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1  Introduction
Passive localization of underwater targets has been a complex problem in the under-
water acoustics field. Unlike free-field environments, underwater acoustic channels are 
typically characterized by multipath and spatiotemporal variability, which cannot be 
ignored in both source localization and communication. Multipath structure allows us to 
make more accurate estimates of source location, including source depth and range. The 
spatiotemporal variability makes it difficult to master the precise channel parameters 
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which also called waveguide parameters. To achieve effective localization of acoustic 
source in an ocean waveguide, an accurate underwater acoustic propagation model and 
prior waveguide parameters are inseparable from the traditional model-driven approach. 
Matched-field processing (MFP) [1–5] has been one of the primary methods for pas-
sive localization of underwater targets in the last three decades. In the natural ocean 
environment, the uncertainty of environmental information seriously affects the perfor-
mance of MFP [6, 7], which is called environmental mismatch in the underwater acous-
tic field. In response to the mismatch problem, a series of improved MFP methods have 
emerged. For example, Focalization MFP [8, 9], proposes that the sound source localiza-
tion and the environment parameters should be searched simultaneously.

In recent years, data-driven machine learning approaches have contributed to the 
development of acoustic signal processing [10–12]. Machine learning approaches can be 
considered offline training and online prediction strategy. A large amount of intensive 
computation is concentrated in the training phase of the model, and the trained model 
performs the lightweight analysis in the prediction phase, so real-time processing of data 
can be achieved more easily; where deep learning methods use deeper network struc-
tures and have better feature extraction capabilities compared to shallow networks [13].
The training of deep neural networks relies on "big data, " it can be said that the deep 
neural network and big data together help the model to be closer to the measured data 
distribution in a statistical sense and thus obtain better prediction performance.

In the underwater acoustics field, machine learning has also been applied in various 
aspects, such as detection/classification and localization of underwater targets [14–18]. 
It has also been used for seabed classification and ocean environmental information 
extraction [11, 19–21], and has produced rich results. In addition, a large number of 
research progresses related to machine learning methods have also appeared in the field 
of underwater acoustic communication [22–28]. At the same time, there are many chal-
lenges in using machine learning for underwater acoustic signal processing; mainly, the 
process of acquiring datasets has many limitations, especially the labeled datasets, which 
makes it difficult to form "big data" conditions. A trend has emerged: using sound field 
model simulation labeled data instead of natural measurement labeled data [29] to train 
supervised learning models. For example, Haiqiang Niu et al. [30] trained a deep residual 
network by simulated data and tested it on measured data, achieving better results than 
the focalization MFP, the cost of acquiring data for this method is low, but to compensate 
for the distribution differences between simulated and measured data (because environ-
mental parameters used to create the simulated dataset always not be able to explain 
the measured data), it is necessary to simulate a large number of training datasets under 
different environmental parameters for improving the generalization ability of the net-
work, and the training cost is high; for the problem of data distribution differences, some 
scholars have applied migration learning [31, 32] to passive localization of underwater 
sources and the strategy of adding fine-tuning to pre-training is proposed, using a small 
amount of measured data to fine-tune the network model trained with simulation data.

Inspired by the above articles, we propose a method based on the Semi-supervised 
learning (SSL) model, and we regard source localization as a classification problem. In 
the first step, a CAE added the residual self-attention mechanism (RA-CAE) is used 
to perform the feature extraction for the whole dataset by unsupervised learning. The 
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second step uses the encoder trained in the first step to extract features from the labeled 
data; then, the features are classified by a 4-layer multilayer perceptron (MLP) to per-
form source localization task. Together, the two steps constitute a semi-supervised 
learning framework (RA-CAE-SSL) for source localization.The performance of our 
method is evaluated using VLA reception data from the SWellEx-96 experimental S5 
event [33].

The structure of the paper is as follows: Sect.  2 introduces the proposed two-step 
framework RA-CAE-SSL and theories related to Self-attention mechanism and CAE, as 
well as the performance evaluation indexes; Sect. 3 shows the data pre-processing pro-
cess and analyze the Swellex-96 VLA data by traditional conventional signal processing 
methods, including MFP; in Sect. 4, we firstly propose two ways to divide the dataset; 
then, we give the corresponding localization results and discuss the performance of our 
proposed framework by comparing it with the control groups; and Sect.  5 shows the 
conclusions as well as future work.

