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1  Introduction
With the rapid development in high-resolution sensor technology, extended target track-
ing (ETT) is attracting more and more attention with applications in military and civilian 
fields, such as automotive active safety systems [1, 2], advanced driver assistance systems 
[3, 4], maritime and ground surveillance [5, 6], robotic and control [7] and points cloud 
processing [8–10]. For the problem of ETT, a target is assumed to have multiple random 
scattering points and hence may yield multiple measurements per scan. The objective of 
ETT is to estimate the kinematic state along with the contour state of the target of inter-
est [11].
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Many ETT methods have been proposed in the last decades, such as Sequential 
Monte Carlo (SMC) [12, 13], Random Matrix (RM) [14–18], Random Hypersurface 
Models (RHM) [19–21], Gaussian Processes based ETT (GP-ETT) [6, 22, 23], and so 
on. Among these works, the GP has the ability to model and learn an unknown radius 
function of an irregular-shape target analytically and can provide benefits toward 
higher-precision contour estimation [24]. In [22], a GP-based extended Kalman filter 
(GP-EKF) is proposed for ETT in a benign scenario in the absence of clutter. More-
over, the GP model is combined with the labeled multi-Bernoulli filter for tracking 
multiple extended targets [25]. In order to track a non-rigid and asymmetric extended 
target, a Spatio-temporal GP-based ETT technique is proposed in [23]. The above 
GP-ETT algorithms verify the contour estimation ability of GP in the benign scenario, 
ignoring the effect of the measurement origin uncertainty on the tracker. In some 
applications, e.g., tracking the ships in the ocean, the high-resolution sensor receives 
a lot of measurements not only from targets but also from sea clutter. In this case, the 
measurement origin uncertainty must be taken into account. To address the problem 
of ETT in clutter, the GP-based probabilistic data association (GP-PDA) is proposed 
in [26] and the posterior Cramer-Rao lower bound (PCRLB) is derived to evaluate the 
performance of ETT with measurement origin uncertainty. Besides, the GP-PDA is 
combined with the interacting multiple model (IMM) to simultaneously track a ship 
and its wake in [6]. As mentioned above, to track extended targets in clutter, the GP-
PDA approach seems very promising since the fact that it can not only estimate the 
kinematic state but also give a precise contour state of the irregular-shape target.

Most previous GP methods mentioned above assume that the ETT measurement 
model is linear and the GP input is known accurately for simplicity. This assumption 
is reasonable in civilian applications but does not hold in many military applications. 
In maritime surveillance, for example, high-resolution maritime radars are used to 
measure the range, bearing, and Doppler of the target in polar coordinates and cannot 
provide position measurements directly. In other words, a nonlinear measurement 
model is more suitable in this case. Moreover, the input uncertainty of GP, caused 
by poor bearing resolution and imprecise state prediction, will significantly affect the 
tracking performance of ETT and cannot be ignorable. In the GP literature, there are 
two categories to deal with the uncertain input [27]. The first category, called hetero-
scedastic GP models, transforms the input variance into a parameter that varies with 
the output residual by changing the distribution of the output noise [28–30]. How-
ever, this approximate method ignores the structure of the uncertain inputs. Another 
category deals with the uncertain input directly in the prediction phase and gener-
ally approximates the mean and variance of the prediction distribution of GP [31–34]. 
Further research is developed in [35, 36] where a noise-input GP model was consid-
ered both in the prediction phase and in the training phase.

In this paper, we consider the problem of tracking the irregular-shape extended 
targets in polar coordinates with input uncertainty along with measurement origin 
uncertainty. This work is an extension of the author’s previous results presented in 
[26]. Under the GP-PDA framework, the measurement origin uncertainty can be 
effectively solved. In order to modify the effect of input uncertainty on the tracking 
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performance of GP-ETT, an improved GP-based probabilistic data association (IGP-
PDA) algorithm is proposed to track an extended target in clutter. The main contribu-
tions of this paper are as follows:

•	 The analytical statistical property of the uncertain input is derived:

	 The unbiased converted measurement (UCM) technique [37] is invoked to transform 
raw nonlinear measurements into unbiased linear measurements. The uncertain 
input of GP is assumed to be Gaussian distribution [27] and its statistical property is 
given analytically using the measurement noise variance, converted bias covariance, 
and the state predicted covariance.

•	 Three approximation implementations are given to solve the uncertain input:
	 An IGP-PDA algorithm taking into account uncertain input is proposed, where the 

prediction distribution of GP is modified with the statistical property of uncertain 
input. Since the analytical solution to the prediction distribution of GP is not avail-
able in most cases, three approximation implementations are given.

•	 A new posterior Cramer-Rao lower bound is derived:
	 In order to evaluate the tracking performance of ETT, a new posterior Cramer-Rao 

lower bound (PCRLB) of ETT considering not only the measurement origin uncer-
tainty but also the input uncertainty is derived. As a larger covariance of GP predic-
tion distribution due to input uncertainty is included, the new performance bound is 
more conservative and reasonable than the previous result in [26].

The remainder of this paper is structured as follows. Section  2 introduces the back-
ground of standard GP and GP with uncertain input. Section  3 describes the ETT 
problem in polar coordinates with measurement origin uncertainty. In Sect. 4, the statis-
tical property of the uncertain input and the IGP-PDA algorithm is proposed. Section 5 
derives a more reasonable PCRLB of ETT. Simulation and conclusions are presented in 
Sects. 6 and 6, respectively.

2 � Background
The standard GP and the GP with uncertain input are reviewed briefly in this section, 
that forms the foundation of the proposed method.

2.1 � Standard Gaussian processes

A Gaussian process is a generalization of the multivariate Gaussian distribution suitable 
for learning the distribution of an unknown function, and it can make inferences in the 
function-space view. Consider a function as follows:

where u is the input of latent function f (·) , y is the noisy output, and ǫ ∼ N (0, σ 2
ǫ ) is a 

Gaussian distributed noise. Under the GP framework, the latent function f (·) can be 
described by the mean function a(u) and covariance function κ(u,u′) as follows:

(1)y = f (u)+ ǫ,

(2)f (u) ∼ GP a(u), κ(u,u′) .
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Given a training set D of Ngp observations, D =
{
(ui, yi) | i = 1, . . . ,Ngp

}
 , where 

ui denotes the ith training input and yi the corresponding training output. Denote 
u = [u1, . . . ,uNgp ] and y = [y1, . . . , yNgp ] as the training input vector and training output 
vector, respectively. The objective of GP is to use a set of training data D = [u, y] to learn 
the unknown latent function f (·) , or the predictive distribution of the function outputs 
given the inputs [24].

