elements of DA ). Note that the tensors T 1 , T 2 , and T 3 contain the same elements, but 
have permuted dimensions. However, the permuted order of the dimensions is not rel-
evant, because we always explicitly declare which dimension is multiplied or unfolded.

2.4.3 � Representation of diagonal matrices and diagonal tensors in terms of Khatri–Rao 

products

An explicit expression of the diagonalized tensor can be obtained by expressing its gen-
eralized unfolding in terms of a Khatri–Rao product with an identity matrix. First, let us 
consider the column vector a ∈ C

M . It can be easily shown that

Next, let us consider the reshaping of the matrix A ∈ C
M×N into a diagonal tensor 

D(A) = I3,M ×3 A
T . By studying the resulting tensor structure, the tensor unfoldings, 

and the properties of the Khatri–Rao product, we get

Likewise, for the tensor D(B) = I3,N ×1 B ∈ C
M×N×N and the matrix B ∈ C

M×N , we 
have 

[

D(B)
]

([1,3],[2])
= IN ⋄ B.

The expression of the diagonalized tensor in terms of its generalized unfoldings and 
the Khatri–Rao product with an identity matrix can also be obtained for N-way tensors. 
It is useful to note that there exists a link between the diagonalized tensor structures 
and their corresponding generalized unfoldings. The latter can always be expressed as a 
Khatri–Rao product between an identity matrix and a generalized unfolding of the ten-
sor to be diagonalized, where the dimensions that are diagonalized are in the columns of 
the second matrix. This notation will be used later in this paper, and it is given in Table 1.

The element-wise or slice-wise multiplication between two arrays of the same order 
can be written in terms of a contraction if the unaffected mode vectors are transformed 

T 1 = A•
1,4
2,3DB ∈ C

M×J×K ,

diag (a) = IM ⋄ aT.

[

D(A)
]

([3,2],[1])
= IM ⋄ AT.

Fig. 1  A slice-wise multiplication between two tensors A ∈ C
M×N×K and B ∈ C

N×J×K
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into a diagonal matrix (by adding an additional array dimension). This diagonalization 
can be performed using the Khatri–Rao product as shown in Table 1. As an example, 
please refer to the transformation of Eq. (4) to the equations at the beginning of Sect. 3.3 
in this paper.

3 � MIMO‑OFDM
We assume a MIMO-OFDM system with MT transmit and MR receive antennas. One 
OFDM block consists of N samples, which equals the discrete Fourier transform (DFT) 
length, using the assumption that all N subcarriers are used for data transmission. If 
guard subcarriers are used, i.e., not all subcarriers are used for data transmission, the 
number of OFDM samples is smaller that the DFT length. All signals and equations used 
for the following derivation are in the frequency domain. Moreover, N is the number of 
subcarriers and K denotes the number of transmitted frames, where each frame consists 
of N symbol periods. The received signal in the frequency domain Ỹ ∈ C

N×MR×K  after 
the removal of the cyclic prefix is defined by means of the contraction operator

We use ∼ to distinguish the frequency domain from the time domain, i.e., Ỹ = Y ×1 FN , 
where FN ∈ C

N×N is the DFT matrix and Y is the received signal in the time domain. 
The transmit signal tensor is denoted as S̃ ∈ C

N×MT×K  and Ñ ∈ C
N×MR×K  represents 

the additive white Gaussian noise in the frequency domain. The tensor Ỹ0 ∈ C
N×MR×K  

represents the noiseless received signal in the frequency domain after the removal of the 
cyclic prefix. The frequency-selective propagation channel is represented by a channel 
tensor H̃ ∈ C

N×N×MR×MT as we propose in [18] the structure of which is detailed as 
follows.

3.1 � Channel tensor

We assume that the frequency-selective channel has an impulse response 
h
(mR,mT)
L ∈ C

L×1 , for each receive–transmit antenna pair, (mR,mT) , for mR = 1 . . .MR 
and mT = 1 . . .MT , and a maximum of L taps. After the removal of the cyclic prefix, the 
channel matrix in the frequency domain is a diagonal matrix for each receive–transmit 
antenna pair, H̃ (mR,mT)

= diag
(

FN×L · h
(mR,mT)
L

)

∈ C
N×N [10, 11]. Here, the matrix 

FN×L ∈ C
N×L contains the first L columns of the DFT matrix of size N × N  . Collecting 

all the channel matrices in a four-way channel tensor H̃ , we get

(4)Ỹ = H̃ •
1,2
2,4 S̃ + Ñ = Ỹ0 + Ñ .

Table 1  Link between the diagonalized tensor structures and their generalized unfoldings

Nonzero elements Generalized unfoldings

D(m,m) = a(m) D = IM ⋄ a
T

D(m,n,n) = A(m,n) [D]([1,3],[2]) = IN ⋄ A

D(m,m,n) = A(m,n) [D]([3,2],[1]) = IM ⋄ A
T

D(m,m,n,n) = A(m,n) [D]([1,3],[2,4]) = IM ⋄ vec (A)T

D(m,n,k,k) = A(m,n,k) [D]([1,2,4],[3]) = IK ⋄ [A]([1,2],[3])

D(m,m,n,k) = A(m,n,k) [D]([3,4,2],[1]) = IM ⋄ [A]([2,3],[1])
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For each receive–transmit antenna pair, the channel transfer matrix is a diagonal matrix 
that is represented by the corresponding slice of the tensor H̃ as shown in (5). The vec-
tor h̃

(mR,mT)
∈ C

N×1 contains the frequency domain channel coefficients. An example of 
a MIMO system with MT = 2 transmit antennas and MR = 3 receive antennas and the 
corresponding channel vectors is depicted in Fig. 2. We assume that the channel stays 
constant during the K frames. Note that only in case of cyclic prefix OFDM the channel 
tensor in the frequency domain contains diagonal matrices for each receive–transmit 
antenna pair. In a general multi-carrier system, the frequency domain channel matrix is 
not necessarily diagonal. However, Eq. (4) is still satisfied which means that our general 
model is valid for any multi-carrier MIMO system (not only OFDM-based), including 
systems without orthogonality in the frequency domain and systems with different types 
of coding.

