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1  Introduction
With the explosive growth in computer technology and signal analysis tools, computer-
aided analysis of bio-signals has become a common part of clinical. Bio-signal recon-
struction is one of the important applications in bio-signal processing. The study of 
the literature on image analysis techniques indicates that the method of orthogonal 
moments plays a significant role in each of its important fields. These fields include 
image reconstruction [1, 2], face recognition [3], image classification [4, 5], image water-
marking [6], image encryption [7], image compression [8, 9], color stereo image analysis 
[10]. Orthogonal moments are classified as continuous or discrete depending on whether 
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the kernel functions are orthogonal in the continuous or discrete domain. Continuous 
orthogonal can be utilized to characterize an image with minimal redundant informa-
tion. But even so, computing these moments needs a coordinate transformation and 
an estimate of the continuous moment’s integrals. This adds computational complexity 
and introduces approximation errors [11]. To this end, many researchers have started 
to use discrete orthogonal moments [12, 13]. Zhu et al. [14, 15] demonstrated that dis-
crete orthogonal moments are more effective than continuous orthogonal moments 
at representing images. The types of discrete orthogonal moments (DOMs) according 
to their corresponding discrete orthogonal polynomials include Tchebichef [16, 17], 
Krawtchouk[18–21], Charlier [22–24], Hahn [25, 26] and Meixner [27, 28] moments. At 
the present time, Discrete Orthogonal Moments (DOMs) are gaining popularity in ana-
lyzing one-dimensional signals due to their effectiveness in capturing digital information 
without redundancy. In order to compute DOMs, we have to compute Kernel discrete 
orthogonal polynomials (DOPs).

The computation of high-order DOPs faces a major problem which is the propaga-
tion of numerical errors. This problem destroys the orthogonality property of these 
polynomials, which affects the ability to extract the signal’s distinct and unique com-
ponents with no information redundancy. To address this problem, we propose using 
QR decomposition methods to maintain the orthogonality property by re-ortho-
normalization DOPs. There are many ways for QR decomposition, like the Gram–
Schmidt method, the Householder method, and the Given Rotations method [29]. 
These methods maintain the  high-order  DOPs orthogonality property effectively. 
Thus, using the DOMs to analyze large-size signals will become highly efficient Due 
to significant improvements in the computation of DOPs. Our paper presents several 
contributions that can be summarized as follows:

•	 Testing Discrete Orthogonal Moments (DOMs) in bio-signals analysis and recon-
struction.

•	 Proposing a new modified version of DOPs by the QR decomposition methods 
like the Gram–Schmidt, Householder, and Given Rotations methods. In addition 
to comparing methods of QR decomposition to estimate the best methods.

•	 Presenting comparative study between the different types of moments to estimate 
the best moment in analyzing and reconstructing bio-signals.

The rest of the paper is structured into five sections: Sect. 2 outlines the Recursive 
relation of Discrete Orthogonal Polynomials (DOPs). Discrete Orthogonal Moments 
(DOMs) will be discussed in Sect.  3. Section  4 shows the proposed procedure for 
ensuring the orthogonality property of discrete polynomials. Experimental results 
and discussion are presented in Sect. 5. Discussions are shown in Sect. 6. In Sect. 7, 
we conclude our work.

2 � Recursive relation of discrete orthogonal polynomials (DOPs)
The discrete orthogonal polynomials are the polynomial solutions of the given differ-
ence equation
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where �pn(x) = pn(x + 1)− pn(x)and∇pn(x) = pn(x)− pn(x − 1) indicates back-
ward finite-difference operator and forward finite difference operator, respectively. 
σ(x) and τ (x) denote first and second degree functions. �n indicate a suitable constant.

The polynomials pn(x) satisfy an orthogonality relation of the form

where w(x) is the weight function, d2n denotes the square of the norm of the correspond-
ing orthogonal polynomials and δmn denotes the Dirac function. The normalized orthog-
onal polynomials can be obtained by utilizing the square norm and weighted function

Therefore, the orthogonal property of normalized orthogonal polynomials in (1b) can be 
rewritten as

A general formula for getting the normalized discrete orthogonal polynomials ˜pn(x) of 
order n is defined three-term recursive relation as follows [11]:

where A, B, C, D, and E are coefficients independent of each polynomial set shown in 
Table 1. These discrete orthogonal polynomials include Tchebicheftn(x;N ) , Krawtchouk 
kn(x;P,N ), Charlier cn(x) , Hahn h(α,β)n (x) and Meixner m(a,b)

n (x) Polynomials.˜pn−1(x) 
and  ˜pn−2(x) are the zero-order and first-order polynomials, respectively.

2.1 � Tchebichef polynomials

The nth Tchebichef polynomials tn(x) are defined by hypergeometric function as the follows

From Eq. (1.e) and Table 1, we obtain the recursive relation of discrete orthogonal Tch-
ebichef polynomials as follows:

with 

(1.a)σ(x)�∇pn(x)+ τ (x)�pn(x)+ �npn(x) = 0

(1.b)
s

∑

x=0

pn(x)pm(x)w(x) = d2n · δmn, 0 ≤ m, n ≤ s

(1.c)˜pn(x) = pn(x)

√

w(x)

d2n
, n = 0, 1, . . . , s

(1.d)
s

∑

x=0

˜pm(x)˜pn(x) = δmn, 0 ≤ m, n ≤ s

(1.e)˜pn(x) =

(

B ∗ D

A

)

˜pn−1(x)+

(

C ∗ E

A

)

˜pn−2(x)

(2)tn(x) = (1− N )n3F2(−n,−x, 1+ n; 1, 1− N ; 1), n, x = 0, 1, 2, . . . ,N − 1.