For a test input u∗ , since the joint distribution is a Gaussian, the predictive distribution 
p
(
f (u∗) | u∗,D

)
 is also Gaussian with mean µSGP(u∗) and variance vSGP(u∗) [33]

where

where I is an Ngp × Ngp identity matrix, K (·, ·) is a matrix of covariance function, and

Herein, the prediction mean µSGP(u∗) serves as an estimate of the latent function f (u∗) 
with the uncertainty of 

√
vSGP(u∗).

2.2 � Gaussian processes with uncertain input

Usually, the input of GP u∗ is assumed to be accurately known and noise-free. However, this 
assumption does not hold in some applications. For example, in a discrete-time series anal-
ysis problem, the current input is estimated from the last step. For a GP model that ignores 
the cumulative prediction variance, its model is not conservative enough, which makes the 
prediction accompanied by unrealistic small uncertainty [31]. Assume that the uncertain 
input of latent function u∗ follows a Gaussian distribution with mean µu∗ and variance �u∗ 
[32], the prediction distribution can be obtained by

where p
(
f (u∗) | u∗,D

)
 is a Gaussian distribution with mean µSGP(u∗) and variance 

vSGP(u∗) given by (4) and (5), respectively. Some methods are proposed to approximate 
the above integral of prediction distribution since it is analytically intractable. For exam-
ple, the numerical approximation method and the Taylor Series approximation method.

In numerical approximation, the general solution of (8) can be defined as [27]:

(3)p
(
f (u∗) | u∗,D

)
∼ N

(
µSGP(u∗), vSGP(u∗)

)

(4)µSGP(u∗) =a(u∗)+ K (u∗,u)
[
K (u,u)+ σ 2

ǫ I
]−1

(y − a(u∗))

(5)vSGP(u∗) =K (u∗,u∗)− K (u∗,u)
[
K (u,u)+ σ 2

ǫ I
]−1

K (u,u∗)

(6)K (u,u) =






κ(u1,u1) . . . κ(u1,uNgp)

...
. . .

...
κ(uNgp ,u1) . . . κ(uNgp ,uNgp)






(7)K (u,u∗) =K (u∗,u)
⊤ =

[
κ(u1,u∗), . . . , κ(uNgp ,u∗)

]

(8)p
(
f (u∗) | µu∗ ,�u∗ ,D

)
=

∫

p
(
f (u∗) | u∗,D

)
p(u∗)du∗
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where u∗i  is the ith random or determinate sample from p(u∗) , Nt denotes the number of 
sampling.

In Taylor Series approximation, the analytic Gaussian approximation only needs the first 
two moments of p

(
f (u∗) | µu∗ ,�u∗ ,D

)
 . They are obtained by the law of iterated expecta-

tion and the law of conditional variances [31]:

where

The predictive variance is given as

where

The input uncertainty does not provide any correction for the prediction expectation of 
GP. However, it provides a correction term of zero-order to the variance of prediction, 
and more details refer to [31].

3 � Dynamic and measurement models
In this section, the GP-based dynamic model and the measurement model of ETT are pro-
vided in 2D space, more details see [22, 26]. Herein the measurement model is established 
in polar coordinates with measurement origin uncertainty.

Consider the following dynamic model of an irregular-shape extended target

where Xk = [(xsk)⊤, (xfk)⊤]⊤ is the extended target state at time k, xsk and xfk denote the 
kinematic state and contour state, respectively. The term Fk−1 = diag{F s

k−1, F
f
k−1} is state 

transition matrix and vk−1 = [(vsk−1)
⊤, (vfk−1)

⊤]⊤ is a zero-mean white Gaussian noise 

with covariance matrix Qk−1 = diag{Qs
k−1,Q

f
k−1} . The specific form of state transition 

matrix and covariance matrix will be given in the simulation. Then, the Eq. (14) can be 
rewritten as

(9)

p
(
f (u∗) | µu∗ ,�u∗ ,D

)
=

∫

p
(
f (u∗) | u∗,D

)
p(u∗)du∗

≈ 1

Nt

Nt∑

i=1

p
(
f (u∗) | u∗i ,D

)

(10)µIGP(u∗) = Eu∗

[

Ef (u∗)
[
f (u∗) | u∗

]]

= Eu∗
[
µSGP(u∗)

]
≈ µSGP(µu∗)

(11)µSGP(µu∗) = K (µu∗ ,u)
[
K (u,u)+ σ 2

ǫ I
]−1

y

(12)
vIGP(u∗) = Eu∗

[
vSGP(u∗)

]
+ varu∗

[
µSGP(u∗)

]

≈ vSGP(µu∗)+
∂µSGP(u∗)

∂u∗
|⊤u∗=µu∗

�u∗
∂µSGP(u∗)

∂u∗
|u∗=µu∗

(13)vSGP(µu∗) =K (µu∗ ,µu∗)− K (µu∗ ,u)
[
K (u,u)+ σǫI

]−1
K (u,µu∗)

(14)Xk = Fk−1Xk−1 + vk−1

(15)
[
xsk
xfk

]

=
[
F s
k−1 0

0 F f
k−1

] [
xsk−1

xfk−1

]

+
[
vsk−1

vfk−1

]
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where the kinematic state xsk = [xk , ẋk , yk , ẏk ,φk , φ̇k ]⊤ is a six-dimension vector, 
which is composed of the target centroid position xck � [xk , yk ]⊤ , the target veloc-
ity [ẋk , ẏk ]⊤ , the heading φk and the heading rate φ̇k . The contour state is denoted as 
xfk = [f (θk ,1), f (θk ,2), . . . f (θk ,N )]⊤ , where θk ,i and f (θk ,i) , 1 ≤ i ≤ N  , are the angle and the 
unknown radius function of the ith contour point, respectively, and N is the number of 
contour points. Usually, the prior knowledge of the target contour is unavailable, and the 
angle of contour point θk ,i ∈ [0, 2π) can be chosen as θk ,i = 2π(i − 1)/N , 1 ≤ i ≤ N  . In 
addition, all angles of the contour points are stacked into a vector as � � [θk ,1, . . . , θk ,N ]⊤ . 
The unknown radius function f (θk ,i) can be described by a GP model as follows

Without loss of generality, the mean function is assumed to follow a(θk) ∼ N (0, σ 2
r ) , 

and the covariance function can be chosen as a modified squared exponential function

to encode the periodicity of angle θk [22], where σf  and l are the hyper-parameters of GP.
An extended target has multiple fluctuating scattering points, which may appear 

on or within the contour. These scattering points may generate multiple noisy meas-
urements per scan. Previous work usually assumes that the sensor can obtain the 
positions of scattering points directly and invoke a measurement model in Carte-
sian coordinates. However, many types of sensors, such as radar and sonar, can only 
measure the range and bearing of the scattering points in polar coordinates. In this 
subsection, a generalized nonlinear measurement model with measurement origin 
uncertainty is presented.

