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1  Introduction
Modern health care is rapidly evolving from a hospital-centered service toward ubiqui-
tous and personalized medicine. In particular, mobile and remote health care are see-
ing rapid developments thanks to new technologies, such as artificial intelligence (AI) 
and 5G [1]. Mobile health (m-health) encompasses the measurement of both vitals and 
physiological signals of individuals who freely move in a variety of indoor and outdoor 
environments, through wearables, smart and portable physiological sensors such a 
Inertial Measurement Unit (IMU), smart clothes, watches and electronic wrist bands. 
These sensing devices are increasingly employed to continuously monitor people’s 
health conditions, e.g., during a recovery period at home, but also for fitness purposes 
and advanced sport training. The m-health systems are particularly challenged to ensure 
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stable and reliable communication links, despite the high heterogeneity of the data traf-
fic and user needs. Also, minimal monitoring system setup is preferred to improve usa-
bility and portability and to reduce its obtrusiveness, thus facilitating the acceptability 
of such assistive technologies [2] and increasing the users’ Quality of Life (QoL) [3]. The 
above requirements were further exacerbated by the SARS-Cov2 pandemics, when the 
digitalization of health care and the possibility of delivering healthcare services at the 
patient’s home (i.e., tele-rehabilitation) emerged as key advancements to reduce the risks 
associated to new infections, but also to reduce the economic burden of hospitalization 
and travel costs for the national healthcare systems and the patients.

One of the most common applications of m-health is to provide rehabilitation and 
motor training at home. In this scenario, it is of utmost importance to be able to pre-
cisely recognise gestures and movements. This is typically implemented through the use 
of IMU sensors [4, 5], cameras [6–8] and radar sensors [9]. These kinds of monitoring 
can offer a high-level estimation of the movement being performed by the individual. In 
parallel, to explore the neural basis of the movement and to evaluate muscular fatigue as 
well as precise muscular control during the recovery period, electrophysiological sens-
ing is needed [10–14]. In this paper, we focus on multi-modal systems that are able to 
simultaneously acquire electroencephalography (EEG) and electromyography (EMG) 
data during movement. Despite their higher explanatory value, these sensing modalities 
share a lower usability and a higher obtrusiveness: in fact, to capture significant patterns 
associated to motor recovery, a number of sensors are generally used to acquire brain 
signals from all over the scalp and from several muscles along the moving limb [15–19]. 
To ensure the sustainability of m-health systems based on electrophysiological measure-
ments, one important challenge is to extract relevant pieces of EEG and EMG informa-
tion to correlate with the subject’s conditions and behavior. Given the complexity of this 
scenario, the most common solution is to rely on expert features and previous experi-
ence, and to limit a-priori the number of sensors to a few of them, thus possibly losing 
relevant information related to anomalies. On the other hand, commercial low-cost EEG 
and EMG devices are driven by comfort to place the electrodes in convenient places 
(e.g., the forehead for EEG), rather than in more meaningful but inconvenient locations 
(e.g., the center of the scalp, or the hand). However, with the recent effort on wearables 
and new sensing technologies (e.g., flexible, printable and graphene-based electrodes 
[16, 20–22]), new solutions are expected to trade-off comfort and proper motor control 
monitoring.

With this perspective, we adopted an agnostic (rather than expert) and extensive 
(rather than selective) approach to classify hand movements using a multi-modal EEG-
EMG publicly available dataset. Particularly, from the same dataset, we set up two sepa-
rate classification problems to distinguish hand movements during holding of objects 
with different textures (i.e., the first classification problem) or weights (i.e., the second 
classification problem). We extracted a well-known feature, i.e., the magnitude squared 
coherence (MSC), from every pair of EEG and EMG sensors, and we used it for the 
classification. We employed three different feature selection and classification algo-
rithms, namely feature selection with consensus (FeSC), p-value filtering with forward 
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sequential feature selection (pFSFS), and least absolute shrinkage and selection opera-
tor (LASSO), to find the smallest subset of highly discriminative features that can effec-
tively classify hand movements. Moreover, we studied the stability of the features of that 
subset and we compared the selections made by the algorithms. An individual feature 
is considered as stable when it is consistently selected across different partitions of the 
dataset. To this aim, we also proposed an intuitive mapping-and-aggregation strategy 
that allowed us to map all the features that were selected more often when changing the 
data into an aggregated frequency-EEG-EMG space that is easier to be physiologically 
interpreted. With this approach, we were able to provide the following contributions: 

1	 the systematic comparison of three different feature selection algorithms using a 
novel sensor-level fusion approach for the EEG and EMG signals;

2	 a significant improvement of the FeSC algorithm, previously proposed in [23];
3	 very high classification performance in both classification problems, comparable or 

higher than previous works;
4	 the identification of a subset of physiologically meaningful features for the best per-

forming classification algorithms;
5	 an intuitive visual representation, via the mapping-and-aggregation strategy, of the 

subsets identified in 3 to facilitate the physiological interpretation of the results;
6	 the assessment of the stability of the subsets identified in 3 across datasets, classifica-

tion problems, and algorithms;
7	 the identification of a predominant common pattern, corresponding to the particular 

activation of the centro-parietal brain areas and the muscles of the arm and forearm 
in the (8, 80) Hz frequency band, which is in line with previous literature on EEG and 
EMG during motor tasks.

The rest of the paper is organized as follows: Sect. 2 reports previous work that deals 
with data fusion in datasets including both EEG and EMG data. Also, we describe the 
rationale behind consensus clustering for feature selection (used in our current version 
of FeSC). In Sect.  3, first we explain the details of the data preparation and the MSC 
extraction. We describe the improved FeSC pipeline, as well as how pFSFS and LASSO 
algorithms work. Then, we introduce our original mapping-and-aggregation strategy 
and we define the region of interests (ROIs) used to analyze results. Finally, we present 
the performance metrics used to evaluate the classification outcomes from the different 
algorithms. Section 4 describes the dataset used in this study and provides all the results, 
with a critical discussion with respect to the current reference literature. Section 5 con-
cludes our work, discussing a few limitations of this study and providing some stimulat-
ing future perspectives.