(3)tn(x) = (β1x + β2)tn−1(x)+ β3tn−2(x)
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where 

2.2 � Krawtchouk polynomials

Krawtchouk polynomials kn(x, p) of order n are defined by hypergeometric function as 
the follows

The recursive relation of discrete orthogonal Krawtchouk polynomials can be calcu-
lated using Eq. (1.e) and Table 1 as:

with

where 

(4)

t0(x) =
1

√
N
,

t1(x) = (2x + 1− N )

√

3

N
(

N 2 − 1
) .

(5)

β1 =
2

n

√

4n2 − 1

N 2 − n2

β2 =
1− N

n

√

4n2−1

N 2 − n2
,

β3 =
1− n

n

√

2n+ 1

2n− 3

√

N 2 − (n− 1)2

N 2 − n2
.

(6)kn(x, p) =2 F1

(

−n,−x;−N ;
1

p

)

, n, x = 0, 1, 2, . . . ,N − 1.

(7)kn(x, p) = (x + β1)β2kn−1(x, p)− β3kn−2(x, p)

(8)

k0(x, p) =

√

N !px(1− p)N−x

x!(N − x)!
,

k1(x, p) = (−p(N − x)+ x(1− p))×

√

(N − 1)!px−1(1− p)N−x−1

x!(N − x)!

(9)

β1 = (1− n− p (N − 2n+ 2)),

β2 =

√

1

p(1− p)(N − n+ 1)n

β3 =

√

(N − n+ 2)(n− 1)

(N − n+ 1)n
, 0 < p < 1.
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2.3 � Charlier polynomials

Charlier polynomials Ca1
n (x) of order n are defined by hypergeometric function as the 

follows

By substituting coefficients of A, B, C, D, and E from Table 1 in Eq. (1.e), we conclude 
the recursive relation of discrete orthogonal Charlier polynomials as follows:

with

where 

2.4 � Hahn polynomials

The nth Hahn polynomials h(α,β)n (x) are defined by hypergeometric function as the 
follows.

By substituting coefficients of A, B, C, D, and E from Table 1 in Eq. (1.e), we conclude 
the recursive relation of discrete orthogonal Charlier polynomials as follows:

with 

(10)ca1n (x) =2 F0(−n,−x; ;−1/a1), n, x = 0, 1, 2, . . . ,N − 1 and a1 > 0

(11)Ca1
n (x) = (β1 − x)β2C

a1
n−1(x)− β3C

a1
n−2(x)

(12)
c
a1
0 (x) =

√

e−a1ax1
x!

,

C
a1
1 (x) =

a1 − x

a1

√

e−a1ax+1
1

x!

(13)

β1 = (a1 + n− 1),

β2 =

√

1

na1
,

β3 =

√

n− 1

n
.

(14)

h
(α,β)
n (x) =

(−1)n(β + 1)n(N − n)n

n!
×3 F2(−n,−x, n+ 1+ α + β;β + 1, 1− N ; 1),

n, x = 0, 1, 2, . . . ,N − 1.

(15)h(α,β)n (x) = (x − β1)β2h
(α,β)
n−1 (x)− β3h

(α,β)
n−2 (x)

(16)

h
(α,β)
0 (x) =

√

(α + 1)β(α + β + 1)

(N − α)β+1

h
(α,β)
1 (x) = (α + β + 2)x − (β + 1)(N − 1)×

√

α + β + 3

(α + 1)(β + 1)(n− 1)(N + 1+ β + 1)
.
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where 

where α,β > 0.

2.5 � Meixner polynomials

Meixner polynomials m(a,b)
n (x) of order n are defined by hypergeometric function as the 

follows

From Eq.  (1.e) and Table  1, we obtain the recursive relation of discrete orthogonal 
Meixner polynomials as follows:

with

where 

where 0 < b < 1 and a > 0.

3 � Discrete orthogonal moments (DOMs)
The discrete orthogonal moments are a set of moments calculated by discrete orthog-
onal polynomials. The set of discrete orthogonal one-dimensional (1D) moments are 
defined as follows [11]:

(17)

β1 =
α − β + 2N − 2

4
+

(

β2 − α2
)

(α + β + 2N )

4(α + β + 2n− 2)(α + β + 2n)
,

β2 =

√

(α + β + 2n)4 − (α + β + 2n)2

n(N − n)(α + n)(β + n)(α + β + n+ N )(α + β + n)
,

β3 =
α + β + 2n

α + β + 2n− 2
×

√

(n− 1)(α + n− 1)(β + n− 1)(N − n+ 1)

n(α + n)(β + n)(N − n)(α + β + n)

×

√

(α + β + n− 1)(α + β + 2n+ 1)(α + β + N + n− 1)

(α + β + 2n− 3)(α + β + n+ N )
.

(18)m(a,b)
n (x) = (a)n2F1(−n,−x; a; 1− 1/b), n, x = 0, 1, 2, . . . ,N − 1.

(19)m(a,b)
n (x) = (xβ1 + β2)m

(a,b)
n−1 (x)− β3m

(a,b)
n−2 (x)

(20)

m
(a,b)
0 (x) =

√

bx(a+ x − 1)!

x!(a− 1)!
(1− b)a,

m
(a,b)
1 (x) =

(

a+ x −
x

b

)

×

√

bx(a+ x − 1)!

x!(a− 1)!

b(1− b)a

a
.