In (5), we have defined the channel tensor. However, up to this point, we have not 
revealed the explicit tensor structure. In order to do so, let us first assume that all chan-
nel transfer matrices for the mT th transmit and all receive antennas are collected in a 

diagonal tensor H̃
(mT)

R ∈ C
N×N×MR , i.e.,

Based on this diagonal structure, the tensor H̃
(mT)

R  can be written as the following CP 
decomposition:

where H̃ (mT)

R =
[

h̃
(1,mT)

h̃
(2,mT)

. . . h̃
(MR,mT)

]T
∈ C

MR×N .

The complete four-way channel tensor, defined in Eq. (5), can be obtained by concat-
enating the H̃

(mT)

R  tensors along the fourth dimension. Hence, the four-way channel ten-
sor H̃ can be expressed as

(5)H̃(.,.,mR,mT) = diag
(

FN×L · h
(mR,mT)
L

)

= diag
(

h̃
(mR,mT)

)

.

(6)H̃
(mT)

R(.,.,mR)
= diag

(

h̃
(mR,mT)

)

(7)H̃
(mT)

R = I3,N ×1 IN ×2 IN ×3 H̃
(mT)

R ,

Fig. 2  A MIMO system with MT = 2 transmit antennas and MR = 3 receive antennas (left-hand side). 
Visualization of the generalized unfolding [H̃]([1,3],[2,4]) for the MIMO-OFDM (right-hand side)
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Note that H̃ satisfies a very special block term decomposition (BTD), where 
D(.,.,.,1) = I3,N ∈ R

N×N×N×1 ( D = I4,1 ⊗ I3,N ) and emT ∈ R
MT×1 is a pining vector. 

The BTD decomposes a tensor into block terms of smaller n-mode ranks [27]. We prove 
the BTD structure of the channel tensor H̃ in “Appendix.” In this appendix, we also show 
that the ([1, 3], [2, 4]) generalized unfolding of the channel tensor can be expressed as

where H̃ ∈ C
MR×NMT is a matrix containing all nonzero elements of the tensor H̃ and it 

is defined as

Figure 2 (right-hand side) depicts the structure of the generalized unfolding [H̃]([1,3],[2,4]) 
for a MIMO-OFDM system with parameters MT = 2 , MR = 3 , and N = 3.

3.2 � Data transmission

The signal tensor S̃ in Eq.  (4) contains all data symbols in the frequency domain that 
are transmitted on N subcarriers, MT transmit antennas, and K frames. For notational 
simplicity, we define the following block matrix S̃ as the transpose of the three-mode 
unfolding of S̃

where S̃(mT)
∈ C

K×N contains the symbols transmitted via the mT th antenna.
Moreover, we assume that the symbol matrix consists of data and pilot symbols, 

S̃ = S̃d + S̃p . The matrices S̃d and S̃p represent the data symbols and the pilot symbols, 
respectively. The matrix S̃d contains zeros at the positions of the pilot symbols. Accord-
ingly, the matrix S̃p contains nonzero elements only at the pilot positions. Typically, 
there are three ways of arranging the pilot symbol within the OFDM blocks (block, 
comb, and lattice-type) [7]. We assume a comb-type arrangement, where the pilot 
symbols are positioned on non-consecutive positions with equidistant spacing in the 
time and the frequency domains, for each antenna. The spacing in the time domain is 
denoted by �K  . Moreover, we assume a spacing in the frequency domain of �F  between 
two pilot symbols. Furthermore, there are positions where neither pilot symbols nor 
data symbols are allowed to be transmitted. These positions are reserved for the pilot 

(8)

H̃ =
[

H̃
(1)

R ⊔4 H̃
(2)

R ⊔4 . . . H̃
(MT)

R

]

=

MT∑

mT=1

H̃
(mT)

R ◦ emT

=

MT∑

mT=1

D ×1 IN ×2 IN ×3 H̃
(mT)

R ×4 emT .

(9)[H̃]([1,3],[2,4]) = H̃ ⋄ (1TMT
⊗ IN ) ∈ C

NMR×NMT ,

(10)
H̃ =







h̃
(1,1)T

h̃
(1,2)T

. . . h̃
(1,MT)T

...
...

...
...

h̃
(MR,1)T

h̃
(MR,2)T

. . . h̃
(MR,MT)T







=
�

H̃
(1)

R H̃
(2)

R . . . H̃
(MT)

R

�

∈ C
MR×NMT .

(11)S̃ = S̃
T

([1,2],[3]) =
[

S̃
(1)

S̃
(2)

. . . S̃
(MT)

]

∈ C
K×NMT ,
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symbols corresponding to the remaining antennas. This results in MT⌊
N
�F ⌋ pilot symbols 

per frame. In comparison, other publications such as [4, 12–14] use NMT pilot symbols 
per frame. By exploiting the channel correlation among adjacent subcarriers, a reduced 
number of pilot symbols can be used for channel estimation.

3.3 � Receiver design

Using the property of the generalized unfoldings in Eq. (2), the received signal in Eq. (4) 
becomes

Next, by substituting the corresponding tensor unfoldings in the above equation, we get

The above equation satisfies an unfolding of a noisy observation of a low-rank tensor 
with a CP structure. By applying an inverse unfolding for the received signal in the fre-
quency domain after the removal of the cyclic prefix, we get the desired tensor descrip-
tion of the received data tensor

Note that this model is a constrained CP-like model where the one-mode factor is a 
known constraint matrix. Our goal is to exploit (12) to jointly estimate the channel and 
the symbols, i.e., H̃ and S̃ . The author of [16] proposes a similar model for the received 
signal of FBMC systems. In contrast to the model derived in this paper from contrac-
tions, the model in [16] is derived from the PARA​TUC​K2 model. This means that the 
received signal should fit the PARA​TUC​K2 decomposition in order to satisfy the 
received signal structure. On the other hand, the proposed derivation based on contrac-
tions in (4) is more general and it holds without such an assumption. More specifically, 
the proposed tensor contraction formalism that defines the signal model in Eq. (5) does 
not require the matrix slices H̃ defined in Eq. (6) to be diagonal. Therefore, the proposed 
model and the derived algorithms remain valid for nonorthogonal multi-carrier systems 
with an arbitrary structure of the equivalent channel tensor in Eq. (4). This aspect is not 
captured by the tensor modeling approach of [16].