2 � Proposed method based on the semi‑supervised learning model
The proposed method is performed through two steps: the first step is training the fea-
ture extraction part by unsupervised learning which is consisted of convolution autoen-
coder and self-attention model, and the second step is train classify part by supervised 
learning which is consisted of feature extraction with fixed weights and multilayer per-
ceptron. In this section, we firstly introduce the convolution autoencoder and self-atten-
tion model that we used, then introduce the two-step framework.

2.1 � Convolutional autoencoder

Convolutional autoencoder (CAE) [34, 35] is a kind of artificial neural network used 
in unsupervised learning, which uses convolution kernel for feature extraction. It can 
reduce the number of network parameters through weight sharing and local awareness 
features, while improving the model’s ability to extract local features from the data.

The working principle of the CAE is shown in Fig. 1, the convolutional transformation 
process from feature mapping input to output is called convolutional encoder, and the 
output value is reconstructed by transposed convolution operation, called convolution 
decoder, where T represents the convolutional encode operation and T’ represents the 
convolutional decode operation. The input feature matrix is x ∈ Rn×Q×Q . It contains n 
feature matrices, and the size of each feature matrix is Q×Q.

2.2 � Self‑attention mechanism

The capabilities we expect from CAE are not simply copying input to output, and we 
would like to add some constraints to the CAE, so that the model will be forced to con-
sider which parts of the input are much critical and need to be copied firstly. For exam-
ple: undercomplete autoencoder, regular autoencoder, denoising autoencoder, etc. For 
the network to extract better features about the location information of the source, this 
paper uses the self-attention (SA) mechanism to impose constraints on the CAE. The 
SA was first applied to natural language processing [36, 37]. The traditional convolution 
operation extracts features based on the weights of the convolution filter over a local 
perceptual field using an aggregation function, and these weights are shared throughout 
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the feature matrices. In contrast, the Self-Attention (SA) module uses a weighted aver-
age operation based on the input features to dynamically calculate the attention weights 
by correlation operations on the similarity function between features [38, 39].

Considering the different and complementary nature of convolutional operations and 
SA, there exists the potential to benefit from both paradigms through integration, so this 
paper combines the CAE with the self-attentive mechanism to propose the CAE with the 
Residual self-attention mechanism module (RA-CAE), introducing the residual module 
can make the training process more efficient by the ability to transform through identity.

The model structure of SA is shown in Fig.  2, where the output feature tensor  
X ∈ RCin×W×H of the convolutional layer in the CAE is used as the input of the layer, 

Fig. 1  Schematic diagram of a convolutional autoencoder

Fig. 2  Structure of self-attention model
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where H and W denote the dimensions of the tensor, let xij ∈ RCin denote the ele-
ments of the input tensor, let Y ∈ RCout ×W×H denote the output feature matrix, and 
let yij ∈ RCout denote the components of the output tensor. Let:

Then, the output of the SA can be expressed as:

where Wq ,Wk ,Wv denotes the weight matrix, Nk(i, j) denotes a local region centered 
at   (i, j) with spatial extent k, Sij denotes the attention weight of features in the region 
Nk(i, j) , and d denotes the feature dimension of Wqxij.

In this paper, the SA projects the feature matrix output from the autoencoder Conv2 
as Q,K ,V  using a convolution kernel of 1× 2 . After that the attention weights are com-
puted and matrix aggregation is performed to extract the local features of the classified 
objects.

2.3 � Proposed model framework: RA‑CAE‑SSL

In underwater acoustics, dataset acquisition is limited, especially reliable labeled data-
set, which are difficult to form "big data" conditions, and this also limits the application 
of deep supervised learning models to underwater acoustic source localization. In this 
paper, we propose a two-step semi-supervised learning framework under the assump-
tion that labeled dataset are insufficient and unlabeled dataset are relatively abundant. 
The specific steps are as follows:

Step 1: Training the RA-CAE model
The first step performs unsupervised learning on RA-CAE model to achieve coverage 

of the entire dataset (unlabeled data and labeled data).
The structure of RA-CAE is shown in Fig.  3a. The encoder consists of three convo-

lutional modules can project the input data into the hidden space; The decoder has a 
symmetrical structure with the encoder and is dedicated to reconstructing the input 
data from the hidden space; The residual block with self-attention is placed between 
the encoder and the decoder and serves to place attention on the features that are more 
important. The whole dataset (including unlabeled part and labeled part) will be used in 
this step as training dataset since it doesn’t need additional category information, and 
the loss function of mean square error (MSE).