Suppose that there are Mk measurements at time k. In view of the measurement ori-
gin uncertainty, the jth measurement, denoted as ck ,j = [dk ,j ,βk ,j]⊤ , 1 ≤ j ≤ Mk , may 
be originated from a scattering point of the target or from clutter, where dk ,j and βk ,j 
denote the range and bearing, respectively. Thus, a generalized nonlinear measure-
ment model is given as follows.

For a clutter-originated measurement, the clutter χk ,j is assumed to follow a uniform 
spatial distribution and a Poisson cardinality distribution with parameter �c . For a tar-
get-originated measurement, the nonlinear function hpolk ,j (zk ,j) represents the noise-free 

measurement and wpol
k ,j ∼ N (0,Rpol) is the measurement noise in polar coordinates, 

Rpol = diag{σ 2
d , σ

2
β }.

In the above equation, zk ,j = [zξk ,j , z
η

k ,j]⊤ denotes the x-axis and y-axis position of the 
scattering point corresponding to the jth measurement (see Fig. 1). For simplicity, the 

(16)f (θk) ∼ GP
(
a(θk), κ(θk , θ

′
k)
)

(17)κ
(
θk , θ

′
k

)
= σ 2

f e
−

2 sin2(|θk−θ ′
k
|/2)

l2

(18)ck ,j =












�

(z
ξ

k ,j)
2 + (z

η

k ,j)
2

arctan(
z
η

k ,j

z
ξ

k ,j

)




+ w

pol
k ,j

� �� �

h
pol
k ,j (zk ,j)+w

pol
k ,j

from target

χk ,j from clutter



Page 7 of 25Guo et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:106 	

scattering points are assumed to distribute along the contour of the target here. In 
this case, the position of scattering point zk ,j is given by

where hcark ,j (Xk) denotes the measurement function in the Cartesian coordinates, pk ,j is 
the orientation vector and θLk ,j is the angle of the scattering point zk ,j relative to the target 
centroid xck in local coordinates, more details see [22]. In addition, f (θLk ,j) is a unknown 
radius function and can be rewritten as follows with the GP model.

where µSGP(θ
L
k ,j) is the prediction mean of p(f (θLk ,j) | θLk ,j ,�) , and wf

k ,j ∼ N (0, vSGP(θ
L
k ,j)) 

is a zero-mean white Gaussian noise of radius function with the following variance

Then, substitute the above equations into (18), the target-originated measurement in 
polar coordinate can be rewritten as

Denote the measurement set as Ck =
{
ck ,j

}Mk

j=1
 at time k. The main objective of ETT is to 

estimate the kinematic state xsk and the contour state xfk of the extended target from a 
total measurement set C1:k � {C1, . . . ,Ck} up to and including time k.

(19)zk ,j = hcark ,j (Xk) = xck + pk ,j f (θ
L
k ,j)

(20)f (θLk ,j) = µSGP(θ
L
k ,j)+ wf

k ,j

(21)µSGP(θ
L
k ,j) = K (θLk ,j ,�)[K (�,�)]−1xfk

(22)vSGP(θ
L
k ,j) =κ(θLk ,j , θ

L
k ,j)− K (θLk ,j ,�)[K (�,�)]−1K (�, θLk ,j)

(23)

ck ,j = h
pol
k ,j (zk ,j)+ w

pol
k ,j

= h
pol
k ,j

(
xck + pk ,j f (θ

L
k ,j)

)
+ w

pol
k ,j

= h
pol
k ,j

(
xck + pk ,j(µGP(θ

L
k ,j)+ wf

k ,j)
)
+ w

pol
k ,j

Fig. 1  Geometric relationship between θ Lk,j , zk ,j , and φk
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4 � Methodology
In this section, the statistical properties of the uncertain input of GP-ETT are derived. Then 
an improved GP-PDA algorithm is proposed accounting for input uncertainty. Also, three 
approximation implementations are provided since the analytical solution of prediction dis-
tribution is unavailable in most cases.

4.1 � Statistical properties of uncertain input

Under the framework of GP-ETT [22], the GP input is the angle of scattering point relative 
to the target centroid in local coordinates and it is given as

where zk ,j = [zξk ,j , z
η

k ,j]⊤ denotes the position vector of the scattering point correspond-
ing to the jth measurement, xck = [xk , yk ]⊤ denotes the position vector of target centroid, 
and φk denotes the heading of target. Note that the above variables zk ,j , xck and φk are all 
unknown to the tracker.

They are replaced by their observations and estimates in actual processing [22, 26] and 
hence yield the input uncertainty (see Fig. 2). Therein, the term θGk ,j = θLk ,j + φk is the angle 
of scattering point relative to the target centroid in global coordinates. The true distribution 
of GP input θLk ,j is intractable even if all the above variables are Gaussian distributed. For 
simplicity, the GP input is assumed to follow a Gaussian distribution [23, 31], i.e., 
θLk ,j ∼ N (µθLk ,j

,�θLk ,j
) . The mean of GP input µθLk ,j

 is approximated as

(24)θLk ,j = arctan




z
η

k ,j − yk

z
ξ

k ,j − xk



− φk

(25)µθLk ,j
= E



arctan




z
η

k ,j − yk

z
ξ

k ,j − xk



− φk





Fig. 2  Actual meaning of the input uncertainty in GP-ETT: red dashed line and variables represent the 
contour estimates state and the corresponding variables; black solid line and variables denote the truth 
contour state and the corresponding variables
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where cuk ,j � [cu,ξk ,j , c
u,η
k ,j ]⊤ is the linear measurement converted from ck ,j via UCM tech-

nique [37], more details see “Appendix  1”. [x̂k|k−1, ŷk|k−1]⊤ and φ̂k|k−1 are the position 
prediction of target centroid and the heading prediction, respectively. They can be pre-
dicted from the dynamic model with the state estimate at time k − 1.