Using the prior knowledge of the pilot symbols and their positions, the channel in the 
frequency domain can be estimated. Naturally, the channel is estimated only at those 
subcarrier positions where the pilot symbols are located. Afterwards, an interpolation 
is applied to get the complete channel estimate. Alternatively, as shown in [10, 11] the 
channel can be first estimated in the time domain and then transformed into the fre-
quency domain. Either way, this leads to a pilot-based channel estimate that we denote 
as H̃p , or H̃p

1. The pilot-based channel estimate is then used to estimate the data sym-
bols. In the remainder of this section, we discuss different ways to estimate the symbols. 
We use the pilot-based channel estimate to initialize the proposed algorithms.

[Ỹ]([1,2],[3]) = [H̃]([1,3],[2,4])S̃([1,2],[3]) + [Ñ ]([1,2],[3]).

[Ỹ]([1,2],[3]) =
(

H̃ ⋄ (1TMT
⊗ IN )

)

· S̃
T
+ [Ñ ]([1,2],[3]).

(12)Ỹ = I3,NMT ×1 (1
T
MT

⊗ IN )×2 H̃ ×3 S̃ + Ñ∈ C
N×MR×K .

1  In our simulations, we use the pilot-based channel estimate obtained in the time domain.
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Traditionally, the estimate of the symbols is obtained in the frequency domain with 
a ZF receiver. In this case, the symbols are calculated by inverting the channel matrix 
for each subcarrier individually.

Alternatively, if we compute the one-mode unfolding of the tensor Ỹ in Eq. (12), we 
get

Taking into account the structure of the matrices (1TMT
⊗ IN ) ∈ R

N×NMT , H̃ in (10), and 
S̃ in (11), the one-mode unfolding becomes

After transposition and omitting the noise term, we get

This sum of Khatri–Rao products can be resolved in a column-wise fashion. Let 
ỹn ∈ C

MRK×1 denote the nth column of [Ỹ]([2,3],[1]) ∈ C
MRK×N . After reshaping this vec-

tor into the matrix Ỹ n ∈ C
MR×K  , such that ỹn = vec(Ỹ n) , it is easy to see that this matrix 

satisfies

where H̃n and S̃n are the nth slices of H̃(n,n,.,.) ∈ C
MR×MT and S̃(n,.,.) ∈ C

MT×K  , respec-
tively. Note that Ỹ n is the nth slice of Ỹ (n,.,.) . Using the pseudo inverse of the channel, we 
get the traditional ZF receiver.

Alternatively, the channel and the symbols on each subcarrier can be estimated by 
means of iterative or recursive LS algorithms. Similar algorithms were proposed in 
[28] and [29] for blind source separation on a single subcarrier. We extend two of 
the algorithms presented in [29] that are based on projection to our application. We 
have proposed an extension of these algorithm using enumeration in [17], namely 
iterative least squares with projection (ILSP) and recursive least squares with pro-
jections (RLSP). In this paper, our focus is on finite alphabet projection-based algo-
rithms since that they are computationally less expensive than the algorithms based 
on enumeration.

The identifiability properties of the problem in Eq. (13) have already been studied in 
[29], where the authors present sufficient conditions for identifiability.

4 � Khatri–Rao‑coded MIMO‑OFDM
In this section, we model a Khatri–Rao-coded MIMO-OFDM communication system as 
a double tensor contraction between a channel and a signal tensor that contains coded 
symbols. This double tensor contraction is essentially equivalent to the model in (4). 
However, we assume that the signal tensor contains Khatri–Rao-coded symbols.

[Ỹ]([1],[2,3]) = (1TMT
⊗ IN ) ·

(

S̃ ⋄ H̃
)T

+ [Ñ ]([1],[3,2]).

[Ỹ]([1],[2,3]) =

MT∑

mT=1

(

S̃
(mT)

⋄ H̃
(mT)

R

)T
+ [Ñ ]([1],[3,2]).

[Ỹ]([2,3],[1]) ≈

MT∑

mT=1

(

S̃
(mT)

⋄ H̃
(mT)

R

)

∈ C
MRK×N .

(13)Ỹ n ≈ H̃n · S̃n,
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As in Sect.  3, we assume a MIMO-OFDM communication system with MT transmit 
and MR receive antennas. One OFDM block consists of N samples, which equals the DFT 
length. Moreover, all N subcarriers are used for data transmission. Furthermore, we assume 
a frequency-selective channel model that stays constant over the transmission of P frames. 
In contrast to the model presented in Sect. 3, here, we assume that the P frames are divided 
into K groups of Q blocks (Q corresponds to the spreading factor), P = K · Q.

Accordingly, the received signal in the frequency domain is given by

where H̃ ∈ C
N×N×MR×MT is the channel tensor and X̃ ∈ C

N×MT×K×Q is the sig-
nal tensor. The tensor Ñ ∈ C

N×MR×K×Q contains additive white Gaussian noise and 
Ỹ0 ∈ C

N×MR×K×Q is the noiseless received signal.

4.1 � Channel tensor

In this section, we use the model of the channel tensor H̃ defined in Eq. (8). Moreover, we 
have defined the generalized unfolding 

[

H̃
]

([1,3],[2,4])
 in Eq. (9). Using a permutation matrix, 

it can be shown that the generalized unfolding [H̃]([1,3],[4,2]) of the channel is equal to

where H̄ =
[

H̃
(1)

R . . . H̃
(MT)

R

]

· P = H̃ · P ∈ C
MR×MTN . The permutation matrix 

P ∈ R
NMT×MTN reorders the columns such that the faster increasing index is MT instead 

of N and it is defined as [H̃]([1,3],[4,2]) = [H̃]([1,3],[2,4]) · P . Recall that the matrices 
H̃ ∈ C

MR×NMT and H̃ (mT)

R ∈ C
MR×N are defined in Eq.  (10). The structure of the four-

way channel tensor in the frequency domain H̃ and its unfoldings are derived in 
“Appendix.”