Step 2: Training RA-CAE-SSL model for source localization
The second step performs supervised learning on the RA-CAE-SSL model.
After completing the training of the RA-CAE model, taking out part of the structure in 

Fig.  3a and freezing the parameters as a feature extraction network, which is connected 

(1)
qij = W qxij

k ij = W kxij
vij = W vxij

(2)

yij =
a,b∈Nk (i,j)

Attention qij , kab vab

=
a,b∈Nk (i,j)

softmax
Wqxij

T
Wkxab√
d

Wvxab
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with a 4-layer MLP classification network to form the RA-CAE-SSL model, whose con-
struction is shown in Fig. 3b The labeled dataset is first passed through a trained feature 
extraction network. Then, the extracted features are fed into the MLP for classification 
learning to achieve the source localization task with a loss function of Cross-Entropy Loss 
Function (CELF).

2.4 � Performance metrics

The commonly used evaluation metrics in traditional sound source localization are Mean 
Absolute Error (MAE) and Probability of credible localization ( PCL ), and the total number 
of samples is S. The actual distance corresponding to the i th sample is yi , and the predicted 
value is f (xi).

The MAE is calculated by the following formula:

(3)MAE = 1

S

S
∑

i=1

∣

∣yi − f (xi)
∣

∣

Fig. 3  Underwater acoustic source localization network framework design: a the structure of RA-CAE model; 
b the structure of RA-CAE-SSL model
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PCL specifies an error limit, and considers all samples falling within the error limit as 
correctly predicted samples, and calculates the localization accuracy from this. For 
example, at the 5% error limit, the localization accuracy PCL−5% is calculated as follows:

where

A smaller MAE value indicates better positioning performance, and a larger PCL value 
indicates better positioning performance.

2.5 � Difference from MFP

(1)	 The execution strategies and efficiency of the algorithms are different: Machine 
learning methods can be thought of as an offline training, online prediction strat-
egy.

(2)	 The cost function used for localization is different: machine learning methods 
mostly use cost functions such as minimum mean square error or minimum cross-
entropy training. The matching field processing mostly adopts the method of cor-
relation processing.

3 � Data pre‑processing and SWellEX‑96 data analysis
3.1 � Data pre‑processing

The sound pressure field under the ocean waveguide acoustic propagation model can be 
modeled as:

wherep
(

f
)

 is the complex acoustic pressure at the receiving array element, which can 
be obtained by discrete Fourier transform (DFT) of the original acoustic pressure data 
received by the array element, S

(

f
)

 is the source term, g
(

f , rs, rm
)

 is the Green’s function 
to describe the channel response between the source position rs and the receiving array 
element position rm , and ε is the ocean noise.

In the traditional underwater acoustic source localization methods, the sampling 
covariance matrix (SCM) of the receiving array is one of the commonly extracted fea-
tures, which contains the position information of the source and the marine environ-
ment parameter information. In this paper, the SCM of the VLA is used as the feature 
input of the network.

(4)
PCL−5% =

S
∑

i=1

η(i)

S

(5)η(i) =











1,

�

�yi − f (xi)
�

�

yi
× 100% ≤ 5%

0, otherwise

(6)p
(

f
)

= S
(

f
)

· g
(

f , rs, rm
)

+ ε
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Suppose that Q vertical array elements receive the complex sound pressure:

where θ is the location.
To perform the normalization operation:

The SCM is calculated based on the average of the L snapshot data to obtain:

Taking the real and imaginary parts of the SCM matrix to obtain two Q × Q dimen-
sional real matrices SCM1 and SCM2 , and the real matrix is scaled to the interval (0,1) 
by the min–max scaling method:

The input to the semi-supervised network is a normalized covariance matrix of dimen-
sion Q × Q × 2N, where N is the number of frequency points.

3.2 � Data label processing

Assuming that the source distance range is (rmin, γmax] , using equal-width split-box dis-
cretization, the source distance is divided into K categories, that is:

Then, the generation of the label of the i th sample becomes:

where �r is the distance interval corresponding to the category, ri is the distance 
between the i th sample and the receiving array, and ┌ ┐ denotes the upward rounding 
function.

The actual distance of the sample belonging to the category labeli is processed by One-
Hot Encoding and mapped to a 1 × K binary label vector, and the value of K in this paper 
is taken as 100.