Now the variance of input �θLk ,j
 can be derived as follows according to the error propaga-

tion theory [27].

where σ̃ 2
c1 , σ̃

2
c2 , σ̃

2
xx , σ̃ 2

yy and σ̃ 2
φφ are given as

where eig[·] denotes the eigendecomposition operator. Ru
k ,j is the converted measure-

ment noise covariance via UCM technique, see “Appendix 1”. Also PI ∈ R3×3 is the pre-
dicted state covariance matrix whose main diagonal elements are the variances of x̂k|k−1 , 
ŷk|k−1 and φ̂k|k−1 , respectively.

(26)≈ arctan




c
u,η
k ,j − ŷk|k−1

c
u,ξ
k ,j − x̂k|k−1



− φ̂k|k−1

(27)

�θLk ,j
= σ̃ 2

c1




∂θLk ,j

∂c
u,ξ
k ,j





2

+ σ̃ 2
c2

�
∂θLk ,j

∂c
u,η
k ,j

�2

+ σ̃ 2
xx

�
∂θLk ,j

∂ x̂k|k−1

�2

+ σ̃ 2
yy

�
∂θLk ,j

∂ ŷk|k−1

�2

+ σ̃ 2
φφ

�
∂θLk ,j

∂φ̂k|k−1

�2

= σ̃ 2
c1




c
u,ξ
k ,j − x̂k|k−1

(c
u,ξ
k ,j − x̂k|k−1)

2 + (c
u,η
k ,j − ŷk|k−1)

2





2

+ σ̃ 2
c2




c
u,ξ
k ,j − ŷk|k−1

(c
u,ξ
k ,j − x̂k|k−1)

2 + (c
u,η
k ,j − ŷk|k−1)

2





2

+ σ̃ 2
xx




c
u,η
k ,j − ŷk|k−1

(c
u,ξ
k ,j − x̂k|k−1)

2 + (c
u,η
k ,j − ŷk|k−1)

2





2

+ σ̃ 2
yy




c
u,ξ
k ,j − x̂k|k−1

(c
u,ξ
k ,j − x̂k|k−1)

2 + (c
u,η
k ,j − ŷk|k−1)

2





2

+ σ̃ 2
φφ

(28)Ru,sim
k ,j = eig

[

Ru
k ,j

]

=
[
σ̃ 2
c1 0

0 σ̃ 2
c2

]

(29)Psim
I

= eig[PI] =





σ̃ 2
xx 0 0

0 σ̃ 2
yy 0

0 0 σ̃ 2
φφ




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4.2 � Improved GP‑PDA

In this subsection, an improved GP-PDA method is proposed for the problem of ETT 
in the clutter with polar measurements. Firstly, the predicted state and its covariance 
are obtained from the estimated state at the last time. Secondly, the original polar 
measurements are converted into linear measurements via the UCM technique. And 
three implementations are presented to approximate the prediction distribution of 
GP and hence to predict measurements accounting for the input uncertainty. Thirdly, 
the validation gate is constructed to select the validated measurement. Last, the prob-
abilities of all feasible association events are calculated to update the state and its 
covariance. The algorithm flowchart is shown in Fig. 3.

Step 1: State prediction
Given the state estimate X̂k−1 and the corresponding covariance Pk−1 at time k − 1 , 

the predicted state X̂k|k−1 and covariance Pk|k−1 can be calculated as

Thus, one can obtain x̂k|k−1 , ŷk|k−1 and φ̂k|k−1 from X̂k|k−1 , and obtain PI from Pk|k−1.
Step 2: Measurement prediction
Given the original polar measurement ck ,j and its variance Rpol , 1 ≤ j ≤ Mk , where 

Mk is the number of measurements at time k. They can be converted from polar to 
Cartesian coordinates via the UCM technique [37], see “Appendix 1”. Denote the con-
verted measurement and its variance as cuk ,j and Ru

k ,j , respectively.

(30)X̂k|k−1 =Fk−1X̂k−1

(31)Pk|k−1 =Fk−1Pk−1F
⊤
k−1 + Qk−1

Fig. 3  Block diagram of the IGP-PDA
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Using cuk ,j , R
u
k ,j , x̂k|k−1 , ŷk|k−1 , φ̂k|k−1 and PI , the first two moments of the GP input θ̂Lk ,j , 

i.e., µθLk ,j
 and �θLk ,j

 , can be estimated as described in Sect. 4.1. Thus, the predicted measure-

ment ĉuk|k−1,j and the corresponding covariance of the measurement noise R̂u
k ,j are given as

where p̂k ,j =
[

cos(µθLk ,j
+ φ̂k|k−1), sin(µθLk ,j

+ φ̂k|k−1)

]⊤
 is the orientation vector, and 

x̂ck|k−1 = [x̂k|k−1, ŷk|k−1]⊤ the predicted position of target centroid. Also µIGP(θ̂
L
k ,j) and 

vIGP(θ̂
L
k ,j) denote the mean and covariance of the GP predicted distribution with uncer-

tain input, respectively. According to Sect. 2.2, the analytical solution to the predicted 
distribution is intractable [32]. In the following, three sub-optimal implementations are 
invoked to approximate µIGP(θ̂

L
k ,j) and vIGP(θ̂Lk ,j).