(21)

β1 = (b− 1)

√

1

n(a+ n− 1)b
,

β2 = (n− 1+ bn− b+ ab)

√

1

n(a+ n− 1)b
,

β3 =

√

(n− 1)(n− 2+ a)

n(a+ n− 1)
,
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where s(x) is a one-dimensional signal of size 1× N , Mn is a set of moment coefficients 
of the signal s(x) and p(x) is orthogonal polynomials of order n (Tchebichef tn(x;N ) , 
Krawtchouk kn(x;P,N ), Charlier cn(x) , Hahn h(α,β)n (x) and Meixner m(a,b)

n (x)).
The reconstructed signal S(x) is calculated from the inverse transformation of the 

orthogonal moment as follows:

Using the following matrix form decreases the time and complexity of 1D orthogo-
nal moment computations significantly:

where Mn indicates orthogonal polynomials of order n , s denotes 1× N signal vector.

4 � Ensuring the orthogonality property of discrete polynomials
In this section, we propose a procedure for ensuring the orthogonality property of 
discrete polynomials. According to the orthogonality property, polynomials matrix 
( pn(x) ) satisfies the following relation:

where In denotes the identity matrix.
To avoid numerical errors propagation and preserve the orthogonality prop-

erty of DOPs, we present an efficient method for re-orthonormalizing pn(x) matrix 
columns using QR decomposition methods. In these methods, a matrix  A = [u1

,u2, . . . ,un−1,un] of size n×m factored asA = QR , where Q is an n×m matrix with 
orthogonal columns ( QTQ = I  ) and R is an m×m upper triangular matrix [29]. In 
our situation, R  matrix contains just recursive computation errors. The primary pur-
pose of these ways is to generate the orthogonal Q(n×m) matrix from pn(x)  that 
contains round-off errors. Many ways are used in QR decomposition, such as the 
Gram–Schmidt method, the Householder method, and the Given Rotations method 
[30].

4.1 � Computation DOPs with modified Gram–Schmidt method (MGSM)

One of the most common algorithms for applying QR decomposition is the Gram–
Schmidt (GS) method. It is a simple procedure for generating an orthogonal or ortho-
normal basis for any nonzero Rn subspace [31]. Although the modified Gram–Schmidt 

(22)Mn =

N−1
∑

x=0

pn(x)s(x), n = 0, 1 . . . ,N − 1.

(23)S(x) =

N−1
∑

n=0

Mnpn(x), x = 0, 1, 2, . . . ,N − 1

(24)Mn =









p0(0) p0(1) . . . p0(N − 1)
p1(0) p1(1) . . . p1(N − 1)
...

...
...

...
pn(0) pn(1) . . . pn(N − 1)









×









s(0)
s(1)
...

s(N − 1)









(25)pn(x)
Tpn(x) = In
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method is always preferred because it avoids potentially costly cancellation errors, 
it is not as good numerically as the Givens or Householder approaches [29]. Algo-
rithm 1 summarizes the proposed implementation of DOPs using MGSM.

4.2 � Computation DOPs with Householder method (HM)

The main way to apply QR decomposition is with the Householder method. [29]. This 
approach is regarded to be more numerically stable than the Gram–Schmidt orthogo-
nalization method for QR matrix decomposition. The proposed computation of DOPs 
with HM is illustrated in Algorithm 2.
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4.3 � Computation DOPs with Given Rotations method (GRM)

The Given Rotations method is an alternative to the Modified Gram–Schmidt method 
and Householder method for calculating QR decomposition [29]. The Proposed Algo-
rithm for computing DOPs using GRM is reported in Algorithm 3.

5 � Results
The experiments of this study are performed on a personal computer using Matlab 
Software (version R2014a) on Microsoft Windows 7, 32-bit Edition, Intel Core i3 pro-
cessor, and 4 GB RAM machine. Performance evaluation has been done by ECG sig-
nals from MIT-BIH arrhythmia dataset [32], which contain cardiac information from 
large numbers of patients. These recordings were obtained at a sampling frequency of 
360  Hz (360 samples per second) with 11-bit resolution. Our numerical simulations 
are presented in three sections: the first is to evaluate the performance of the pro-
posed re-orthonormalization methods in the quality of reconstruction signals. The 
second compares the three proposed re-orthogonalization methods (Gram–Schmidt, 
Householder, and Given Rotations) in signal reconstruction quality. The third is a 
comparative study on the performance of Discrete Orthogonal Moments in signal 
reconstruction. The quality of the reconstructed signal is evaluated based on the fol-
lowing criteria:
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•	 Peak signal to noise ratio ( PSNR):

	 PSNR is the highest possible signal power ratio to the corrupting noise power. It is 
presented as follows:

•	 Mean-Square Error (MSE): the reconstruction error between the original and recon-
structed signals.