4.2 � Data transmission

We can impose a CP structure to the transmit signal tensor, if we assume Khatri–Rao-
coded symbols [19, 20]. The coding is proportional to the number of transmit antennas if 
we use a spreading factor Q = MT , for each subcarrier n = 1, 2, . . . ,N  . Hence, the general-
ized unfolding of the signal tensor is

where the matrix S̃n ∈ C
K×MT contains modulated data symbols and 

Cn ∈ C
Q×MT is a Vandermonde coding matrix as defined in [19]. The matrices 

S̄ =
[

S̃1 . . . S̃N
]
∈ C

K×MTN and C̄ =
[
C1 . . . CN

]
∈ C

Q×MTN contain all symbol and 

coding matrices for each subcarrier, respectively. Note that S̄ = S̃ · P , where the matrix 
S̃ is defined in Eq. (11) and P ∈ R

NMT×MTN is the above-mentioned permutation matrix 
that reorders the columns such that the faster increasing index is MT instead of N. 
Moreover, we assume that S̃ contains pilot symbols as explained after Eq. (11). As shown 
in [19] and as directly follows from (16), the tensor [X̃ ]([2,1],3,4) satisfies the following CP 
decomposition:

(14)Ỹ = H̃ •
1,2
2,4 X̃ + Ñ = Ỹ0 + Ñ ∈ C

N×MR×K×Q,

(15)[H̃]([1,3],[4,2]) = H̄ ⋄ (IN ⊗ 1
T
MT

),

(16)
[X̃ ]([2,1],[4,3]) =

[

S̃1 ⋄ C1 S̃2 ⋄ C2 . . . S̃N ⋄ CN

]T

= IMTN (S̄ ⋄ C̄)T,
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4.3 � Receiver design

Using Eqs. (2), (3), and (14), the noiseless received signal can be expressed as

Inserting the corresponding unfoldings of the channel and the signal tensor in Eqs. (15) 
and (16), respectively, the noiseless received signal in the frequency domain is given by

The above equation represents an unfolding of a four-way tensor with a CP structure. 
Therefore, the noiseless received signal tensor can be expressed as

Equation (17) represents the received signal in the frequency domain for all N subcarri-
ers, MR receive antennas, and P frames after the removal of the cyclic prefix. Depending 
on the available a priori knowledge at the receiver side, channel estimation, symbol esti-
mation, or joint channel and symbol estimation can be performed.

Let us compare the MIMO-OFDM tensor model and the Khatri–Rao-coded MIMO-
OFDM tensor model in Eqs.  (12) and (17), respectively. First, the factor matrices in 
these equations have different index orderings. In Eq.  (12) the faster increasing index 
in N, whereas in Eq. (17) the faster increasing index in MT along the columns of the fac-
tor matrices. We use ∼ and − to distinguish the different index orderings of the factor 
matrices. Recall that we have defined a permutation matrix P that considers the reorder-
ing of the columns of the factor matrices. Moreover, Eq.  (17) has an additional tensor 
dimension (the four-mode) corresponding to the coding technique and the spreading 
factor Q. Furthermore, taking into account the permutation matrix P , we get Eq.  (12) 
from Eq. (17) for Q = 1 and C̄ = 1

T
MTN

 (i.e., no coding and the spreading factor equals 
one).

Using Eq.  (17), the channel and the data symbols can be jointly estimated from the 
([1, 4], [3, 2]) generalized unfolding of the noise corrupted received signal

Under the assumption that Q = MT , 
(
C̄ ⋄ (IN ⊗ 1

T
MT

)
)
∈ C

NQ×MTN is a block diago-
nal, left invertible matrix and known at the receiver. Using the properties of the coding 
matrices defined in [19], i.e., CH

n Cn = MTIMT , we have

After transposition, Ȳ T
≈ H̄ ⋄ S̄ can be approximated by the Khatri–Rao product 

between the channel and the data symbols. Therefore, the channel and the data symbols 
can be jointly estimated based on the LS-KRF as in [30].

[X̃ ]([2,1],3,4) = I3,MTN ×1 IMTN ×2 S̄ ×3 C̄ .

[Ỹ0]([1,2],[4,3]) = [H̃]([1,3],[4,2]) · [X̃ ]([2,1],[4,3]).

[Ỹ0]([1,2],[4,3]) =
(

H̄ ⋄ (IN ⊗ 1
T
MT

)

)

· (S̄ ⋄ C̄)T.

(17)Ỹ0 = I4,MTN ×1 (IN ⊗ 1
T
MT

)×2 H̄ ×3 S̄ ×4 C̄∈ C
N×MR×K×Q.

[Ỹ]([1,4],[3,2]) ≈
(

C̄ ⋄ (IN ⊗ 1
T
MT

)

)

· (H̄ ⋄ S̄)T.

Ȳ �
1

MT

(

C̄ ⋄ (IN ⊗ 1
T
MT

)

)H
· [Ỹ]([1,4],[3,2]) ≈ (H̄ ⋄ S̄)T.
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Using the LS-KRF, the matrices H̄ and S̄ can be identified up to one complex scal-
ing factor ambiguity per column. Hence, the estimated matrices satisfy the following 
relations:

where � ∈ C
MTN×MTN is a diagonal matrix with diagonal elements equal to the MTN  

complex scaling ambiguities. The simplest way to resolve the scaling ambiguity is by 
assuming the knowledge of one row of the matrix S̄ ∈ C

K×MTN . This corresponds to 
MTN  pilot symbols, i.e., one pilot symbol per transmit antenna and subcarrier. Since 
traditional MIMO-OFDM communication systems use fewer pilot symbols than MTN  , 
we propose to use the same amount of pilot symbols and exploit the channel correlation 
between adjacent subcarriers in order to estimate the scaling matrix. We transmit pilot 
symbols on positions with equidistant spacing in the frequency and the time domain. 
With the prior knowledge of the pilot symbols and their positions, we can obtain an ini-
tial channel estimate as in traditional MIMO-OFDM systems (see Sect. 3). We denote 
this pilot-based channel estimate by H̃p (H̄p) . The pilot-based channel estimate is then 
used to estimate the scaling ambiguity � in Eq. (18) as

By multiplying the solution of the LS-KRF with the diagonal matrix �̂ , the scaling ambi-
guity in Eq.  (18) is resolved and the data symbols can be demodulated. Note that the 
proposed Khatri–Rao receiver estimates the channel and the symbols in a semi-blind 
fashion. First, the channel and the symbols are jointly estimated without any a priori 
information. The pilot-based channel estimate is then used to resolve the scaling ambi-
guity affecting the columns of ˆ̄H and ˆ̄S . Therefore, the optimal length and repetition of 
the piloting sequences are identical as for the traditional OFDM systems. We summarize 
the steps of the proposed Khatri–Rao (KR) receiver in Algorithm 1.