(1) Sigma sampling (SS) method [38]:

where θ̂L,(i)k ,j  , ωm,(i)
k  and ωc,(i)

k  are the ith determined sampling point, its mean weight and 
covariance weight, respectively, n is the dimension of θ̂Lk ,j . More details see “Appendix 2”. 
In addition, µSGP(θ̂

L,(i)
k ,j ) is the mean of standard GP predicted distribution. According to 

(4), one has

where x̂fk|k−1 is the predicted contour state obtained from X̂k|k−1.
(2) Monte-Calor (MC) method [41]:

(32)ĉuk|k−1,j = x̂ck|k−1 + p̂k ,jµIGP(θ̂
L
k ,j)

(33)R̂u
k ,j = Ru

k ,j + (p̂k ,j)vIGP(θ̂
L
k ,j)(p̂k ,j)

⊤

(34)µIGP(θ̂
L
k ,j) ≈ µSS(θ̂

L
k ,j) =

2n∑

i=0

ω
m,(i)
k µSGP(θ̂

L,(i)
k ,j )

(35)

vIGP(θ̂
L
k ,j) ≈ vSS(θ̂

L
k ,j)

=
2n∑

i=0

ω
c,(i)
k

[

µSS(θ̂
L
k ,j)− µSGP(θ̂

L,(i)
k ,j )

][

µSS(θ̂
L
k ,j)− µSGP(θ̂

L,(i)
k ,j )

]⊤

(36)µSGP(θ̂
L,(i)
k ,j ) = K (θ̂

L,(i)
k ,j ,�)[K (�,�)]−1x̂fk|k−1

(37)µIGP(θ̂
L
k ,j) ≈ µMC(θ̂

L
k ,j) =

1

NMC

NMC∑

i=1

µSGP(θ̂
L,(i)
k ,j )

(38)

vIGP(θ̂
L
k ,j) ≈ vMC(θ̂

L
k ,j)

= 1

NMC

NMC∑

i=1

[

µMC(θ̂
L
k ,j)− µSGP(θ̂

L,(i)
k ,j )

][

µMC(θ̂
L
k ,j)− µSGP(θ̂

L,(i)
k ,j )

]⊤
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where θ̂L,(i)k ,j  is the ith random sampling point drawn from the Gaussian distribution 
N (µθLk ,j

,�θLk ,j
) via the MC sampling technique, and NMC is the number of sampling 

points. Similarly, µSGP(θ̂
L,(i)
k ,j ) can be calculated by (36).

(3) Taylor Series (TS) method [34]:
According to (10) and (12), one has

where vSGP(µθLk ,j
) is covariance of standard GP predicted distribution. According to (5), 

one has

Substituting the above approximations of µIGP(θ̂
L
k ,j) and vIGP(θ̂Lk ,j) into (32) and (33), one 

has the predicted measurement ĉuk|k−1,j and the corresponding covariance R̂u
k ,j.

Step 3: Validation gate
Because an extended target has multiple scattering points and hence multiple measure-

ments per scan, its validation gate can be constructed as a union of multiple validation sub-
gates. Each sub-gate is centered on one of the predicted measurements ĉuk|k−1,j . The jth 
converted measurement cuk ,j is considered as a validated measurement if it falls within the 
following sub-gate �k ,j:

In the above, g is the gate parameter and Sk ,j is the measurement innovation covariance,

where Hk ,j is the Jacobian matrix of hcark ,j (·) evaluated at Xk|k−1 . Assume that there are mk 
validated measurements at time k, the overall validation gate can be expressed as 
�k =

⋃mk
j=1�k ,j . More details see [26].

Step 4: Association event enumeration and state update
Given the mk validated measurements, the total number of association events is 2mk . Let 

A
nψ
k ,ψ denote the nψ th association event where ψ out of mk validated measurements are orig-

inated from targets. The corresponding posterior probability γ nψ
k ,ψ can be calculated as:

where c is the normalization constant that is obtained by summing the numerators over 
all association events Anψ

k ,ψ . And the two terms in (44) are expressed as:

(39)µIGP(θ̂
L
k ,j) ≈ µTS(θ̂

L
k ,j) = E

θ̂Lk ,j

[

µSGP(θ̂
L
k ,j)

]

= µSGP(µθLk ,j
)

(40)

vIGP(θ̂
L
k ,j) ≈ vTS(θ̂

L
k ,j) = E

θ̂Lk ,j

[

vSGP(θ̂
L
k ,j)

]

+ var
θ̂Lk ,j

[

µSGP(θ̂
L
k ,j)

]

= vSGP(µθLk ,j
)+

∂µSGP(µθLk ,j
)

∂µθLk ,j

⊤

�θLk ,j

∂µSGP(µθLk ,j
)

∂µθLk ,j

(41)vSGP(µθLk ,j
) = κ(µθLk ,j

,µθLk ,j
)− K (µθLk ,j

,�)[K (�,�)]−1K (�,µθLk ,j
)

(42)�k ,j = {cuk ,j : [(cuk ,j − ĉuk|k−1,j)]⊤[Sk ,j]−1[(cuk ,j − ĉuk|k−1,j)] ≤ g2}

(43)Sk ,j = Hk ,jPk|k−1(Hk ,j)
⊤ + R̂u

k ,j

(44)γ
nψ
k ,ψ = 1

c
p(cuk | Anψ

k ,ψ ,mk , X̂k|k−1, P̂k|k−1)p(A
nψ
k ,ψ | mk)
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where Vk , PG , PD , µt(·) and µF (·) are the volume of �k ,j , gate probability, detection prob-
ability, the probability mass function of the number of target-originated measurements 
and that of the number of clutter measurements, respectively. The output estimate is 
obtained by summing all conditional estimates as

where Cψ
mk

= mk !/[(mk − ψ)!ψ !] . And its covariance Pk are given by

where X̂ nψ
k ,ψ and Pnψ

k ,ψ denote the posterior conditional estimate and its covariance on the 

association event Anψ
k ,ψ , respectively.

5 � Performance analysis
In [26], the PCRLB of ETT in the presence of measurement origin uncertainty is first 
derived using the GP model. However, the result is somewhat over-optimistic since 
the input uncertainty of GP is omitted. In this section, we derive a more conserva-
tive PCRLB which takes into account the input uncertainty. Note that all formulas are 
evaluated at the true state of the target, which is only available for simulation cases. 
Let X̂k be the unbiased estimate of Xk conditioned on the converted measurement set 
cu1:k . The PCRLB on the covariance Pk is the inverse of the Fisher information matrix 
(FIM) Jk . That is

The FIM can be evaluated recursively by

with the initial value J0 = (P0)
−1 . The term Jc,k is measurement contribution to the 