2 � Related works
In this section, we provide a brief review of the state of the art related to multi-modal 
fusion of EEG and EMG data in different scenarios. Furthermore, we also introduce pre-
vious literature on feature selection based on clustering to provide the context for the 
development of our original FeSC algorithm.
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2.1 � EEG‑EMG fusion

Feature selection is recognized as a critical step in many e-health applications, e.g., emo-
tion recognition, anomaly detection, motor training, gesture recognition [24, 25]. It is 
well known that finding a small number of highly discriminative features could bring 
significant improvements in the classification performance [18, 26], in the explainabil-
ity of the results, as well as the reduction of the required communication and storage 
resources in m-health scenarios.

To reduce the complexity of a multi-modal dataset, including EEG and EMG signals, 
two approaches are possible: manual selection based on expertise or machine learning. 
In the first case, a few specific EEG and EMG sensors can be selected and expert features 
could be extracted, while discarding all the remaining data [27]. Although being a com-
mon solution, this method requires robust priors or preliminary clinical knowledge. In 
the second case, machine learning approach could be adopted to provide a more gen-
eral and agnostic solution, taking into account the entire available dataset. It is worth 
mentioning that EEG and EMG have been combined in different ways with the purpose 
of classification. Three main fusion methods can be used: (1) sensor level, (2) feature 
level, and (3) classification level [28]. However, in the analysis of EEG and EMG, the last 
two approaches have been mostly used. In [29], the authors have recently proposed an 
EEG-based fall detection system that identifies the EMG contraction onset and extracts 
an expert EEG feature in the 800 ms period before, to detect falls in advance. In [30, 
31], the authors employ features obtained from EEG and EMG, separately, to investigate 
how muscular fatigue can affect hand gestures classification by combining the outputs of 
two classifiers based on EEG or EMG only, using different weights or a Bayesian fusion 
approach. The last solution results in better classification performance, even when the 
amplitude of the EMG signal is degraded to simulate muscular fatigue. In [30], features 
are independently extracted from the EEG covariance matrix and from the EMG sig-
nals. Then, the authors apply a classification based on support vector machine (SVM) to 
classify right- versus left-hand movements, in presence of different levels of (simulated) 
muscular fatigue. In [31], features are also separately obtained from EEG and EMG, and 
the information fusion is obtained at the decision level using a Bayesian fusion approach. 
In particular, the authors find that the average performance of all subjects based only 
on EEG is 73% ; on the other hand if only EMG is considered the average performance 
is 87% . Moreover, by means of the fusion approach they find an increase to 91% of the 
performance. In [32], the authors review a number of studies on different hybrid BCI 
systems where EEG and EMG are integrated to improve the ability of exoskeletons and 
assistive robotics to support, or enhance, the upper limb movements. They conclude 
that the simultaneous, or sequential, fusion of EEG and EMG data is generally beneficial 
for detecting both the intention of moving and the kind of movement. The improvement 
is reported mainly in terms of classification accuracy, going from about 70% (unimodal 
approach, either EEG or EMG, separately) to more than 90% (multimodal approach). In 
[33], several hand movements have been acquired with simultaneous recording of EEG 
and EMG in four amputees subjects. Sequential forward selection (SFS) is employed to 
select the most informative EEG and EMG signals to keep, based on their contribution 
in terms of classification accuracy. Then, four time-domain features are extracted and 
fed into a linear discriminant analysis (LDA) algorithm to classify hand movements. 



Page 5 of 22Cisotto et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:103 	

Thanks to the fusion, the classification accuracy increased to 94.2± 3.2% ( +14% over the 
single modality).

In [34], EEG and EMG were fused at the feature level to classify different hand move-
ments, obtaining an accuracy of 68.24% , a better results if compared with the single 
modality ( 57.78% EEG only, 61% EMG only). In [35] and [36], the authors considered 
elbow flexion and extension movements, while varying parameters, such as the speed of 
motion, the load to lift, and the level of muscular fatigue. They compared two different 
fusion strategies for task weight classification during dynamic elbow flexion-extension 
motion: the single classifier (SC) used the EEG and EMG features, separately extracted, 
as input to a support vector machine (SVM), while the weighted average classifier 
(WA) combined the outputs from two signal-specific SVM classifiers. The SC approach 
achieved an accuracy of 80.75% which was a statistically significant increase over the 
EEG-based classifier, but not over the EMG one. When speed was used as additional 
information, the authors found that WA provides the best performance: an accuracy of 
83.01% was achieved in the classification of movements associated with three different 
loads. Interestingly, the authors also proposed a preliminary feature stability study: the 
number of times each feature was selected from EEG and EMG was computed in differ-
ent subjects, revealing some degree of robustness across them. However, the authors left 
a deeper analysis for further investigations.

The above-mentioned studies proved that using the features from both EEG and EMG 
can enhance the results of the classification. More recently, a few papers investigated the 
possibility of classifying gestures by fusing EEG and EMG at the data level. In [37], the 
authors computed the spectral power correlation (SPC) extracted from a multi-modal 
EEG-EMG dataset and used SVM to classify hand grasping and resting states. This 
method outperformed the gold standard, i.e., the common spatial patterns (CSP), with 
an accuracy of 90± 4.86% (CSP achieved an accuracy of 79.75± 5.71% ). In our previous 
works [23, 38], we introduced the possibility of classifying hand movements through a 
well-established, physiologically meaningful, feature, i.e., the MSC, that is obtained by 
taking the normalized cross-spectrum between EEG and EMG (i.e., fusion at the data 
level). In [38], we limited our analysis to a single EEG sensor and 5 EMG sensors and we 
investigated how the use of data from multiple EMG sensors, via MSC, could enhance 
the classification performance. In fact, we could reach a classification accuracy up to 90% 
by using 2 to 4 EMG sensors (with some variability depending on the observation period 
and the motor task). In [39], the correlation between the band-limited power time-
courses (CBPT) of EEG and EMG was computed from a group of healthy individuals 
and hemiplegic patients. The CBPT was used to control a BCI-based hand orthosis and 
it was calculated over a suitable time period of 1 s (which falls between 3 s and 5 s within 
a trial, where 3 s is the instant of cue appearance) considering (8, 12) Hz as the frequency 
band for the EEG and (30,50) Hz for the EMG. In addition to this, C3-FDSR, Cz-FDSR, 
Cz-FDSL, and C4-FDSL were considered as channel combinations. The authors found 
that CBPT outperforms MSC. Indeed, they found an accuracy of 92.81± 2.09% in the 
healthy group and 84.53± 4.58% in the patients group if using CBPT, and an accuracy 
of 72.81± 4.9% in the healthy group and 69.53± 4.72% in the patients group if consid-
ering MSC. Finally, in [40], a deep autoencoder architecture was proposed to extract a 
representation based on a limited number of discriminant features from an EEG-EMG 
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dataset. They could classify two very well-coded emotions, dominance and arousal, 
reaching accuracy values in the range of 65–80% . However, this study extracted a latent 
(i.e., transformed) representation of the input dataset, showing very high classification 
performance but at the same time preventing from the possibility to interpret the results 
in their original electrophysiological domain.