(7)Pθ

(

f
)

=
[

p1
(

f
)

, p2
(

f
)

, ..., pQ
(

f
)]T

(8)
P̃θ

(

f
)

=
Pθ

(

f
)

√

Q
∑

q=1

∣

∣pq
(

f
)∣

∣

2

=
Pθ

(

f
)

∥

∥Pθ

(

f
)∥

∥

2

(9)SCMθ

(

f
)

= 1

L

L
∑

l=1

P̃l,θ

(

f
)

P̃
H
l,θ

(

f
)

(10)SCM1 = SCM1− SCM1min

SCM1max − SCM1min

(11)SCM2 = SCM2− SCM2min

SCM2max − SCM2min

(12)�r = rmax − rmin

K

(13)labeli =
⌈

ri − rmin

�r

⌉
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3.3 � SWellEX‑96 data analysis

The data of the VLA in event S5 of the SWellEX-96 experiment were used in this paper. The 
SWellEX-96 experiment was conducted at Point Loma, near San Diego, CA, from May 10 
to May 18, 1996, and the environmental parameters of the sea area are shown in Fig. 4. The 
VLA with 21 hydrophones were placed at equal intervals in the sea depth range of 94.125 m 
to 212.25 m, with an array aperture of 118.125 m and a sampling frequency of 1500 Hz. The 
experimental vessel sailed from south to north, and the towed acoustic source emitted CW 
signals at {109, 127, 145, 163, 198, 232, 280, 335, 385} Hz at a source depth of 9 m, the VLA 
recorded the full 75 min event.

The time–frequency diagram of the received signal of the first hydrophone of the VLA 
is shown in Fig.  5. The signal-to-noise ratio of the actual data is estimated according to 
Eq. (14), which shows that in the first half of the voyage, the spectral value at the CW sig-
nal frequency is lower than the second half due to the long distance of the sound source 

Fig. 4  SWellEX-96 experimental environment parameters

Fig. 5  The frequency spectrum of the signal received by array element No. 1
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from the array. From Fig. 6, we can know that the signal-to-noise ratio of the received signal 
increases when the sound source is close to the VLA.

where Cr is the signal covariance matrix, Cn is the noise covariance matrix.
MFP results
To make a preliminary analysis of the quality of the VLA array data and compare 

it with the proposed method. We processed the VLA data with MFP firstly. MFP is 
a generalized beamforming method which uses the spatial complexities of acous-
tic fields in an ocean waveguide to localize sources. The Bartlett MFP formula is as 
follows:

where θ is the location parameter, P(θ̂) is the Steering vector, B(θ̂) is the output of the 
beamforming.

The prior information required by MFP includes array parameters and waveguide 
parameters such as sound speed profile, depth of sea and sedimentary layer character-
istics While the prior information required by the proposed method is a large number 
of datasets with different range. We can think of cost function of MFP as the distance 
between two vectors in Euclidean space. The MFP results are shown in Fig.  7, with 
the 10% error limit in the shaded part. The copy field is obtained from the Kraken 
model simulation, and the sound field model environment parameters are referred 
to Fig. 5. It can be seen that the matching field processing results are not satisfactory, 
and the narrowband matching field processing significantly degrades the prediction 
performance with a large number of discrete points when the sound source distance 
is greater than 4  km. The reduced signal-to-noise ratio is one of the reasons. The 

(14)SNR ≈ 10 log10

(

Tr(Cr)

Tr(Cn)
− 1

)

(15)B(θ̂) =
Nf
∑

i=1

P
H
θ̂
(fi)SCMθ (fi)Pθ̂

(fi)

Fig. 6  The signal-to-noise ratio of the signal at each frequency point of array element No. 1 with time
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broadband matching field processing superimposed the ambiguity function of depth 
and range at each frequency point, which had the effect of enhancing the main lobe 
and suppressing the side lobe, and the anti-noise ability was more substantial than the 
narrowband matching field. Although the broadband matched field results can see the 
trend of sound source motion, there is a certain gap with the actual motion trajectory, 
and there are a small number of outlier points. This is mainly due to the mismatch of 
environmental parameters, especially the mismatch caused by the uncertainty of sea 
depth and the bottom parameters in the experimental sea area, beyond that the array 
location mismatch caused by fluctuation of water is also an important reason.