PCRLB and is defined as

(45)p(cuk | Anψ
k ,ψ ,mk , X̂k|k−1, P̂k|k−1) =







(PG)
−1(Vk)

mk+ψN (0, S
ψ ,nψ
k ,ψ ),

ψ = 1, . . . ,mk; nψ = 1, . . . ,C
ψ
mk

(Vk)
−mk ,

ψ = 0; nψ = 1

(46)p(A
nψ
k ,ψ | mk) =







C
ψ
mk

PDPGµt (ψ)µF (mk−ψ)
�mk

ψ PDPGµt (ψ)µF (mk−ψ)
,

ψ = 1, . . . ,mk ; nψ = 1, . . . ,C
ψ
mk

(1−PDPG)µF (mk )
�mk

ψ PDPGµt (ψ)µF (mk−ψ)+(1−PDPG)µF (mk )
,

ψ = 0; nψ = 1

(47)X̂k =
mk∑

ψ=0

C
ψ
mk∑

nψ=1

X̂
nψ
k ,ψγ

nψ
k ,ψ

(48)Pk =
mk∑

ψ=0

C
ψ
mk∑

nψ=1

γ
nψ
k ,ψ

[
P
nψ
k ,ψ + X̂

nψ
k ,ψ(X̂

nψ
k ,ψ)

⊤]− X̂kX̂
⊤
k

(49)Pk = E
[
(X̂k − Xk)(X̂k − Xk)

⊤] ≥ (Jk)
−1

(50)Jk = (FkJk−1F
⊤
k + Qk)

−1 + Jc,k
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where p(cuk | Xk) is the likelihood function. Assume that the number of target-originated 
measurements is ψ , the form of Jc,k is given by [26]:

where q̂2 is the information reduction factor obtained by off-line Monte Carlo. More 
details about q̂2 refer to [26, 40]. In addition, Hcar

k ,i  denotes the Jacobian matrix of hcark ,i (Xk) 
and R̂k ,i is the predicted covariance of measurement noise. According to (33), the vari-
ance of GP with uncertain inputs is lager than standard GP, which leads to a smaller Jc,k 
and results in a more conservative PCRLB. In addition, the derivation of q̂2 accounting 
for the GP input uncertainty is beyond the scope of this work, and it will be discussed for 
further research.

6 � Results and discussion
In the simulation, the performance of the proposed methods named IGP-PDA-SS, 
IGP-PDA-MC, and IGP-PDA-TS, is evaluated in two scenarios to track a moving ship 
in benign and clutter cases, respectively. In both cases, the target follows a maneu-
vering motion and is monitored by a high-resolution radar, which is located at the 
origin in the global coordinates. To verify the effectiveness of the proposed methods, 
they are compared with the standard GP-PDA and with the derived PCRLB. The root-
mean-square error (RMSE), the Mahalanobis distance (MD), and the elapsed time are 
used as performance metrics. In addition, the effect of measurement noise on the GP 
input uncertainty and the tracking performance is analyzed. 100 Monte Carlo runs 
are used on a PC with an i5-8250U CPU running at 1.60 GHz, and all algorithms are 
implemented in MATLAB.

6.1 � ETT in benign case

In the first case, the performance of the proposed methods is tested in a benign environ-
ment where no clutter exists. The surveillance duration is 100 s. The ship follows a nearly 
constant velocity (CV) motion model from k = 1 s to k = 30 s. Then, it makes a coordi-
nated turn of 90◦ from k = 31 s to k = 80 s and returns to a nearly CV model from k = 81 s 
to the end. The initial kinematic state of target is X0 = X tru

0 + X̄0 with the corresponding 
covariance P0 = diag{1 m2, 0.1 m2/s2, 1 m2, 0.1 m2/s2, 0.1 rad2/s2, 0.001 rad2/s2} , where 
X̄0 ∼ N (0,P0) and X tru

0 = [10 m,
√
2 m/s, 10 m, 0 m/s, 0 rad, 0 rad/s]⊤ . The scan period 

is T = 1 s. The process transition matrix and process noise covariance of kinematic state 
is given by

(51)Jc,k = E
[
−�

Xk
Xk

ln p(cuk | Xk)
]

(52)Jc,k = q̂2
[
Hk ,ψ

]⊤
(R̂u

k ,ψ)
−1

[
Hk ,ψ

]

(53)Hk ,ψ =
[

(Hcar
k ,1 )

⊤, . . . , (Hcar
k ,i )

⊤, . . . , (Hcar
k ,ψ)

⊤
]

(54)R̂u
k ,ψ = diag{R̂u

k ,1, . . . , R̂
u
k ,i, . . . , R̂

u
k ,ψ }
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where ⊗ denotes the Kronecker product and I3 is a three-dimensional identity matrix. 
The term σq = 0.1 m · s−3/2 and σqφ = 0.001 rad · s−3/2 denotes the standard deviations 
of the position and the heading process noise, respectively. In the measurements model, 
the standard deviation of the measurements is σd = 0.1 m and σβ = 0.0001 rad . The 
detection probability is PD = 0.95 and the gating probability is PG = 0.99 . The volume of 
the surveillance region is Vc = 150× π(m · rad) , and the number of the measurements 
scattering points follows a Poisson distribution with expected cardinality per unit vol-
ume �t = 2× 10−1 m−2.

The extended target contour is assumed to be stationary during the surveillance. The 
number of contour points is set to N = 12 , and the contour transition matrix is given as 
F f = IN and Qf

k = 0 , where IN is an N × N  identity matrix. In addition, the initial con-
tour state f0(θ1:N ) = 2 m . The hyper-parameters of the GP is set to σr = 2,σf = 1.5 , and 
l = π/8 . The number of random sampling points in IGP-PDA-MC is NMC = 100 , and 
the parameters in the IGP-PDA-SS are as follows: n = 1 , ς = 0 , ̟ = 2 and α =

√
2 [39].