In this paper, we use MSC as a fusion method and we aim to evaluate different fea-
ture selection and classification approaches to distinguish different fine hand move-
ments. Also, we study the stability of the features selected by different algorithms 
in different datasets, while providing an intuitive mapping-and-aggregation strategy 
that allows for an easier physiological interpretation. Using MSC to classify gestures 
has rarely been used in the literature, but it can be potentially capable of providing 
good classification results, with the further advantage of using a feature with a well-
known physiological value, thus a straightforward clinical interpretation.

2.2 � Feature selection based on clustering

Recent works leveraged unsupervised machine learning techniques for feature 
selection, particularly clustering methods. Hierarchical clustering has been a com-
mon choice to progressively reduce the number of features as in [41, 42]. In the 
first work, the relevance of different feature combinations is studied, providing an 
improvement of the accuracy performance using several classifiers. In [42], instead, 
the authors use mutual information and the coefficient of relevancy to measure the 
distance between and within clusters, respectively. In [43], the authors present sev-
eral methods for feature selection and describe evaluation measures that can be used 
to compare their performance. The accuracy is found to be in the range 70%–100% , 
depending on the classification strategy and the dataset under investigation. Also, 
they point out that clustering-based feature selection methods could retain irrel-
evant features: indeed, these are often clustered together and then represented by 
some elements in the final set of selected features.

As a solution, [44] applies clustering with consensus to identify more reliable and 
robust ROIs from a neuroimaging set of signals. To this aim, the authors run mul-
tiple iterations of the k-means algorithm to clusterize together multiple samples 
corresponding to different brain regions. Brain regions are then aggregated when 
consensus across iterations is found.

In one of our previous works [23], we considered 32 EEG and 5 EMG sensors, we 
extracted the MSC from every multi-modal pair and we used its values to form a 
high-dimensional feature vector that can be used to classify different hand move-
ments. The high number of available MSC features was reduced through an original 
feature selection strategy based on consensus clustering, namely FeSC [23]. How-
ever, in its first prototype, FeSC achieved only limited classification results (accuracy 
around 60% ). Therefore, here, we highly improve its performance, including a more 
refined pre-processing procedure and a more robust cross-validation strategy.

As far as the authors know, this particular investigation has not been proposed yet, 
in previous literature.
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3 � Methods
In this section, we describe the signal processing, from its pre-processing to the 
extraction of the feature matrix. Then, we describe the feature selection methods 
we compare, namely FeSC, pFSFS, and LASSO, and define the metrics used in the 
evaluation of the classification performance. These algorithms have been chosen as 
prominent representatives of three main categories of feature selection algorithms: 
namely, wrapper, filtering, and embedded methods, respectively [45, 46]. Wrapper 
methods, such as FeSC, always determine the best feature subset based on classifi-
cation; filtering methods, such as LASSO, are independent from classification, while 
the embedded methods, as pFSFS, combine the previous ones. The stability of the 
selected features has been also studied, with advantage toward the interpretability of 
the outcomes of the algorithms.

3.1 � Pre‑processing and feature extraction

We deal with datasets including EEG and EMG signals, simultaneously acquired from 
a number of participants, while performing two different upper limb movements 
(i.e., gesture 1 and gesture 2). Moreover, we assume to have artefacts-free datasets, 
thus, we can perform a lightweight pre-processing, as described in the following. We 
apply a bandpass filter (i.e., Chebyshev type I, order 86) to every signal, regardless 
of their kind, to limit them to the frequency band (1.5, 80) Hz [27]. Then, we apply a 
notch filter (i.e., IIR filter, direct-form II, order 2) to remove the power supply inter-
ference. For each repetition of the movement, and for every EMG signal, we identify 
the movement onset (i.e., the time instant when the muscle begins to contract) and 
the activation period (i.e., the period of time where the muscle is stably contracted), 
by means of expert labels included in the dataset. Then, we segment the signals into 
4 s-long segments, each corresponding to a single repetition of the movement. Every 
EEG signal is segmented according to the EMG activation. Here, it is important to 
note that, given that every EMG signal could have a slightly different movement onset 
and activation period, the EEG dataset is segmented according to each of the EMG 
signals: thus, we obtain multiple EEG segmented datasets, one per each available 
EMG signal. This is important for a proper feature extraction, as explained in the fol-
lowing. Finally, the EMG segments are full-wave rectified, and both EEG and EMG 
are normalized over their own area under curve (AUC) value.

We extract a single kind of feature, the MSC. It can be interpreted as the fusion, at 
the sensor level, of both the information from the EEG and the EMG [28]. Also, it has 
a very well-known physiological meaning associated to it, which has been well inves-
tigated in the literature related to motor control [13, 14, 47–51].

Formally, the MSC is computed as the normalized cross-spectrum between an EEG 
and an EMG segment. In what follows, we report the mathematical derivation of this 
feature.