Furthermore, the channel estimate resulting from the KR receiver can be used for 
channel tracking in future transmission frames if the channel has not changed dras-
tically. If the channel estimate is used for tracking, it could be improved by means of 
an additional LS estimate from [Ỹ]([2,4,1],[3]) with the knowledge of the estimated and 
projected symbols onto the finite alphabet � , i.e., Q(S̄) = proj(S̄) . The finite alphabet � 
depends on the modulation type and the modulation order Mo.

(18)ˆ̄H = H̄ ·�and ˆ̄S = S̄ ·�−1,

�̂ = diag




1

MR

MR�

mR=1

ˆ̄H (mR,.) ⊘ H̄p(mR,.)



.
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However, we can also use this improved channel estimation to further improve the per-
formance of the KR receiver. Using this updated channel estimate an improved estimate 
of the diagonal scaling matrix �̂ can be calculated and with that an enhanced estimate of 
the symbols, ˆ̄SLS , using Eq. (18). Note that, instead of just one LS estimate of the chan-
nel and the symbols the performance can be further enhanced with additional iterations 
leading to an iterative receiver. Note that the symbol matrix ˆ̄SLS can be estimated in the 
least squares sense from the three-mode unfolding of Eq. (17), but the estimation of �̂ is 
computationally cheaper. The KR receiver with its enhancement via LS is summarized in 
Algorithm 2.

Due to the additional LS-based estimates, the KR+LS algorithm has higher compu-
tational complexity than the KR algorithm.

5 � Khatri–Rao cross‑coding MIMO‑OFDM
In Sect.  4, we have proposed a tensor model for KR-coded MIMO-OFDM systems 
that introduces an additional CP-like structure to the signal tensor. The additional 
CP-like structure of the signal tensor is achieved by means of a simplified Khatri–Rao 
coding. However, using such a Khatri–Rao coding, we add additional spreading that 
reduces the spectral efficiency of the system. To overcome this issue, in this section 
we propose to keep the CP structure of the signal tensor proposed in Sect.  4, but 
introduce a cross-coding approach, where the known Khatri–Rao coding matrices 
C1, . . . ,CN  are replaced by symbol matrices containing useful information symbols to 
be transmitted.

As in Sect.  4, the received signal in the frequency domain after the removal of the 
cyclic prefix is given by

Likewise, the P = KQ frames that are divided into K groups of Q blocks (“spreading fac-
tor”). We model the channel tensor H̃ according to Eq. (8). Details regarding this model 
are also provided in “Appendix.” In this section, we make use of the generalized unfold-
ing [H̃]([1,3],[4,2]) = H̄ ⋄ (IN ⊗ 1

T
MT

) that is defined in  (15). The generalized unfolding 
([2, 1], [4, 3]) of the received signal tensor is given by

ˆ̄HT
LS =

(

(IN ⊗ 1
T
MT

) ⋄ C̄ ⋄ Q(S̄)
)+

· [Ỹ]([2,4,1],[3])

(19)Ỹ = H̃ •
2,1
4,2 X̃ + Ñ = Ỹ0 + Ñ ∈ C

N×MR×K×Q,
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where the matrix S̄(1)n ∈ C
K×MT and S̄(2)n ∈ C

Q×MT are the first and second symbol 
matrices that carry information symbols. The first symbol matrix S̄(1) follows the struc-
ture of the symbol matrix in Sect. 4 and is composed of a pilot part and a data symbols 
part (c.f. Eq.  (11)). On the other hand, the second symbol matrix only contains data 
symbols, except its first row, which contains known symbols (e.g., row vectors com-
posed of 1’s). We refer to this transmission scheme as cross-coded MIMO-OFDM, due 
to the fact that S̄(1)n  plays the role of a random KR coding with respect to S̄(2)n  and  

vice versa. Let us define the block matrices S̄(1) =
[

S̃
(1)

1 . . . S̃
(1)

N

]

∈ C
K×MTN  and 

S̄
(2)

=
[

S̃
(2)

1 . . . S̃
(2)

N

]

∈ C
Q×MTN  . From (20), the tensor [X̃ ]([2,1],3,4) satisfies the follow-

ing CP decomposition

Using Eqs. (2) and (19), the noiseless received signal is given by

Inserting (15) and (20) into (21), we obtain

or, alternatively, using the n-mode product notation

Depending on the available a priori knowledge at the receiver side, channel estimation, 
symbol estimation, or joint channel and symbol estimation can be performed. Differ-
ently from the KR-coded system, where a known coding matrix is used, in the cross-
coded MIMO-OFDM system, this knowledge is not available, which makes the receiver 
design more challenging. A joint channel and symbol estimation now involves the esti-
mation of three factor matrices from the noisy version of the four-way CP model (22). 
From the three-mode, four-mode, and two-mode unfoldings of Ỹ in (19), and using (22), 
we can obtain the LS equations for estimating S̄(1) , S̄(2) and H̄ , respectively:

(20)
[X̃ ]([2,1],[4,3]) =

[

S̄
(1)
1 ⋄ S̄

(2)
1 S̄

(1)
2 ⋄ S̄

(2)
2 . . . S̄

(1)
N ⋄ S̄

(2)
N

]T

= IMTN (S̄
(1)

⋄ S̄
(2)
)T,

[X̃ ]([2,1],3,4) = I3,MTN ×1 IMTN ×2 S̄
(1)

×3 S̄
(2)
.

(21)[Ỹ0]([1,2],[4,3]) = [H̃]([1,3],[4,2]) · [X̃ ]([2,1],[4,3]).

[Ỹ0]([1,2],[4,3]) =
(

H̄ ⋄ (IN ⊗ 1
T
MT

)

)

· (S̄
(1)

⋄ S̄
(2)
)T,

(22)Ỹ0 = I4,MTN ×1 (IN ⊗ 1
T
MT

)×2 H̄ ×3 S̄
(1)

×4 S̄
(2)
∈ C

N×MR×K×Q.