Figure 4 shows the true and estimates contour/trajectory at time k = 1, 25, 50, 75, 100 s , 
respectively. It can be seen that all methods achieve satisfied estimate accuracy in the 
benign case. Figure 5 illustrates the RMSE and PCRLB curves of the contour estimate 
with four methods. The left sub-figure represents the local PCRLB curves from k = 70 s 
to k = 100 s, and the right one shows the local RMSE curves between the same interval. 
It can be seen that the contour estimate RMSE of the proposed methods is smaller than 
that of GP-PDA, and the proposed PCRLB is more conservative and reasonable. Moreo-
ver, the average RMSE and PCRLB of the target centroid estimate, the average RMSE 
and PCRLB of the contour estimate, Mahalanobis distance (MD) [35], and the elapsed 

(55)F s =
[
1 T
0 1

]

⊗ I3

(56)Qs =
[
T 3

3
T 2

2
T 2

2 T

]

⊗ diag{σ 2
q , σ

2
q , σ

2
qφ
}

Fig. 4  True and estimates states in the first scenario
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time per run of all methods are compared in Table 1. It shows that all proposed methods 
achieve better performance than GP-PDA in RMSE and MD. In addition, the proposed 
methods have a more conservative PCRLB by taking into account the GP input uncer-
tainty. The elapsed time of the GP-PDA, IGP-PDA-SS, and IGP-PDA-TS is comparable 
and that of IGP-PDA-MC is longer. Figure 6 shows the error bars of the radius function 
estimates using different methods at k = 100  s. The solid red line represents the true 
value of the radius function and the error bar shows the twice standard deviations of the 
radius function distribution. It can be seen that the proposed methods have better pos-
terior means than the standard GP-PDA. Also, the confidence intervals of the proposed 
methods can cover the true value better. In other words, the proposed methods achieve 
better estimate performance in the first-two moment than the standard GP-PDA by tak-
ing into account the input uncertainty. Among all methods, the IGP-PDA-MC provides 
the best coverage of the truth value.

Figure 7 shows the effect of measurement noise on input uncertainty. It can be seen 
that the input uncertainty �θL is greatly affected by the measurement noise σd and σβ . 
It increases as the measurement noise increases. Table 2 shows the average RMSE and 
PCRLB of the contour estimates against different σd and σβ with four methods. It can 
be seen that as the measurement noise increases, the accuracy of the contour esti-
mation decreases. For the same measurement noise level, the IGP-PDA-MC method 
achieves the smallest RMSE. Besides, the proposed methods have more conserva-
tive PCRLBs than GP-PDA. Similarly, Table 3 shows the centroid estimate RMSE and 
PCRLB. The result is consistent with the contour estimate, i.e., the proposed methods 
have smaller RMSE and more conservative PCRLB.

Table  4 compares the contour estimate MD and the elapsed time with different 
methods. It can be seen that the proposed methods take a significant performance 
advantage in MD. Among all the methods, the IGP-PDA-MC is the most time-con-
suming since lots of samples are required.

Fig. 5  Contour estimates: RMSE versus PCRLB in the first scenario
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6.2 � ETT in clutter case

In the second scenario, the methods are evaluated on a maneuvering ETT scenario in 
clutter. The number of clutter follows a Poisson distribution with expected cardinal-
ity per unit volume �c = 2× 10−4/(m · rad) , and the other parameters as the same as 
those in the first scenario.

Figure  8 shows the true and estimates contour/trajectories at time 
k = 1, 25, 50, 75, 100  s, respectively. Figure  9 shows the RMSE and PCRLB curves of 
the average contour estimate with four methods. The left sub-figure represents the 
local PCRLB curves from k = 70  s to k = 100  s, and the right one shows the local 

Fig. 6  True radius function and estimated error bar using different methods in the first scenario

Table 1  Performance of different models in the first scenario

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

Centroid estimate RMSE (m) 1.4221 1.2079 1.1543 1.0289

Centroid estimate PCRLB (m) 0.4141 0.5185 0.5560 0.5201

Contour estimate RMSE (m) 0.9203 0.8765 0.8404 0.8148

Contour estimate PCRLB (m) 0.1757 0.1879 0.2326 0.1986

MD 29.5479 23.2187 19.2746 20.2087

Elapsed time (s) 0.0346 0.0387 0.0396 2.9439
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RMSE curves in the same interval. Figure 10 shows the error bars of the radius func-
tion estimated via different methods at k = 100  s. The conclusions are the same as 
those in the first scenario and are omitted here for brevity.

Fig. 7  Input uncertainty with different measurement noise

Table 2  Effect of measurement noise on contour estimates RMSE and PCRLB in first scenario

σd
(m)

σβ
(rad)

RMSE (m) PCRLB

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 1.2832 1.0297 1.0213 0.9359 0.4820 0.5990 0.7401 0.6426

5 0.005 2.8250 2.0623 1.9853 1.8798 0.9633 1.0433 0.9721 1.0686

10 0.010 4.1072 3.8698 3.4508 3.0291 1.1953 1.2886 1.1982 1.2361

Table 3  Effect of measurement noise on centroid estimates RMSE and PCRLB in first scenario

σd
(m)

σβ
(rad)

RMSE (m) PCRLB

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 2.9236 2.6238 2.5170 2.4002 0.6200 0.7437 0.7792 0.7110

5 0.005 5.5616 5.2095 5.1330 4.9046 0.8884 1.2280 1.1030 0.9139

10 0.010 7.1595 6.0202 5.7415 5.1747 1.3062 1.3993 1.4131 1.1853

Table 4  Effect of measurement noise on contour estimates MD and Elapsed time in first scenario

σd
(m)

σβ
(rad)

MD Elapsed time (s)

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 12.1956 8.2162 8.9578 7.4639 0.0619 0.0711 0.0745 0.4644

5 0.005 17.1469 8.7798 8.8804 8.2171 0.0617 0.0736 0.0720 0.5876

10 0.010 19.1075 9.8002 9.4223 9.3062 0.0713 0.0662 0.0769 0.4892
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Tables 5 and 6 show the average RMSE and PCRLB of contour estimate and target centroid 
estimate via different methods against different measurement noise, respectively. Table  7 
compares the contour estimate MD and the elapsed time with different methods against dif-
ferent measurement noise. We can obtain the same conclusions as those in the first scenario.

Tables 8 and 9 show the average RMSE and PCRLB of contour estimate and target 
centroid estimate against different clutter densities, respectively. Table 10 represents 
the MD and elapsed time. It can be seen that as the clutter density increases, the 
accuracy of the contour and centroid estimation decreases, and the computational 
load increases. For the same clutter level, the IGP-PDA-MC method achieves the 
best performance in RMSE and MD at the cost of more computation burden.