Given N repetitions of the gesture to investigate, let snm(t) represent the n-th ele-
ment with signal length T seconds, t ∈ [0,T ] , and m = 1, 2, . . . ,M the number of 
EMG sensors considered. Also, let snq(t) be the analogue signal for the EEG dataset, 
with q = 1, 2, . . . ,Q the number of available EMG sensors.
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Let Snq (f ) and Snm(f ) be the autospectra of the n-th segment of EEG and EMG, 
respectively, and Snm,q(f ) the EEG-EMG cross-power spectrum of the n-th segment. 
We use the Fast Fourier Transform (FFT) algorithm to compute the spectra of seg-
ments (0.5 s-long Hann window, 256 FFT points). Then, we define Sq(f ) , Sm(f ) , and 
Sm,q(f ) as the averages along the N segments, obtained from Snq (f ) , Snm(f ) , and Snm,q(f ) , 
respectively. For every segment n = 1, 2, ...,N  , the MSC feature is computed as follows 
[52]:

Based on the Cauchy-Schwarz inequality, it holds

Thus, the Cn
m,q(f ) values range between 0 (i.e., uncorrelated signals) and 1 (i.e., perfect 

linear relationship). The custom Matlab implementation of the MSC computation is 
available on GitHub.1

Finally, for every segment, given Cn
m,q(f ) , we extract the average MSC value from 11 

well-known frequency bands defined as δ = (1.5, 4)  Hz, θ = (4, 8)  Hz, α = (8, 13)  Hz, 
β1 = (13, 20) Hz, β2 = (20, 30) Hz, β = (13, 30) Hz, γ1 = (30, 45) Hz, γ2 = (45, 60) Hz, 
γ3 = (60, 80)  Hz, γ = (30, 80)  Hz, and the full band = (1.5, 80)  Hz. Note that some of 
them are overlapping with each other, e.g., β1 and β , whereas others cover multiple nar-
rower sub-bands, e.g., β includes β1 and β2 . However, they can be useful as they are often 
considered in neuroscience as βlow and βhigh for their different role in the brain processes 
[53].

Then, for every movement repetition n and for each class c, we can define the feature 
vector, xc , as the set of average MSC values in all available combinations of EEG, EMG, 
and frequency band as follows (the bar sign corresponds to the average over the fre-
quency bins of each specific frequency band)

Therefore, xc contains M × Q × K  MSC samples, with M and Q being the number of 
EMG and EEG available sensors, respectively, and K = 11.

It is worth noting that this step typically produces a high number of extracted features. 
Therefore, here the need for an automatic procedure to select a limited number of rel-
evant features comes into play, in order to improve the subsequent classification and to 
decrease the computational effort.

Finally, we form the feature matrix, S:

(1)Cn
m,q(f ) =

|Snm,q(f )|
2

|Snq (f )||S
n
m(f )|

.

(2)0 ≤ |Snm,q(f )|
2 ≤ |Snq (f )||S

n
m(f )|.

(3)xc(n) = [Cn
1,1(δ),C

n
1,1(θ), ...,C

n
1,1(full),C

n
1,2(δ),C

n
1,2(θ), ...,C

n
M,Q(full)].

(4)
S = [xc1(1), xc1(2), . . . , xc1(N1), xc1(N1 + 1), . . . , xc1(N1 + N2),

xc2(1), xc2(2), . . . , xc2(N1), xc2(N1 + 1), . . . , xc2(N1 + N2)]
T ,

1  The code is available at https://​github.​com/​Cisot​toGiu​lia/​EEG-​EMG-​analy​tics.

https://github.com/CisottoGiulia/EEG-EMG-analytics
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where N1 and N2 represent the samples corresponding to all the N1 + N2 = N  repeti-
tions of the gestures, and c1, c2 are the two classes that we consider in the classification 
problem.

Given that the datasets used in this work include an imbalanced number of segments 
both across subjects and gestures, we apply Synthetic Minority Over-sampling Tech-
nique (SMOTE) [54] at the subject level. SMOTE consists in augmenting the dataset, 
using the available data (where each sample is represented by one feature vector) and 
adding one or more equally spaced samples, depending on the desired oversampling 
factor, in between each pair of samples. For this step, we first perform a normalization 
within-subject (over the maximum). Then, we apply SMOTE to balance the number of 
segments between gestures in each single subject.

3.2 � Feature selection algorithms

In this section, we introduce the feature selection algorithms that we compare in the 
following discussion, namely FeSC, pFSFS, and LASSO. To evaluate the classification 
performance we partitioned data to realize a repeated ( R = 10 ) holdout cross-validation 
(CV) procedure, where 90% of the feature matrix S obtained from the pre-processed data 
is used to train the algorithm, and the remaining 10% is kept for the test phase, where the 
performance of the trained model is evaluated over unseen data.

3.2.1 � FeSC

First presented in [23], Feature selection with consensus (FeSC) is based on machine 
learning and aims to robustly select the most relevant MSC features to classify differ-
ent fine hand movements. In the version used in this paper, FeSC has been significantly 
revised and improved and now it includes 3 clustering algorithms. FeSC has been imple-
mented in Matlab using custom code.2

FeSC is made by three main steps: pooling, consensus clustering, and classification, 
better described in the following.

Pooling As the first step, FeSC performs a pooling of the dataset to reduce in a two-
dimensional space the elements that characterize each feature: specifically, it takes the 
average of MSC across all trials of the same class. Then, the resulting matrix is trans-
posed. The feature matrix S described in Eq.  (4) thus results in the reduced matrix Sr , 
defined as

Consensus clustering The second step consists in the implementation of a consen-
sus clustering algorithm among three different clustering algorithms, similar to the 
approach applied in [44]. The evaluation of the consensus makes it possible to identify 
which features are grouped together by more than one individual clustering algorithm 
and, hence, ensures that the final clusterization is less affected by the specific choices of 
the clustering algorithm.

(5)Sr = [xc1, xc2]
T .