PSNR = 20× log10
max|s(x)|
√
MSE

MSE =
1

N

N−1
∑

x=0

(s(x)− S(x))2

Table 2  Comparison of reconstruction errors (PSNR and MSE) using Tchebichef moments with and 
without Householder method

Signal Tchebichef Tchebichef + HM

PSNR MSE PSNR MSE

MIT-BIH Rec. 100 96.240 0.0810 101.685 0.0432

MIT-BIH Rec. 101 81.467 0.4601 106.854 0.0249

MIT-BIH Rec. 103 72.23 1.485 93.21 0.132

MIT-BIH Rec. 105 86.795 0.269 108.477 0.022

MIT-BIH Rec. 107 92.450 0.0810 106.437 0.160

MIT-BIH Rec. 108 68.234 1.9340 90.329 0.152

MIT-BIH Rec. 111 83.444 0.1618 100.245 0.0234

MIT-BIH Rec. 112 96.549 0.5013 118.381 0.0406

MIT-BIH Rec. 115 105.346 0.0740 116.436 0.0194

MIT-BIH Rec. 117 89.419 1.0391 109.422 0.1039

MIT-BIH Rec. 118 96.432 0.6840 113.102 0.1004

MIT-BIH Rec. 119 108.504 0.1434 126.726 0.0176

MIT-BIH Rec. 121 106.844 0.1150 118.520 0.0300

MIT-BIH Rec. 122 108.330 0.1217 119.917 0.0320

MIT-BIH Rec. 124 84.110 1.8815 121.8111 0.0245

MIT-BIH Rec. 200 77.677 1.1309 94.876 0.1561

MIT-BIH Rec. 201 85.309 0.1576 113.945 0.0058

MIT-BIH Rec. 202 90.079 0.0644 105.621 0.0108

MIT-BIH Rec. 205 118.605 0.0080 87.028 0.3050

MIT-BIH Rec. 208 103.437 0.0784 126.499 0.0055

MIT-BIH Rec. 209 65.139 1.6773 100.652 0.0281

MIT-BIH Rec. 213 82.214 1.6419 109.599 0.0702

MIT-BIH Rec. 214 78.031 1.2031 104.048 0.0602

MIT-BIH Rec. 219 106.807 0.1093 121.013 0.0213

MIT-BIH Rec. 222 83.8151 0.0987 103.385 0.0104

MIT-BIH Rec. 228 89.1591 0.1367 108.908 0.0141

MIT-BIH Rec. 230 75.499 1.444 112.965 0.0193

MIT-BIH Rec. 231 88.234 0.1435 115.863 0.0060

MIT-BIH Rec. 233 80.685 1.5180 114.101 0.0324

MIT-BIH Rec. 234 71.922 0.9895 104.380 0.0236

Average 89.100 0.6477 109.147 0.0564
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where s(x) and S(x)  are the original signal and reconstructed signal, respectively.
In this experiment, the parameters of polynomials are set as p = 0.5 for Krawtchouk, 

a1 = 140 for Charlier,α,β = 100 for Hahn, and a = 512, b = 0.5 for Meixner. The signal 
size is N = 3600, and the order of the DOMs used is 200.

5.1 � Reconstruction quality of DOMs computed using the proposed re‑orthonormalization 

method

We started by investigating the superiority of the proposed re-orthogonalization meth-
ods with the discrete orthogonal moments in reconstruction quality signals. As shown 
in Table 2, we test the Tchebichef moments with and without the Householder method 
as one of the proposed methods for reconstructing the signals. The results obtained in 
Table 2 show that using the Householder method significantly improves the reconstruc-
tion quality of all records used. Tchebichef moments with Householder provide a high 
Peak signal to noise ratio (PSNR) with very low Mean-Square Error (MSE) values com-
pared to Tchebichef moments. The average reconstruction errors PSNR and MSE of the 
proposed methods are 109.147 and 0.0564, respectively, as reported in Table 2. Figure 1 
presents the reconstructed signal’s reconstruction errors (PSNR, MSE) using Tchebichef 
moments with and without Householder method. It confirms the superiority of the pro-
posed methods in reconstructed signals. Figure  2 shows the reconstructed “Rec. 107” 
signal by Tchebichef moments with and without the Householder method.

5.2 � Comparison of reconstruction quality for the proposed re‑orthonormalization 

methods

In the previous section, we investigated the ability of the proposed procedure to main-
tain the orthogonality property of the discrete polynomials in the reconstruction of the 
signal. There are three methods in the proposed procedure mentioned, and they are 
the Gram–Schmidt method (MGSM), the Householder method (HM), and the Given 

Fig. 1  The average values a PSNR and b MSE of the reconstructed signals using Tchebichef moments with 
and without Householder method
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Rotations method (GRM). This section will investigate which of the three methods is 
preferable in signal reconstruction quality and execution time. We have used Tchebichef 
moments with the three proposed methods (MGSM, HM, and GRM) to reconstruct the 
signals and summarized the results in Table 3. Figure 3 also illustrates the reconstruc-
tion errors (PSNR, MSE) of the three proposed methods using Tchebichef moments. 
The results displayed in Table 3 and Fig. 3 demonstrate outperforming HM on MGSM 
and GRM in PSNR and MSE on all records used. The reconstructed “Rec. 115” signal 
by using Tchebichef moments with Gram–Schmidt, Householder, and Given Rotations 
methods are shown in Fig. 4.

We compare the execution time of HM on MGSM and GRM to discover which of the 
three methods is best in terms of execution time, as shown in Fig. 5. The visual inspec-
tion from Fig. 5 indicates that HM is faster than MGSM and GRM.