(23)S̄
(1)

=
[

Ỹ
]

(3)
·

[(

S̄
(2)

⋄ H̄ ⋄ (IN ⊗ 1
T
MT

)

)T
]+

,

(24)S̄
(2)

=
[

Ỹ
]

(4)
·

[(

S̄
(1)

⋄ H̄ ⋄ (IN ⊗ 1
T
MT

)

)T
]+

(25)H̄ =
[

Ỹ
]

(2)
·

[(

S̄
(2)

⋄ S̄
(1)

⋄ (IN ⊗ 1
T
MT

)

)T
]+
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We adopt a three step ALS algorithm for estimating the symbol and channel matrices 
from the noisy versions of (23)–(25). However, it is known that there is no guarantee of 
convergence if we initialize the ALS algorithm randomly. To overcome this issue, we pro-
pose to use the pilot-based channel estimate H̄p to obtain initial estimates of the matri-
ces S̄(1) and S̄(2) based on LS-KRF. Such a channel estimate is obtained from the pilot 
symbols in S̄(1) and the first row of S̄(2) that has known symbols. From the ([3, 4], [1, 2]) 
generalized unfolding of the noisy received signal tensor Y , we get

Given H̄p and MR ≥ MT , from 
[

Ỹ
]

([3,4],[1,2])
·
[(
H̄p ⋄ (IN ⊗ 1

T
MT

)
)T

]+
≈

[

S̄
(2)

⋄ S̄
(1)
]

 

based on LS-KRF, we obtain ˆ̄S(1) and ˆ̄S(2) . However, the matrices ˆ̄S(1) and ˆ̄S(2) are esti-
mated up to one complex scaling ambiguity per column. We exploit the first row of the 
matrix S̄(2) to estimate this ambiguity (recall that the elements of the first row of the 
matrix S̄(2) are set to one). After resolving the scaling ambiguity, we propose to iterate 
between Eqs. (23)–(25) to enhance the accuracy of the receiver. Hence, we propose two 
receivers such as cross-coded Khatri–Rao (CC-KR) and cross-coded 

[

Ỹ
]

([3,4],[1,2])
≈

[

S̄
(2)

⋄ S̄
(1)
]

·
[

H̄p ⋄ (IN ⊗ 1
T
MT

)

]T
.
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Khatri–Rao+alternating least squares (CC-KR+ALS) for the cross-coded MIMO-
OFDM systems. These two algorithms are summarized in Algorithm 3 and Algorithm 4, 
respectively. The CC-KR receiver exploits the LS-KRF to compute an estimate of the 
symbol matrices S̄(1) and S̄(2) , assuming that MR ≥ MT , the first row on the matrix S̄(2) 
contains only ones, and a pilot-based channel estimate H̄p is already available. Note that 
the initial steps of the CC-KR+ALS and the CC-KR receivers are the same. As for the 
subsequent steps, for the CC-KR+ALS receiver, the channel matrix and both symbol 
matrices are estimated using ALS. The algorithm is stopped if it exceeds the maximum 
number of iterations that is set to 5, reaches a predefined minimum of the cost function 
∥
∥
∥Ỹ − I4,MTN ×1 (IN ⊗ 1

T
MT

)×2
ˆ̄H ×3

ˆ̄S(1) ×4
ˆ̄S(2)

∥
∥
∥

2

H
/

∥
∥
∥Ỹ

∥
∥
∥

2

H
 , or if the error of the cost 

function has not changed within two consecutive iterations. The CC-KR+ALS algo-
rithm has a higher computational complexity than the CC-KR algorithm due to the 
additional ALS iterations, as shown in Algorithm 4.

Based on Eqs. (23)–(25) and to ensure the parameter estimation identifiability, Algo-
rithms 3 and 4 have to satisfy the following conditions related to the system parameters,

These conditions establish trade-offs involving the space, time, and coding diversities to 
ensure a unique recovery of the channel and the symbols. More specifically, decreas-
ing the number of receive antennas can be compensated by an increase in the numbers 
of groups K or the number of blocks Q that define the cross-coding scheme in order to 
ensure joint channel and symbol identifiability.

6 � Simulation results
In this section, we evaluate the performance of the proposed receivers for MIMO-OFDM 
systems using Monte Carlo simulations. First, we compare the performance of ZF, ILSP, 
and RLSP, using 5000 realizations. We consider a 2× 2 OFDM system, with K frames, and 
N = 128 subcarriers. The pilot symbols are transmitted on every third subcarrier such 
that �F = 3 and only during the first frame, i.e., �K = K  . Using these pilots, we obtain 
a pilot-based channel estimate with which we initialize all of the algorithms. The trans-
mitted data symbols are independent and they are drawn from a quadrature amplitude 
modulation (4-QAM). The frequency selective propagation channel is modeled according 
to the 3rd Generation Partnership Project (3GPP) Pedestrian A channel (Ped A)  [31]. The 
duration of the cyclic prefix is 32 samples and the weighting factor α = 1 , for the recur-
sive LS. The maximum number of iterations for the iterative algorithm is set to 7.

In Fig. 3, we compare the SER performance of the traditional frequency domain ZF 
receiver, the proposed Khatri–Rao (KR) receiver (see Algorithm  1) and the proposed 
Khatri–Rao receiver with one additional LS iteration (see Algorithm  2) for different 
numbers of transmitted blocks. In this case, note that the KR and the KR+LS receivers 
benefit from the increased number of frames as the channel has been kept constant dur-
ing the P = Q · K  frames. Moreover, as the number of frames increases, the advantages 
of the enhancement via LS become more pronounced.

Moreover, the SER comparison between the ZF and the Khatri–Rao-coded algorithms, 
for N = 128 , Q = MT , K = 2 , �K = 2 , �F = 4 , and different numbers of antennas are 

(26)MRQ ≥ MT , MRK ≥ MT , KQ ≥ MT .
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depicted in Fig.  4. The KR and KR-LS receivers benefit from an increased number of 
transmit antennas due to the increased spreading factor, Q = MT . The performance 
enhancement with the additional LS estimate is achieved for K > 2 . However, the KR 
receiver outperforms the ZF one even without the LS enhancement. We can observe 
that for the Khatri–Rao-coded algorithms, i.e., the KR and the KR-LS, the performance 
of the receiver is increased. However, as shown in Table 2, we linearly increase the com-
putational complexity of the receiver, since more rank-one approximations must be 
computed.