2  The code is available at https://​signe​tlabd​ei.​github.​io/​FeSC

https://signetlabdei.github.io/FeSC
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The consensus clustering algorithm takes STr  as input and clusterizes the available 
features into the Mr clusters that collect the largest consensus among the different 
clustering algorithms. The consensus clustering algorithm mainly depends on two 
parameters: the similarity index, σ , which is the fraction of individual clustering algo-
rithms that agree on a certain feature selection; and ν , the minimum average size of 
the clusters. During the consensus procedure, therefore, groups of more than ν fea-
tures that have mutual similarity index larger than σ are clustered together. While 
ν is learned during the training of FeSC, as reported in [23], we set σ either to 0.6, 
which allows for partial agreement among the clustering algorithms (at least two out 
of three) to accept a feature in a certain cluster, or to 0.9 when we want to force full 
agreement among the clustering algorithms. Then, the centroid of each cluster, i.e., 
one representative feature from each of them, is selected.

In this work, we consider the hierarchical clustering, the spectral clustering, and 
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) as indi-
vidual clustering algorithms for the consensus.

In the following, the combination of algorithms used in the consensus step will 
be identified by the initial letter of the algorithm: (H) hierarchical, (S) spectral, (D) 
DBSCAN clustering.

Classification Finally, FeSC implements a kernel-SVM classifier [55]. Based on our 
previous study [23], we decided to use the radial basis function (rbf ) kernel, as it out-
performs the classification with respect to other kernels. Note that the selection of 
features may depend on the specific data considered in the fold. Thus, the classifica-
tion performance achieved in this step is employed to identify the selection of the 
Mr most discriminative features to maintain. To optimize the FeSC parameters, we 
applied a nested 5-fold CV procedure, selecting the combination of features that min-
imized the mean classification error (MCE).

3.2.2 � pFSFS

This method makes use of a sequential feature selection algorithm to select the most 
representative features to classify different gestures, and it was modified from [56].

pFSFS is a 3-step recursive procedure including: (i) the application of a filter based 
on the p-value, (ii) the application of the sequential feature selection, and (iii) the 
training of a quadratic discriminant analysis (QDA) model.

The p-value gives the probability that the samples of the first class belong to the 
same statistical distribution as the samples of the second class. Then, first, filtering 
based on p-value is operated on the feature matrix to remove those features, i.e., col-
umns, which have a p-value above a pre-determined threshold (typically, 0.05). Sec-
ond, the forward sequential feature selection (F-SFS) algorithm is used in a wrapper 
fashion to obtain a ranked selection of the most relevant features to explain the dif-
ference between the two classes. Third, a QDA classifier is employed to classify the 
dataset based on the selected features. As a loss function for parameter optimization, 
we used the MCE.

This method was implemented in Matlab, making use of the sequentialfs.m library 
function and other custom code.
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3.2.3 � LASSO

LASSO is a well-known linear regression method aiming at selecting the most dis-
criminative features (i.e., the predictor variables) to explain the class samples (i.e., 
the responses), taking into account the cross-correlation between features [57, 58]. 
LASSO performs an L1-regularization by minimizing the sum of the squared errors 
provided by the model (i.e., as in the ordinary least squares objective function) with a 
penalty given by the weighted sum of the model’s coefficients (i.e., the vector β ). Such 
weights, defined by the hyperparameter � (i.e., the LASSO sparseness parameter), 
determine the regularization that is performed by the procedure on the model. For 
any given nonnegative � value, the LASSO objective function is expressed by

where N is the number of samples, xi is the i-th sample of length p, yi is the true class of 
xi , β0 is a scalar, and β = [β1, ...,βp] is the vector of model’s coefficients. The choice of � is 
particularly critical and it is typically learnt from the data through cross-validation [58]. 
Here, in order to properly choose � and the coefficients β , we performed a 5-fold CV 
(to be fair, we used the same partitions as FeSC) and we selected their values according 
to the model with the minimum mean square error (MSE). Matlab’s native grid-search 
parameter optimization was exploited. Features were ranked by decreasing values of the 
β coefficients in the LASSO model. Those with zero-valued coefficients were discarded. 
Then, we trained an SVM with an increasing number of relevant features, starting from 
the one with the largest β coefficient, and used the MCE as a loss function for SVM 
parameter optimization.

This method was implemented in Matlab, making use of the lasso.m library func-
tion and other custom code.

3.3 � Features stability and interpretability

We also investigated the stability of the selected features across different subsets of 
the same dataset. As mentioned before, we obtained R different splits of the data-
set during the CV procedure (see Sect. 3.2) and run the feature selection with clas-
sification for each of them. Finally, the results were compared across repetitions to 
evaluate the stability of the selected features. To quantify stability, for each algorithm, 
we retained those features that were selected in at least 70% of the repetitions. We 
were able to find a set of stable features for each algorithm and for each classification 
problem.

In order to facilitate the comparison of the results among different algorithms, 
and to enhance the interpretability of the results, we also developed a mapping-and-
aggregation strategy that works as follows. First, every stable feature was mapped 
back to its original EMG, EEG, and frequency domains. This is possible because every 
MSC feature was obtained by a specific combination of EMG and EEG sensors and 
frequency band, thus providing an invertible map. Second, we selected a few suitable 
ROIs, in each domain, to aggregate features. Particularly, the frequency bands were 

(6)L =
1

2N

N

i=1

(yi − β0 + x
T

i
β)2 + �

p

j=1

|βj|,
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aggregated into 3 ROIs, namely low frequencies, sensorimotor rhythms (SMR) and full. 
Low frequencies range includes the δ and the θ bands; the sensorimotor rhythms has a 
well-known neurophysiological meaning and its range includes the bands α , β1 , β2 , β , 
γ1 , γ2 , γ3 , and γ , while full considers the entire frequency spectrum taken as a whole 
(i.e., it includes only the full band). For the aggregation of the EEG sensors, we slightly 
modified the approach of [59]: while in [59] the authors identified six ROIs, here we 
only have three of them: the Frontal, the Centro-parietal, and the Occipital one. Spe-
cifically, we included the original temporal, central and parietal EEG ROIs into the 
new Centro-parietal ROI. This is motivated by the fact that the reference article dealt 
with cognitive processes, while our study investigates motor-related brain activity. 
From well-consolidated literature on motor control, we know that several brain areas 
are involved in the control of the hand movements (i.e., the primary motor cortex, the 
posterior parietal cortex, the premotor cortex, and the supplementary motor cortex) 
[60]. They include all EEG sensors located at the central, parietal and temporal areas; 
thus, we decided to have them in one single ROI. Finally, the EMG sensors have been 
aggregated to distinguish between Arm, Forearm, and Hand. In Arm, we included AD 
and BR; in Forearm, we included CED and FD; in Hand region, we only have FDI.