5.3 � Comparison of reconstruction quality for DOMs

This section determines which of the different types of moments is the best in the 
quality of the reconstructed signals. The compression performance of the discrete 
orthogonal moments (Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner) in 
signal reconstruction is presented in Table  4. In these experiments, the House-
holder method is used to preserve the orthogonality property methods in discrete 
orthogonal moments. Table 4 illustrates the resulting PSNR and MSE as reconstruc-
tion error metrics for 30 records from MIT-BIH arrhythmia dataset. The obtained 
results generally indicate that Tchebichef, Krawtchouk, and Charlier are superior to 
Hahn and Meixner in terms of PSNR and MSE. As for the three methods, Tchebichef, 
Krawtchouk, and Charlier, Tchebichef is relatively superior to Krawtchouk and Char-
lier. The average performance of the Tchebichef in terms of PSNR and MSE is 108.924 
and 0.0580, respectively. Figures 6 and 7 depict the compression of the average PSNR 
and MSE of discrete orthogonal moments (Tchebichef, Krawtchouk, Charlier, Hahn, 

Fig. 2  Set of reconstructed “Rec. 107” signal using Tchebichef moments with and without the Householder 
method
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and Meixner) in signal reconstruction. The reconstructed “Rec. 234” signal by using 
Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner moment with Householder 
method is depicted in Fig. 8.

To further validate the efficiency of DOMs, reconstruction is conducted using Tch-
ebichef, Krawtchouk, Charlier, Hahn, and Meixner with orders ranging between 50 and 
200. Table 5 compares the quality of the signals reconstructed for the five moments in 
terms of PSNR and MSE in different moment orders. Figures 9 and 10 depict the curves 
of PSNR and MSE values corresponding to the reconstructed MIT-BIH Rec. 101 in 
different moments, respectively. As can be seen from the results in Table 5 and Fig. 9, 
The PSNR values improve appropriately with moment order increases, indicating an 
improvement in the reconstructed signal quality. The best quality of the reconstructed 
signal (lower MSE) is likewise obtained at the last moment order, as shown in Table 5 
and Fig. 10.

Table 3  Comparison of reconstruction errors (PSNR and MSE) for re-orthogonalization methods 
(MGSM, HM, and GRM) using Tchebichef moments

Signal Algorithm 1 (MGSM) Algorithm 2 (HM) Algorithm 3 (GRM)

PSNR MSE PSNR MSE PSNR MSE

MIT-BIH Rec. 100 96.841 0.0756 101.685 0.0432 96.240 0.0810

MIT-BIH Rec. 101 103.562 0.0364 106.854 0.0249 100.552 0.0514

MIT-BIH Rec. 103 91.995 0.1525 93.21 0.132 91.122 0.1708

MIT-BIH Rec. 105 104.0367 0.0370 108.477 0.022 100.156 0.0579

MIT-BIH Rec. 107 100.457 0.3192 106.437 0.160 96.624 0.4962

MIT-BIH Rec. 108 84.566 0.2952 90.329 0.152 82.168 0.3890

MIT-BIH Rec. 111 84.323 0.1462 100.245 0.0234 85.359 0.1298

MIT-BIH Rec. 112 111.686 0.0877 118.381 0.0406 102.311 0.2582

MIT-BIH Rec. 115 112.918 0.0290 116.436 0.0194 109.591 0.0425

MIT-BIH Rec. 117 104.355 0.0186 109.422 0.1039 98.417 0.3688

MIT-BIH Rec. 118 105.657 0.2365 113.102 0.1004 99.204 0.4971

MIT-BIH Rec. 119 115.504 0.0641 126.726 0.0176 112.437 0.0912

MIT-BIH Rec. 121 117.742 0.0328 118.520 0.0300 113.930 0.0508

MIT-BIH Rec. 122 116.414 0.0480 119.917 0.0320 115.032 0.0562

MIT-BIH Rec. 124 117.471 0.0404 121.8111 0.0245 117.060 0.424

MIT-BIH Rec. 200 88.881 0.3114 94.876 0.1561 81.134 0.7596

MIT-BIH Rec. 201 109.217 0.0101 113.945 0.0058 105.735 0.0150

MIT-BIH Rec. 202 103.154 0.0143 105.621 0.0108 102.776 0.0149

MIT-BIH Rec. 205 86.9403 0.3081 87.028 0.3050 84.342 0.4156

MIT-BIH Rec. 208 119.919 0.0118 126.499 0.0055 118.348 0.0141

MIT-BIH Rec. 209 100.061 0.0301 100.652 0.0281 97.036 0.0426

MIT-BIH Rec. 213 108.536 0.0814 109.599 0.0702 106.866 0.0961

MIT-BIH Rec. 214 102.401 0.0727 104.048 0.0602 100.998 0.0855

MIT-BIH Rec. 219 118.673 0.0279 121.013 0.0213 118.279 0.0292

MIT-BIH Rec. 222 103.708 0.0100 103.385 0.0104 102.656 0.0113

MIT-BIH Rec. 228 107.213 0.0171 108.908 0.0141 100.598 0.0366

MIT-BIH Rec. 230 112.481 0.0204 112.965 0.0193 111.332 0.0233

MIT-BIH Rec. 231 111.154 0.0103 115.863 0.0060 105.185 0.0204

MIT-BIH Rec. 233 107.528 0.0690 114.101 0.0324 100.313 0.1584

MIT-BIH Rec. 234 101.909 0.0313 104.380 0.0236 99.352 0.0421

Average 104.976 0.0881 109.147 0.0564 101.838 0.1643
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6 � Discussion
This paper contributes to the ongoing discussions about using DOMs in analyzing one-
dimensional bio-signals. In addition, it also introduces an algorithm to overcome the 
propagation of numerical errors problem faces high-order computation of DOPs. The 
comparative experiments shown in the above tabular and graphical results assure the 

Fig. 3  The average values a PSNR and b MSE of the reconstructed signals using Tchebichef moments with 
Gram–Schmidt, Householder, and Given Rotations methods

Fig. 4  Set of reconstructed “Rec. 115” signal using Tchebichef moments with Gram–Schmidt, Householder, 
and Given Rotations methods
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superiority of DOMs in reconstruction biosignals. It also demonstrates the advantages 
of the proposed re-orthonormalization methods (Gram–Schmidt, Householder, and 
Given Rotations).