In Fig.  5, we depict the SERs for these two systems. The KR receiver has similar 
accuracy to the ILSP and the RLSP algorithms [17] that improves with the increased 
SNR. The KR+LS receiver outperforms the ILSP algorithm and the KR algorithm in 
terms of SER. Recall that the KR-coded OFDM model in Eq. (17) has a richer tensor 
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structure than the OFDM model in Eq.  (12) due to the coding. The KR algorithm 
and the KR-LS algorithm effectively exploit this structure to estimate the channel 
and the symbols. Note that the KR-LS algorithm computes an improved estimate of 
the scaling matrix. Therefore, KR-LS leads to lower SER levels than the ILSP and KR 
algorithms.

In Fig. 6, we provide an SER comparison for two scenarios. For both scenarios, we 
assume Q = 2 , and the symbols are drawn from a 4-QAM modulation. Moreover, 
K = 5 , �F = 10 , and �K = 5 , for the first scenario, whereas for the second scenario 
K = 3 , �F = 5 , and �K = 3 . Hence, in the first scenario we estimate more symbols 
than in the second scenario, using fewer pilot symbols. As expected, we achieve a 
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lower SER if more pilot symbols are used because they lead to a more accurate ini-
tial pilot-based channel estimate. Moreover, in Fig.  6 we see that the CC-KR+ALS 
receiver outperforms the CC-KR receiver. Thus, we benefit from the additional itera-
tions and from exploiting the complete tensor structure. In contrast to CC-KR, CC-
KR+ALS also estimates the channel matrix. Furthermore, the accuracy gain of the 
CC-KR+ALS receiver is more pronounced if we initialize the CC-KR+ALS with a 
less accurate pilot-based channel estimate (the gain is more pronounced for the solid 
lines than for the dashed lines in Fig. 6).

Finally, in Fig. 7, we depict the SER performance for a 4 × 4 MIMO system, consider-
ing the following receivers: (i) ILSP receiver [17], (ii) RLSP receiver [17], (iii) KR receiver 
(Algorithm  1), (iv) KR-LS receiver (Algorithm  2), (v) CC-KR receiver (Algorithm  3), 
and (vi) CC-KR+ALS (Algorithm 4). To ensure a fair comparison in terms of spectral 
efficiency, the following parameters were chosen for the different receivers: The KR-
coded OFDM system assumes N = 128 , �F = 10 , K = 2 , �K = 2 , Q = 4 , P = KQ = 8 
and the symbols are modulated using 16-QAM. For the CC-coded OFDM system we 
assume N = 128 , �F = 10 , K = 2 , �K = 2 , Q = 4 , P = KQ = 8 and the symbols are 
drawn from a BPSK modulation. The OFDM system assumes N = 128 , �F = 10 , K = 8 , 
�K = 8 , and BPSK symbols. We see that the CC-KR receiver outperforms ILSP and 
RLSP receivers from [17]. In addition, the KR and KR-LS receivers for KR-coded OFDM 
have different slopes than the uncoded OFDM and the cross-coded OFDM, exhibiting a 
better performance, as expected.

In Table  2, we show the computational complexity of the compared algorithms. 
We take into account the main computational efforts, i.e., the computation of matrix 
inverses. For a matrix A ∈ C

N×M , we consider the cost of O
(
M3

)
 for its inversion, and 

O
(
NM2

)
 for the computation of its rank-one SVD approximation. The Khatri–Rao 

factorization-based algorithms, i.e., the KR and the CC-KR algorithms have the low-
est computational effort. This is due to the fact that they compute NMT  independ-
ent rank-one matrix approximations, while the remaining algorithms (ZF, RLSP, and 
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ILSP), require iterations and/or the inversion of large matrices. Compared to the KR 
coding, the proposed CC-KR has similar complexity if Q = MR . On the other hand, 
in the proposed CC-KR receiver, two data symbol matrices are transmitted ( S(1) and 
S(2) ), increasing the spectral efficiency of the MIMO-OFDM system.

7 � Conclusion and discussion
In this paper, we have presented a tensor model for MIMO-OFDM systems using the 
double contraction between a channel tensor and a transmit signal tensor. The use of 
double contractions allows us to derive explicit CP-like, or Tucker-like, tensor models 
for the received signal, which are exploited for a joint channel and symbol estimation 
using semi-blind algorithms. The proposed model is a very general and flexible way 
of describing the received signal in MIMO-OFDM systems for all subcarriers jointly.

We have also proposed Khatri–Rao-coded MIMO-OFDM models and proposed 
the corresponding semi-blind receivers based on the derived explicit CP-like tensor 
structure of the data model. In particular, the proposed KR-coded receivers, namely 
KR, KR+LS, CC-KR, and CC-KR+ALS, achieve a better performance in terms of the 
symbol error rate than the state-of-the-art schemes from the literature (ZF, ILSP, and 
RLSP). Also, the Khatri–Rao-based receivers (KR and CC-KR) can benefit from par-
allel processing, thus having a lower computational processing delay than the com-
petitors. In addition, we have improved the performance of the Khatri–Rao-based 
receivers by means of an additional LS iteration (KR+LS) and an ALS procedure (CC-
KR+ALS). Note that the Khatri–Rao coding strategy (KR and KR+LS) has a reduced 
spectral efficiency than the uncoded MIMO-OFDM system. To overcome this limita-
tion, we have proposed a cross-coded Khatri–Rao strategy (CC-KR and CC-KR+ALS 
algorithms), where the “coding matrix” contains useful data symbols. For this cross-
coded system, two receivers have been proposed.

A natural perspective of this work is an extension of the proposed semi-blind receiv-
ers to other multi-carrier techniques such as universal filtered multi-carrier (UFMC) 
and FBMC modulation [16], relay-assisted systems, and multi-user systems. In the 
case of a multi-user system, the proposed CC-KR algorithm, and possibly the CC-
KR+ALS algorithm, can be used where the transmitted data symbols of multiple users 
are used as “coding matrices” to improve the total spectral efficiency of the system.