3.4 � Performance evaluation

To evaluate the classification performance of each algorithm, we computed the confu-
sion matrix and the most common classification metrics, including the MCE, the True 
Positive Rate (TPR), the True Negative Rate (TNR), and the F1 score (F1-score) over the 
test set (at each repetition). They are computed as follows:

where TP, TN, FP, and FN represent true positives, true negatives, false positives and 
false negatives, respectively.

Particularly, we analyzed the F1-score to compare different models.

4 � Results and discussion
We investigated FeSC, pFSFS, and LASSO over two EEG-EMG datasets. For FeSC, 
we considered all possible combinations of three clustering algorithms in the consen-
sus block, namely FeSC-HS, FeSC-HD, FeSC-SD (we remind that H stands for Hierar-
chical clustering, S for spectral clustering, and D for DBSCAN clustering). Also, FeSC 
was evaluated using three clustering algorithms, and two settings, namely σ = 0.6 and 

(7)MCE =
FP+ FN

TP+ TN + FP+ FN
;

(8)TPR =
TP

TP+ FN
;

(9)TNR =
TN

TN + FP
;

(10)F1 =
2

2TP+ FP+ FN
.
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σ = 0.9 . These versions of FeSC are indicated as FeSC-HSD. Here, we describe the data-
set and report the most significant results.

4.1 � WAY‑EEG‑GAL dataset

We considered the publicly-available WAY-EEG-GAL dataset [61], where EEG and 
EMG data were simultaneously obtained while participants were performing repeti-
tions of a grasp-and-lift task. For each repetition, they had to grasp an object with their 
right thumb and index fingers, lift it up to an a-priori selected position, hold it for a 
few seconds, release the object, and return to the initial position. At each repetition, the 
object was randomly changed in weight, surface friction or both. From this dataset, we 
extracted two datasets that allowed us to study two different classification problems: 
(i) the sandpaper-silk (SS) problem, aiming at classifying hand movements when the 
objects have different surface frictions (i.e., sandpaper, as class 1 or silk, as class 2), or (ii) 
the light-heavy (LH) problem, aiming at classifying hand movements when the objects 
have different weights (i.e., light, as class 1, and heavy, as class 2). Thus, we obtained 
the SS dataset and the LH dataset. The acquisition setup consisted in 10 EMG sensors, 
placed over 5 different muscles of the right upper limb acquiring 5 bipolar EMG signals 
( M = 5 ), and 32 EEG sensors ( Q = 32 ) placed at standard locations according to the 
International 10-20 EEG System [62].

First, we downsampled the EMG signals to 500 Hz, in order to have the same sam-
pling frequency as the EEG. The bit resolution was 12 bit for both kinds of signals. We 
extracted data from 8 subjects (excluding subjects and sessions where experimental 
records annotated any acquisition problems). Table 1 reports the number of segments 
available for each subject, for each class of gestures. Note that the same number of seg-
ments has been extracted from the dataset both for the EEG and the EMG. Also, for the 
sake of clarity, note that in this paper we identify one data segment with one classifica-
tion sample.

We noticed that classes were highly imbalanced (ratio 4  :  1) in the SS dataset and 
slightly imbalanced (ratio 2 : 1) in the LH dataset, then we decided to apply over-sam-
pling via SMOTE [54]. Thus, we obtained 1768 samples for each class of the SS dataset, 
and 672 samples for each class of the LH dataset.

Table 1  Number of EEG and EMG segments available in each class of each classification problem

Subject Id. SS LH

Class 1 (sandpaper) Class 2 (silk) Class 1 (light) Class 2 (heavy)

P1 51 220 84 57

P4 39 210 84 57

P7 51 221 84 57

P11 50 221 84 57

P2 50 221 84 57

P3 51 220 84 84

P5 50 221 84 30

P9 51 220 84 57

Total 393 1754 672 456



Page 14 of 22Cisotto et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:103 

Finally, we extracted the average MSC values in K = 11 frequency bands of interest, 
which gave us a total number of features equal to 5× 32× 11 = 1760 in the feature 
matrix S , for each repetition of the movement, from each dataset.

4.2 � Classification results

First, we evaluated the classification performance over the training set in terms of MCE, 
as well as in 10 different, unseen, test sets in terms of MCE, TPR, TNR, and F1-score, for 
all algorithms and configurations. Tables 2 and 3 report the related results.

We show that, regardless to the model used, we could reach very low MCE values in 
both classification problems using the MSC features: particularly, the test MCE is always 
lower than 0.015, and 0.2 for the SS and LH problems, respectively. Also, we could 
obtain very high F1-score values for most of the algorithms: in the SS problem, except 
for LASSO, the other algorithms achieve an F1-score higher than 0.89. In the LH prob-
lem, both LASSO and FeSC-HSD-0.9 under-perform, while the others reached F1-score 
values above 0.82.

We observed that, in general, we could get better performance on the SS dataset, com-
pared to the LH, irrespective of the algorithm used: this could be due either to the higher 
size of the first dataset (2.5 times larger than the other), or to the higher significance of 
the MSC feature for the SS dataset. Finally, we have to highlight that some models per-
formed better than others in terms of standard deviation: FeSC-HS and FeSC-HSD-0.9 
showed large standard deviations (exceeding 0.2) in the classification metrics of both 

Table 2  Training and test MCE in the SS dataset across 10 runs. Results are expressed in terms of 
average (standard deviation)

Precision, recall, and F1-score are also included

Model Training MCE Test MCE TPR TNR F1

FeSC-HS 0.0089 (0.0006) 0.0071 (0.0049) 0.9163 (0.2880) 0.9051 (0.2819) 0.9106 (0.2853)

FeSC-SD 0.0116 (0.0008) 0.0147 (0.0081) 0.9966 (0.0072) 0.9739 (0.0145) 0.9855 (0.0079)