Generally, the increase in polynomial order, the increase in error propagation. 
Therefore, many researchers used QR decomposition methods to overcome these 
errors. In this work, we present Discrete Orthogonal Moments (DOMs) in bio-
signals analysis and reconstruction, which are gaining popularity in analyzing one-
dimensional signals due to their effectiveness in capturing digital information without 
redundancy. The works addressed by others faced propagation errors at high order 
polynomials which destroy the orthogonality property of these polynomials. While in 
our work, the problem of error propagation at high order polynomials is solved using 
QR decomposition methods. Hence, the OP reconstructs the bio-signals efficiently. 
Moreover, to highlight the efficiency of the different forms of QR decomposition 
like the Gram–Schmidt method, the Householder method, and the Given Rotations 
method in different situations, we compare the different methods to each other to 
show the differences between them. Consequently, we introduce a road map to the 
interested researchers. Additionally, we compare five common types of moments 
(Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner) to estimate the best moment 
in analyzing and reconstructing bio-signals which gives a clear guide to researchers in 
this area.

The results discussion obtained can be divided into three sections. Section one is the 
performance of the DOMs in biosignal reconstruction and the effect of using re-ortho-
normalization methods in maintaining the orthogonality property at the high-order 
computation of DOPs. In general, the superiority of DOMs in the reconstruction of bio-
signals can be attributed to the following worthwhile factors:

•	 DOMs are orthogonal moments with orthogonal basis functions. Each moment 
coefficient can capture the signal’s distinct and unique components with no informa-
tion redundancy.

•	 According to the order value, orthogonal moments’ basis functions can extract vari-
ous distinct types of information from the signals.

•	 Moments generated from discrete orthogonal polynomials are effective at compress-
ing signals. This is because they have a higher efficiency of energy compression for 

Fig. 5  Average execution time using Tchebichef moments with re-orthonormalization methods (Gram–
Schmidt, Householder, and Given Rotations)



Page 17 of 24Fathi et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:104 	

Ta
bl

e 
4 

Re
co

ns
tr

uc
tio

ns
 e

rr
or

s 
(P

SN
R 

an
d 

M
SE

) o
f b

io
si

gn
al

 b
y 

Tc
he

bi
ch

ef
, K

ra
w

tc
ho

uk
, C

ha
rli

er
, H

ah
n,

 a
nd

 M
ei

xn
er

 m
om

en
ts

 w
ith

 th
e 

H
ou

se
ho

ld
er

 m
et

ho
d

Si
gn

al
Tc

he
bi

ch
ef

 +
 H

M
Kr

aw
tc

ho
uk

 +
 H

M
Ch

ar
lie

r +
 H

M
H

ah
n 
+

 H
M

M
ei

xn
er

 +
 H

M

PS
N

R
M

SE
PS

N
R

M
SE

PS
N

R
M

SE
PS

N
R

M
SE

PS
N

R
M

SE

M
IT

-B
IH

 R
ec

. 1
00

10
1.

68
5

0.
04

32
10

0.
58

7
0.

07
81

98
.1

83
0.

08
84

84
.5

98
0.

35
41

80
.0

41
0.

04
36

M
IT

-B
IH

 R
ec

. 1
01

10
6.

85
4

0.
02

49
10

4.
06

7
0.

03
43

10
3.

75
1

0.
04

48
85

.8
11

0.
28

07
83

.3
09

0.
37

44

M
IT

-B
IH

 R
ec

. 1
03

93
.2

10
0.

13
2

88
.5

84
0.

20
87

87
.8

40
0.

21
08

80
.8

04
0.

40
78

79
.3

04
0.

48
01

M
IT

-B
IH

 R
ec

. 1
05

10
8.

47
7

0.
02

2
10

8.
01

7
0.

02
45

10
3.

01
4

0.
04

07
10

0.
95

0
0.

14
01

98
.0

18
0.

20
84

M
IT

-B
IH

 R
ec

. 1
07

10
6.

43
7

0.
16

00
10

4.
50

1
0.

29
80

10
3.

48
6

0.
30

10
97

.2
10

0.
40

17
97

.8
41

0.
41

20

M
IT

-B
IH

 R
ec

. 1
08

90
.3

29
0.

15
20

87
.8

97
0.

20
11

84
.9

29
0.

39
52

70
.6

46
1.

46
57

70
.2

13
1.

61
72

M
IT

-B
IH

 R
ec

. 1
11

10
0.

24
5

0.
02

34
10

0.
86

6
0.

02
47

96
.5

01
0.

08
01

92
.0

98
0.

21
50

91
.8

74
0.

30
47

M
IT

-B
IH

Re
c.

 1
12

11
1.

68
6

0.
08

77
10

9.
54

8
0.

08
99

10
8.

58
4

0.
09

10
10

4.
85

4
0.

28
57

10
1.

01
4

0.
40

14

M
IT

-B
IH

 R
ec

. 1
15

11
6.

43
6

0.
01

94
98

.5
14

0.
15

24
11

3.
57

3
0.

03
39

83
.3

03
0.

87
80

80
.8

37
1.