7 � Conclusion and future work
In this paper, the IGP-PDA method is proposed to track an irregular-shape extended target 
in polar coordinates with measurement origin uncertainty. In the proposed method, the 
statistical property of input uncertainty is analyzed via the error propagation theory, and 

Fig. 8  True and estimates trajectories in the second scenario

Fig. 9  Contour estimates: RMSE versus PCRLB in the second scenario
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Fig. 10  True radius function and estimates error bar using different methods in the second scenario

Table 5  Effect of measurement noise on contour estimates RMSE and PCRLB in the second scenario

σd
(m)

σβ
(rad)

RMSE (m) PCRLB

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 1.9921 1.8859 1.5004 1.4916 0.2171 0.2989 0.2521 0.2734

5 0.005 3.1816 2.6085 2.5526 2.2322 0.3263 0.5866 0.4242 0.5446

10 0.010 4.9884 4.4195 4.1512 3.7823 0.5297 0.7559 0.5689 0.6382

Table 6  Effect of measurement noise on centroid estimates RMSE and PCRLB in the second 
scenario

σd
(m)

σβ
(rad)

RMSE (m) PCRLB

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 4.1884 3.9464 3.4769 3.1942 0.3573 0.4071 0.4751 0.4211

5 0.005 6.0819 5.8544 5.6209 5.1858 0.4275 0.5022 0.5011 0.4732

10 0.010 8.4704 8.3400 7.8537 7.2316 0.6415 0.7677 0.8094 0.7239
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then a more reasonable PCRLB of ETT is derived. Three approximation implementations 
are utilized to estimate the predicted distribution of GP with input uncertainty. Compared 
with the standard GP-PDA method, the IGP-PDA method achieves more accurate contour 
and kinematic estimates in the presence of clutter. The direction of future work includes 
analyzing the effect of input uncertainty on the IRF of PCRLB and reducing the number of 
feasible association events in heavy clutter.

Table 7  Effect of measurement noise on contour estimates MD and elapsed time in the second 
scenario

σd (m) σβ
(rad)

MD Elapsed time (s)

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

1 0.001 12.4674 9.1948 8.3770 8.0933 0.4812 0.4302 0.4099 1.6175

5 0.005 12.6476 8.1813 9.0031 9.6871 0.5261 0.4863 0.3775 1.6928

10 0.010 17.1176 14.9349 15.2896 13.6653 0.5646 0.4917 0.5192 1.8638

Table 9  Effect of clutter density on centroid estimates RMSE and PCRLB in the second scenario

�c

(m · rad)−1

RMSE (m) PCRLB (s)

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

4× 10−4 3.1906 2.8922 2.6846 2.0780 0.2486 0.3162 0.3031 0.2690

6× 10−4 3.7027 2.9171 3.0777 2.3545 0.2983 0.3454 0.3225 0.3029

8× 10−4 4.1441 3.1472 3.9250 3.1587 0.3596 0.3670 0.3375 0.3126

Table 10  Effect of clutter density on contour estimates MD and elapsed time in the second 
scenario

�c

(m · rad)−1

MD Elapsed time (s)

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

4× 10−4 19.5296 16.2759 15.9252 15.6275 0.4752 0.5931 0.4640 2.3628

6× 10−4 17.5733 10.5588 11.2339 10.0303 0.5723 0.6847 0.5062 3.2188

8× 10−4 16.7363 10.9033 13.7615 13.1029 0.5956 0.7535 0.4416 4.0414

Table 8  Effect of clutter density on contour estimates RMSE and PCRLB in the second scenario

�c

(m · rad)−1

RMSE (m) PCRLB (s)

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

GP-PDA IGP-PDA
TS

IGP-PDA
SS

IGP-PDA
MC

4× 10−4 1.4481 1.3966 1.3109 1.3026 0.2896 0.3659 0.3464 0.3239

6× 10−4 1.5706 1.5633 1.4267 1.3773 0.2944 0.3931 0.3647 0.3298

8× 10−4 1.7354 1.6669 1.4919 1.3963 0.3078 0.4047 0.3973 0.3379
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Appendix 1
Unbiased converted measurement

Assume that ck ,j = [dk ,j ,βk ,j] is the polar measurements at time k with covariance 
Rpol = diag{σ 2

d , σ
2
β } . Using the unbiased converted measurement (UCM) technique [37], 

the converted measurements cuk ,j can be given as

where cu,ξk ,j  and cu,ηk ,j  are the x-axis and y-axis position of measurements in Cartesian coor-
dinates, respectively. And the term �β = exp (−σ 2

β/2) is the bias compensation factor 
[37]. The converted covariance Ru

k ,j is given by

where

Appendix 2
Sigma sampling

Assume that the GP input is a n-dimensional variable with distribution θ̂Lk ,j ∼ N (µθLk ,j
,�θLk ,j

) 

(dimension n). The Sigma sampling points θ̂L,(i)k ,j  are given as [38]

The mean weights ωm,(i)
k  and the covariance weights ωc,(0)

k  are given as

(1)cuk ,j �

[

c
u,ξ
k ,j

c
u,η
k ,j

]

= �
−1
β

[
dk ,j cosβk ,j
dk ,j sin βk ,j

]

(2)Ru
k ,j =

[

Ru,11
k ,j Ru,12

k ,j

Ru,21
k ,j Ru,22

k ,j

]

(3)
Ru,11
k ,j =1

2
(d2k ,j + σ 2

d )
[
1+ exp(−2σ 2

β ) cos(2βk ,j)
]

+
[
exp(σ 2

β )− 2
]
d2k ,j cos

2(βk ,j)

(4)
Ru,22
k ,j =1

2
(d2k ,j + σ 2

d )
[
1− exp(−2σ 2

β ) cos(2βk ,j)
]

+
[
exp(σ 2

β )− 2
]
d2k ,j sin

2(βk ,j)

(5)
Ru,12
k ,j = Ru,12

k ,j =1

2
(d2k ,j + σ 2

d )
[
exp(−2σ 2

β ) sin(2βk ,j)
]

+
[
exp(σ 2

β )− 2
]
d2k ,j cos(βk ,j) sin(βk ,j)

(6)θ̂
L,(0)
k ,j = µθLk ,j

(7)θ̂
L,(i)
k ,j = µθLk ,j

+
(
√

(n+ �)�θLk ,j

)

i

i = 1, . . . , n

(8)θ̂
L,(i)
k ,j = µθLk ,j

−
(
√

(n+ �)�θLk ,j

)

i

i = n+ 1, . . . , 2n
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where � = α2(n+ ς)− n is a scaling parameter, α denotes the spread of the sigma points 
around the input mean value, ς is a secondary scaling parameter, and ̟ = 2 is optimal 
for Gaussian distribution [38].
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