FeSC-HD 0.0121 (0.0006) 0.0133 (0.0065) 0.9966 (0.0072) 0.9768 (0.0102) 0.9868 (0.0065)

FeSC-HSD-0.6 0.0107 (0.0008) 0.0110 (0.0052) 0.9966 (0.0061) 0.9813 (0.0097) 0.9891 (0.0052)

FeSC-HSD-0.9 0.0109 (0.0008) 0.0082 (0.0056) 0.8949 (0.3145) 0.8904 (0.3131) 0.8927 (0.3137)

pFSFS 0.0007 (0.0005) 0.0048 (0.0048) 0.9932 (0.0084) 0.9972 (0.0040) 0.9952 (0.0049)

LASSO 0 (0) 0.0110 (0.0047) 0.9909 ( 0.0061) 0.9909 (0.0061) 0.6646 (0.0014)

Table 3  Training and test MCE in the LH dataset across 10 runs. Results are expressed in terms of 
average (standard deviation)

Precision, recall, and F1-score are also included

Model Training Test TPR TNR F1

FeSC-HS 0.1320 (0.0040) 0.1127 (0.0331) 0.8279 (0.2517) 0.8049 (0.2439) 0.8174 (0.2489)

FeSC-SD 0.1742 (0.0047) 0.1799 (0.0368) 0.8254 (0.0483) 0.8149 (0.0387) 0.8208 (0.0375)

FeSC-HD 0.1823 (0.0040) 0.1537 (0.0315) 0.8433 (0.0412) 0.8493 (0.0382) 0.8457 (0.0324)

FeSC-HSD-0.6 0.1717 (0.0049) 0.1552 (0.0283) 0.8299 (0.0452) 0.8597 (0.0346) 0.8421 (0.0301)

FeSC-HSD-0.9 0.1757 (0.0044) 0.1642 (0.0382) 0.6797 (0.3515) 0.6725 (0.3478) 0.6765 (0.3497)

pFSFS 0.0308 (0.0089) 0.0604 (0.0181) 0.9090 (0.0355) 0.9701 (0.0157) 0.9374 (0.0196)

LASSO 0(0) 0.2007 (0.0308) 0.6940 (0.0577) 0.6940 (0.0577) 0.5804 (0.0205)
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the SS dataset and the LH dataset. On the other hand, the other models showed much 
smaller values (around 0.01 or less).

Thus, we focus on the models with high F1-score and smaller standard deviations 
which are more reliable. Hence, in the following, we present further results limitedly to 
FeSC-SD, FeSC-HD, FeSC-HSD-0.6, pFSFS.

4.3 � Feature selection and stability

Now on, we limit our analysis to robust models and investigate another interesting 
aspect: the ability of the algorithms to extract few, very informative, features among the 
1760 available ones. This represents a preliminary, yet critical, step toward the future 
minimization of the acquisition setup for mobile health applications. Tables 4 and 5 pro-
vide a detailed analysis of the selected features that provided the minimum MCE value 
(across the test sets): the second column reports the average number of features across 
test sets (and its standard deviation); the third column shows the number of stable fea-
tures among them; the last column reports the selection efficiency, an index we intro-
duced to quantify the percentage of stable features over the average number of selected 
features. The higher the selection efficiency, the more robust the feature selection to 
dataset variations (i.e., different folds of the same dataset). It is worth noting that there is 
a correspondence between Tables 2 and 4 and between Tables 3 and 5. For example, the 
performance shown in the third row of Table 2, related to the FeSC-HD model, has been 
obtained considering the 183 selected features mentioned in the first row of Table 4.

Based on the results, we can claim that all models are able to identify a very small sub-
set of features (between 80 and 200, representing about 4 ÷ 10% over the total number 
of available features) that can lead to an optimal classification. This is also consistent 
across different models and different datasets.

Moreover, we can observe that FeSC models are able to identify a very limited num-
ber of stable features. On the other hand, pFSFS seems to be the best model in terms 

Table 4  Selected and stable features in the SS dataset

Model Mean value (Standard 
deviation)

Stable features [no.] Selection 
efficiency 
[ %]

FeSC-HD 183 (13.2) 1 0.5%

FeSC-HSD-0.6 188 (8.2) 1 0.5%

FeSC-SD 182 (11.6) 3 1.6%

pFSFS 79.4 (9.6) 25 31.5%

Table 5  Selected and stable features in the LH dataset

Model Mean value (Standard 
deviation)

Stable features [no.] Selection 
efficiency 
[ %]

FeSC-HSD-0.6 181 (8.4) 1 0.5%

FeSC-HD 189 (10.7) 2 1.06%

FeSC-SD 191 (8.4) 3 1%

pFSFS 95.3 (10.5) 45 47.2%
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of selection efficiency: it selects a lower number of features to reach minimum MCE 
and at least 30% of them are stable. This is probably due to the initial filtering step that 
is not present in FeSC methods.

Therefore, we can conclude that a trade-off exists between the number of stable fea-
tures that an algorithm can extract and the selection efficiency that it can achieve. 
The algorithm which corresponds to the best choice finally depends on the specific 
constraints of the application: if no strict limitations are required over the number of 
features (i.e., sensors) to use, then pFSFS is the best choice. On the other hand, if only 
a few features can be selected, then FeSC represents the best option. We stress out 
that we did not force the algorithms to choose a limited number of features, but some 
of them (i.e., the FeSC variants) can help us more to identify fewer stable features 

Fig. 1  Block schemes for the three feature selection algorithms: (a) FeSC, (b) LASSO, (c) pFSFS
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Fig. 2  Percentage of iterations in which each frequency feature was selected as stable by the different 
algorithms (threshold was set to 70%). To note, algorithms were sorted by the increasing number of stable 
features
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without a-priori filtering (as in pFSFS), while achieving similar high classification 
performance.

Finally, it is worth noting that pFSFS (with QDA classifier) is the fastest algorithm to 
run but, at the same time, it might not be able to effectively handle outliers in the dataset 
[63], as much as FeSC that implements an SVM. This results in a more general applica-
bility and flexibility of FeSC, compared to pFSFS (Fig. 1).