16
61

M
IT

-B
IH

 R
ec

. 1
17

10
9.

42
2

0.
10

39
11

0.
54

8
0.

07
41

10
7.

58
0

0.
20

41
10

3.
68

5
0.

41
80

99
.5

01
4

0.
50

18

M
IT

-B
IH

 R
ec

. 1
18

11
3.

10
2

0.
10

04
10

8.
01

7
0.

20
48

10
7.

15
0

0.
23

10
10

2.
98

5
0.

47
40

10
0.

30
1

0.
60

14

M
IT

-B
IH

 R
ec

. 1
19

12
6.

72
6

0.
01

76
12

4.
01

4
0.

19
01

12
3.

04
7

0.
22

04
11

8.
01

4
0.

30
41

11
7.

10
4

0.
33

80

M
IT

-B
IH

 R
ec

. 1
21

11
8.

52
0

0.
03

00
11

9.
94

7
0.

02
97

11
7.

50
1

0.
03

70
1

11
3.

98
0

0.
11

48
11

0.
01

8
0.

19
30

M
IT

-B
IH

 R
ec

. 1
22

11
9.

91
7

0.
03

20
11

7.
50

4
0.

09
01

11
5.

04
8

0.
14

08
10

5.
50

0
0.

34
01

10
2.

40
2

0.
50

14

M
IT

-B
IH

 R
ec

. 1
24

12
1.

81
11

0.
02

45
12

0.
01

0
0.

02
89

11
8.

50
7

0.
04

03
11

1.
01

2
0.

50
41

10
9.

50
0

0.
61

40

M
IT

-B
IH

 R
ec

. 2
00

94
.8

76
0.

15
61

93
.0

14
0.

20
14

90
.3

01
0.

22
30

85
.5

09
0.

60
11

82
.4

17
0.

77
10

M
IT

-B
IH

 R
ec

. 2
01

11
3.

94
5

0.
00

58
11

4.
01

8
0.

00
30

11
3.

54
1

0.
00

70
10

5.
03

7
0.

05
80

10
2.

65
0

0.
10

86

M
IT

-B
IH

 R
ec

. 2
02

10
5.

62
1

0.
01

08
10

2.
02

8
0.

01
88

10
1.

69
0

0.
02

01
96

.5
10

0.
08

13
95

.0
54

0.
10

47

M
IT

-B
IH

 R
ec

. 2
05

87
.0

28
0.

30
50

86
.5

10
0.

03
00

85
.0

14
0.

04
01

80
.5

41
0

0.
70

89
78

.0
14

0.
90

93

M
IT

-B
IH

 R
ec

. 2
08

12
6.

49
9

0.
00

55
12

5.
84

7
0.

00
80

12
0.

00
8

0.
02

07
11

4.
80

1
0.

04
09

11
1.

98
5

0.
08

04

M
IT

-B
IH

 R
ec

. 2
09

10
0.

65
2

0.
02

81
11

1.
60

7
0.

00
80

97
.1

26
0.

04
42

88
.0

77
0.

11
96

87
.1

83
0.

13
26

M
IT

-B
IH

 R
ec

. 2
13

10
9.

59
9

0.
07

02
10

6.
04

1
0.

09
01

10
4.

18
0

0.
14

70
99

.5
48

0.
44

07
96

.4
71

0.
70

10

M
IT

-B
IH

 R
ec

. 2
14

10
4.

04
8

0.
06

02
11

8.
71

9
0.

01
11

10
2.

35
0

0.
07

32
92

.3
81

0.
23

06
91

.4
97

0.
25

53

M
IT

-B
IH

 R
ec

. 2
19

12
1.

01
3

0.
02

13
10

3.
67

5
0.

15
68

11
8.

80
5

0.
05

48
87

.4
57

1.
01

42
84

.9
68

1.
35

10

M
IT

-B
IH

 R
ec

. 2
22

10
3.

38
5

0.
01

04
10

5.
14

7
0.

02
58

10
3.

01
4

0.
01

58
95

.5
40

0.
10

76
94

.6
03

0
0.

30
58



Page 18 of 24Fathi et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:104 

Ta
bl

e 
4 

(c
on

tin
ue

d)

Si
gn

al
Tc

he
bi

ch
ef

 +
 H

M
Kr

aw
tc

ho
uk

 +
 H

M
Ch

ar
lie

r +
 H

M
H

ah
n 
+

 H
M

M
ei

xn
er

 +
 H

M

PS
N

R
M

SE
PS

N
R

M
SE

PS
N

R
M

SE
PS

N
R

M
SE

PS
N

R
M

SE

M
IT

-B
IH

 R
ec

. 2
28

10
8.

90
8

0.
01

41
10

7.
40

0
0.

02
01

10
5.

04
8

0.
03

41
10

0.
65

4
0.

09
01

99
.6

59
0.

20
87

M
IT

-B
IH

 R
ec

. 2
30

11
2.

96
5

0.
01

93
10

6.
81

7
0.

03
92

11
0.

37
3

0.
02

61
96

.1
91

0.
13

34
94

.5
61

0.
16

09

M
IT

-B
IH

 R
ec

. 2
31

11
5.

86
3

0.
00

60
11

4.
84

1
0.

00
90

11
1.

85
4

0.
01

74
10

3.
84

0
0.

09
98

10
0.

36
0

0.
25

00

M
IT

-B
IH

 R
ec

. 2
33

11
4.

10
1

0.
03

24
11

2.
89

0
0.

08
04

10
9.

59
4

0.
10

89
10

2.
69

8
0.