Table 2  Computational cost of compared algorithms

Algorithm Computational complexity O{·}

ZF O
{
N(MT )

3
}

ILSP O
{
2NImaxM

3
T

}

RLSP O
{
2NKM3

T

}

KR O{NMT (KMR(K +MR))}

KR+LS O
{
NMT (KMR(K +MR))+ (NMT )

3
}

CC-KR O{NMT (KQ(K + Q))}

CC-KR+ALS O
{
NMT (KQ(K + Q))+ Imax(K

3 + Q3)
}
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Appendix
Derivation of the four‑way channel tensor in the frequency domain and its unfoldings

Let us assume a MIMO-OFDM system with MT transmit antennas and MR receive anten-
nas. Such a system is depicted in Fig. 2, for MT = 2 and MR = 3 . As shown in Sect. 3, we 
can define a four-way channel tensor H̃ ∈ C

N×N×MR×MT by concatenating the channel 

tensors for each transmit antenna, i.e., H̃
(mT)

R ∈ C
N×N×MR along the four-mode. The ten-

sors H̃
(mT)

R ∈ C
N×N×MR contain the channel vectors for the mT th transmit antenna and 

all receive antennas as defined in Eq. (6), for mT = 1, . . .MT . Recall that these tensors have 

a CP structure, i.e., H̃
(mT)

R = I3,N ×3 H̃
(mT)

R  , for mT = 1, . . .MT . The matrices H̃ (mT)

R  
( mT = 1, . . .MT ) are defined in Eq. (7). Hence, the four-way channel tensor is

We can rewrite this concatenation by means of an outer product with a pining vec-

tor emT . Moreover, if we substitute the CP structure of the tensor H̃
(mT)

R  , we get 

H̃ =
∑MT

mT=1 H̃
(mT)

R ◦ emT

Replacing the outer product by an n-mode product, we have

where D(.,.,.,1) = I3,N . Note that the tensor D ∈ R
N×N×N×1 is a four-way tensor, but its 

four-mode is a singleton dimension. We can define this tensor in terms of a Kronecker 
product, which yields D = I4,1 ⊗ I3,N . Equation  (27) represents a very special BTD 
where the block terms are equivalent in all modes, except the three-mode and the four-
mode. Next, we can replace the sum in (27) with a block diagonal core tensor and factor 
matrices partitioned accordingly.

Further, we rewrite the block diagonal structure and the partitioned factor matrices 
using Kronecker products

This last equation explicitly reveals the structure of the channel tensor H̃ . Exploiting this 
structure, we can define any of the tensor unfoldings. For the generalized unfolding 
[

H̃
]

([1,3],[2,4])
 , from Eq. (28), we get

H̃ =
[

H̃
(1)

R ⊔4 H̃
(2)

R ⊔4 . . . H̃
(MT)

R

]

H̃ =

MT∑

mT=1

(

I3,N ×1 IN ×2 IN ×3 H̃
(mT)

R

)

◦ emT .

(27)H̃ =

MT∑

mT=1

D ×1 IN ×2 IN ×3 H̃
(mT)

R ×4 emT ,

H̃ = blkdiag
(
I4,1 ⊗ I3,N

)MT

mT=1
×1

[
IN . . . IN

]

×2

[
IN . . . IN

]
×3

[

H̃
(1)

R . . . H̃
(MT)

R

]

︸ ︷︷ ︸

H̃

×4

[
e1 . . . eMT

]

(28)H̃ = (I4,MT ⊗ I3,N )×1 (1
T
MT

⊗ IN )×2 (1
T
MT

⊗ IN )×3 H̃ ×4 IMT .
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Next, we have

for the second part in (29). Recognize that INMT ⋄ INMT = JNMT
 is a selection matrix 

that converts a Kronecker product into a Khatri–Rao. Using this property, (29) becomes

Moreover, the generalized unfolding 
[

H̃
]

([1,3],[4,2])
 can also be derived directly from 

Eq.  (28). However, to simplify the final result is not straightforward because N is the 
faster rising index along the columns of the factor matrix H̃ in Eq.  (28). On the other 
hand, MT varies faster than N along the columns in the generalized unfolding 
[

H̃
]

([1,3],[4,2])
 . Therefore, we derive this generalized unfolding by means of a permutation 

matrix P ∈ R
NMT×MTN . The permutation matrix P reorders the columns such that the 

faster increasing index is MT instead of N and is defined as 
[H̃]([1,3],[4,2]) = [H̃]([1,3],[2,4]) · P . Hence,

Considering that the permutation matrix P reorders the columns in Eq.  (31) and the 
Khatri–Rao product is a column-wise operator (Khatri–Rao product is column-wise 
Kronecker product), the following equality holds

Finally, using (1TMT
⊗ IN ) · P = (IN ⊗ 1

T
MT

) and defining H̄ = H̃ · P , we get 
[H̃]([1,3],[4,2]) = H̄ ⋄ (IN ⊗ 1

T
MT

).
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DFT	� Discrete Fourier transform
FBMC	� Filter bank-based multi-carrier
ILSP	� Iterative least squares with projection
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(29)

[

H̃
]

([1,3],[2,4])
=
[

H̃ ⊗ (1TMT
⊗ IN )

]

[
I4,MT ⊗ I3,N

]

([1,3],[2,4])

[

IMT ⊗ 1
T
MT

⊗ IN

]

[
I4,MT ⊗ I3,N

]

([1,3],[2,4])

[

IMT ⊗ 1
T
MT

⊗ IN

]

= INMT ⋄ INMT

(30)
[

H̃
]

([1,3],[2,4])
= H̃ ⋄ (1TMT

⊗ IN ).

(31)[H̃]([1,3],[4,2]) =
[

H̃ ⋄ (1TMT
⊗ IN )

]

· P.

[H̃]([1,3],[4,2]) =
[

H̃ ⋄ (1TMT
⊗ IN )

]

· P

=
[

H̃ · P
]

⋄
[

(1TMT
⊗ IN ) · P

]

.
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RLSP	� Recursive least squares with projection
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