Figures 2, 3, 4 show the results of the mapping-and-aggregation for frequency bands, 
EEG and EMG sensors, respectively. This procedure was operated on the SS and LH 
datasets, separately. First, we consider the number of stable features identified by each 
method; then, we map them back into their original domains, i.e., frequency bands, EEG 
and EMG sensors, and aggregate them into physiologically meaningful ROI, to further 
facilitate their interpretation (see Sect. 3.3).
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Fig. 3  Percentage of iterations in which each EEG feature was selected as stable by the different algorithms 
(threshold was set to 70%). To note, algorithms were sorted by the increasing number of stable features
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Fig. 4  Percentage of iterations in which each EMG feature was selected as stable by the different algorithms 
(threshold was set to 70%). To note, algorithms were sorted by the increasing number of stable features
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Even though we found only a limited number of stable features, a common pattern is 
observed in all methods, across different datasets: as for the frequency bands selection, 
the average percentage of SMR features ( 67% for SS, 66.1% for the LH) is much higher 
compared to the lower frequencies ( 5% for SS, 25.6% for the LH) and the Full band ( 28% 
for SS, 8.3% for the LH). In the selection of the EMG ROI, the involvement of the arm 
( 73.33% for SS, 57.8% for the LH) is larger than that of the forearm ( 22.67% for SS, 13.9% 
for the LH) and the hand ( 4% for SS, 28.3% for the LH). Finally, for the EEG domain, we 
observe that the most involved stable features lay over the centro-parietal ROI ( 68.3% for 
SS, 64.99% for the LH), then on the occipital ROI ( 23.7% for SS, 31.1% for the LH), and 
minimally on the frontal ROI ( 8% for SS, 3.9% for the LH).

Overall, the SMR, centro-parietal, arm pattern emerges in all methods, across the 
datasets and this is in line with well-established medical literature [48, 50, 64, 65].

Unexpectedly, we could not find any significant difference in patterns between the two 
different datasets (i.e., corresponding to different motor tasks), nor we could identify 
more detailed patterns, beyond the ROIs. However, we might speculate that one reason 
is that the two datasets are not completely separated datasets. In fact, in the WAY-EEG-
GAL dataset, the objects always have two properties: a weight property (light, heavy) 
and a texture property (sandpaper, silk). In this paper, we set up two classification prob-
lems to distinguish, one at the time, different textures or different weights. The features 
that came out from the feature selection procedure are those that maximally discrimi-
nate, one at the time, the weight or the texture. Further investigations on the physiologi-
cal interpretation of the results were left beyond the scope of this paper.

5 � Conclusions and future perspectives
In this work, we adopted an agnostic and extensive approach to classify hand gestures 
from a set of multi-channel EEG and EMG sensors, with the objective of making a step 
toward the minimization of the setup for m-health applications (e.g., in-home rehabilita-
tion), while ensuring the highest classification performance.

The MSC, well-known physiologically meaningful feature, has been computed from 
any available pair of EEG and EMG sensors, in 11 common frequency bands of inter-
est. The new high-dimensional input representation (i.e., with 1760 MSC features) 
motivated the use of feature selection algorithms, which have been compared consider-
ing the performance in the classification of hand gestures. In particular, we considered 
pFSFS, several variations of FeSC and LASSO. Note that the robustness and effective-
ness of FeSC, previously proposed in [23], have been highly enhanced in this study. We 
studied the stability of selected features across different data partitions and two differ-
ent datasets. To facilitate the interpretation of the results, we proposed a brand-new 
intuitive aggregation-and-mapping strategy that allows to map all stable features into an 
aggregated EMG-EEG-frequency space, with physiologically meaningful ROIs. Also, we 
introduced the selection efficiency index which allows to evaluate the robustness of the 
feature selection across different subsets.

Our results show that, regardless of the model used, we could reach very accurate clas-
sification performance in both datasets, using the MSC features. We then compared the 
best models (i.e., those with highest F1-score and lowest standard deviation values in the 
classification metrics) as for their ability to extract few and stable features. These models 
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are able to identify a very small subset of stable features (between 1 and 45, represent-
ing about 0.06%÷ 2.7% of the total number of available features) ensuring, at the same 
time, optimal classification. This result was consistent across different datasets. Also, we 
highlighted the advantages and disadvantages of selecting each specific feature selection 
algorithm: overall, we found out that pFSFS is more effective and fast in the selection 
of the subset of features to represent the entire dataset, compared to FeSC. At the same 
time, FeSC can identify a few, very informative features without using the p-value-based 
filter, which assumes the data to be normally distributed.

Furthermore, with the mapping-and-aggregation strategy it was possible to identify a 
common pattern, namely the prominent activation of centro-parietal brain areas and the 
muscles of the arm in the 8-80 Hz frequency band, across different methods and data-
sets, in line with previous literature on EEG and EMG during motor tasks.

This work still presents some limitations. The computational efficiency of FeSC can be 
increased by selecting faster individual clustering algorithms (e.g., DBSCAN was much 
faster than spectral clustering on our development platform). Furthermore, an extended 
study on the stability of the features could be performed. For example, it could be inter-
esting to investigate their stability not only across several partitions of each dataset, but 
also across different subjects. This may reveal subject-specific patterns that may vary 
stable feature selection to some extent. Finally, the conclusions of our work could be 
further tested in other datasets with different motor tasks (e.g., other arm movements, 
lower limb movements, gait [19]), or in different contexts, e.g., emotion recognition and 
anomaly detection, where multi-modal datasets are available. Additionally, a comparison 
between different data fusion strategies (e.g., feature-level fusion) is needed, to deter-
mine whether the data-level fusion proposed here (using MSC) is more effective than 
other, more common, approaches [17, 28, 29].

This study and its further developments represents a step forward to enable a portable 
technology to support motor training at home, through wearables, in a near future. To 
this aim, minimizing the acquisition setup while, at the same time, ensuring high perfor-
mance of gesture recognition is the key to promote m-health and to provide reliable and 
usable healthcare systems closer to the patients.
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