23
33

98
.8

90
0.

30
17

M
IT

-B
IH

 R
ec

. 2
34

10
4.

38
0

0.
02

36
10

8.
66

1
0.

01
44

10
2.

87
9

0.
02

50
92

.2
48

0.
09

56
89

.5
76

0.
12

96

A
ve

ra
ge

10
8.

92
4

0.
05

80
10

7.
32

7
0.

08
15

10
5.

48
2

0.
10

05
96

.5
49

0.
35

46
94

.3
05

0.
45

09



Page 19 of 24Fathi et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:104 	

common signals. If the discrete orthogonal moment is chosen correctly, the energy 
in the signal is concentrated on a small fraction of the moment coefficients; these 
coefficients are then stored and used to generate the reconstructed signal.

•	 The ability of DOMs on local and global feature extraction.
•	 Using recursive formulas to compute polynomial values by using lower polynomial 

orders instead of directly computing them causes computational efficiency in the 
computation of the moments.

Section two determines which of the three re-orthogonalization methods (Gram–
Schmidt, Householder, and Given Rotations) best preserves the orthogonality prop-
erty. The comparative results indicate that the Householder method is the best in 
signal reconstruction in terms of reconstruction errors (PSNR, MSE) and execu-
tion time. The most likely explanation of the result has explained the fact that using 
Gram–Schmidt after computation of each nth Polynomial order minimizes the 
numerical error propagation considerably. Therefore, the Gram–Schmidt method is 
not stable when used in a re-orthogonalization matrix with large size. To this end, the 

Fig. 6  The average PSNR of the reconstructed signals using Tchebichef, Krawtchouk, Charlier, Hahn, and 
Meixner moment with Householder method

Fig. 7  The average MSE of the reconstructed signals using Tchebichef, Krawtchouk, Charlier, Hahn, and 
Meixner moment with Householder method
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Householder method outperforms the Gram–Schmidt and Givens rotation methods 
in numerical stability in the QR decomposition of a matrix with large size. In addition 
to Householder method is faster compared to the Gram–Schmidt and Givens rotation 
methods. Because of this, the Householder method is better for real-time applica-
tions. The last section investigates which type of discrete orthogonal moments (Tch-
ebichef, Krawtchouk, Charlier, Hahn, and Meixner) provides better-reconstructed 
signals. Besides that, tracking the reconstructed signal quality for DOMs at various 
orders of moments. The obtained results demonstrate that all of the used moment 
types are stable since they enabled the reconstruction of the signals until the high 
moment order. It reflects the effectiveness and numerical stability of the orthogonal 
moment for large-size signal reconstruction. This numerical stability is ensured by 
re-orthogonalization methods (Gram–Schmidt, Householder, and Given Rotations), 
especially the Householder method.

Despite the development of several reconstruction methods, substantial limita-
tions must still be addressed. In the design of reconstruction methods, computational 

Fig. 8  Set of reconstructed “Rec. 234” signal using Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner 
moment with Householder method
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complexity and memory management play a crucial role, particularly in real-time 
applications like Remote Monitoring Systems. Reconstruction techniques increase the 
complexity of memory management. When the memory required to conduct the com-
pression technique exceeds the available device memory, efficient reconstruction cannot 
be accomplished. Even though some reconstruction techniques achieve higher recon-
struction quality, they do not manage memory effectively. Consequently, memory man-
agement and computational complexity in reconstruction techniques are interesting 
future research directions.

7 � Conclusion
This article presents a method for bio-signal reconstruction based on Discrete Orthog-
onal Moments (DOMs). It also proposes a modified version of DOPs using the QR 
decomposition methods such as the Gram–Schmidt, Householder, and Given Rota-
tions methods. The purpose of the proposed modification is to preserve the orthogo-
nality property in the computation of high polynomials order. Based on the results, it 
can be concluded that the research into DOPs has been very successful. DOMs of vari-
ous types: Tchebichef, Krawtchouk, Charlier, Hahn, and Meixner moments provide 
good results in reconstruction quality (PSNR, MSE). The comparative experiments 
demonstrate the superiority of the proposed modification of DOMs in reconstruc-
tion quality. This improvement in DOMs performance is due to QR decomposition 

Fig. 9  PSNR of the reconstructed signal "MIT-BIH Rec. 101" using Tchebichef, Krawtchouk, Charlier, Hahn, and 
Meixner moment with Householder methods

Fig. 10  MSE of the reconstructed signal "MIT-BIH Rec. 101" using Tchebichef, Krawtchouk, Charlier, Hahn, and 
Meixner moment with Householder methods
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methods to preserve the orthogonality property and then overcome the propagation 
of numerical errors. We also conclude that Tchebichef, Krawtchouk, and Charlier 
moments are better than Hahn and Meixner moments in reconstruction quality, and 
generally, Tchebichef has the best performance in signal reconstruction. The experi-
ments of performance DOMs in reconstruction quality at a high order of moments 
are performed. We have noticed that the reconstruction quality improvement (PSNR 
highest, MSE lower) with moment orders increases. It means that the DOMs used in 
the proposed modification are efficient in large-size signal reconstruction. We could 
use the proposed method for large-size signal compression and classification in our 
future work and research direction. In addition, other applications will be used instead 
of bio-signal, such as volumetric medical images, Galaxies images, and Retrieval sys-
tems for Biomedical Images. The proposed method’s ability in reconstruction could be 
improved by using a new version of DOMs as fractional DOMs, Radial DOMs.
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