4 � Source localization results and discussion
4.1 � Datasets division and control group setting

4.1.1 � Datasets division

Whether the data of training data and the test data satisfy the same distribution is an 
essential factor affecting the prediction performance of the model, to verify the imple-
men-tation of the semi-supervised framework proposed in this paper in the differ-
ent cases，the data set is divided as follows, corresponding to the cases of the same 

Fig. 7  MFP Processing results: a narrowband {163} Hz matching field results; b {109, 127, 145, 163, 198, 232, 
280} Hz broadband matching field results

Fig. 8  Dataset division method: a The first type of dataset division; b the second type of dataset division
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distribution and different distributions, respectively, the data sets are divided in the way 
as follows:

Division 1: the data collected by VLA from 0 to 60 min were preprocessed to obtain 
3540 samples, and they were used as the training sets for step 1; in the Step 2, we 
select two fractions from the whole sample set without repetition as the training set 
of the second step and the test set of the second step, every fraction selected should 
be uniformly distributed over the entire navigation path (Fig. 8a). Since the two frac-
tions were selected from the same path, we think they approximately satisfy the same 
data distribution which is defined as “matched” case.
Division 2: the data collected by VLA from 45 to 75 min were preprocessed to obtain 
2487 samples, and they were used as the training sets for step 1; in the Step 2, as 
Fig. 8b shown, the training sets for the step 2 is selected from the left side and the 
testing sets for the step 2 is selected from the right side. Since the two sets were 
selected from different path, we think they do not satisfy the same data distribution 
which is defined as “mismatched” case.

4.1.2 � Control group setting

In order to comprehensively evaluate the performance of the proposed framework (RA-
CAE-SSL) in underwater acoustic source localization, three control groups are proposed 
in this section.

Control group I (CAE-SSL): A semi-supervised learning approach is used to train a 
network model that only lacks the residual self-attention mechanism module compared 
to the RA-CAE-SSL;

Control group II (RA-SL): A supervised learning approach is used to train a network 
with the same structure as the RA-CAE-SSL;

Control group III (CNN): A supervised learning approach is used to train a network 
with the same structure as the CAE-SSL.

Table 1  Parameters of the network model for each part of the semi-supervised learning underwater 
acoustic source localization framework

Block Output channel Kernel size Stride

Conv1 64 3× 3 1

Encoder Conv2 128 3× 3 2

Conv3 256 3× 3 2

Transposed-Conv1 256 3× 3 2

Decoder Transposed-Conv2 128 2× 2 2

Transposed-Conv3 64 4× 4 1

Dense_1 4096 - 1

MLP Dense_2 2048 - 1

Dense_3 1024 - 1

Dense_4 100 - 1



Page 13 of 20Jin et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:107 	

Table 2  Localization performance of narrowband dataset

Percentage of label data 75% 37.5% 15%

Frequency 
points

Positioning network model MAE
(km)

PCL−5%(%) MAE
(km)

PCL−5%(%) MAE
(km)

PCL−5%(%)

109 RA-CAE-SSL 0.9098 62 1.2392 55 1.5352 44.5

CAE-SSL 0.9072 63.5 1.4963 50.5 1.7699 43.5

RA-SL 0.8825 65 1.4024 51.5 1.8392 41.5

CNN 0.7986 61.5 1.3297 46 1.9254 39.5

127 RA-CAE-SSL 0.6581 75.50 0.7100 72 0.9487 64

CAE-SSL 0.6719 72.5 0.6489 72 1.2943 55.5

RA-SL 0.7328 73 0.8213 67 1.1592 57.5

CNN 0.7812 68 0.7570 66.50 1.2157 54.50

145 RA-CAE-SSL 0.3606 86 0.5211 77 0.6323 73

CAE-SSL 0.4503 83 0.5954 76 0.6746 71

RA-SL 0.4761 81 0.6873 73.5 0.8090 72

CNN 0.4437 81.5 0.6897 72 0.7254 69

163 RA-CAE-SSL 0.1201 93.5 0.2259 89 0.4083 81

CAE-SSL 0.1390 93 0.2679 89.5 0.5134 79

RA-SL 0.1570 92 0.3891 86 0.5954 79.5

CNN 0.1255 91.5 0.3094 86 0.7659 68

198 RA-CAE-SSL 0.1470 95.5 0.2802 86.5 0.4557 82

CAE-SSL 0.1155 95.5 0.2090 90 0.4372 82

RA-SL 0.1489 94 0.2428 88 0.5449 80

CNN 0.1205 94 0.2413 87.5 0.5700 78

Table 3  Localization performance of broadband dataset

Where①: {109, 127} ; ②: {109, 127, 145} ; ③: {109, 127, 145, 163, 198} ; ④: {109, 127145, 163, 198, 232, 280}.

Frequency 
points

Percentage of label data 75% 37.5% 15%

Positioning network 
model

MAE (km) PCL−5%(%) MAE (km) PCL−5%(%) MAE (km) PCL−5%(%)

① RA-CAE-SSL 0.3964 82 0.3891 82.5 0.7024 70.5

CAE-SSL 0.4657 80 0.6604 73.5 0.8721 64.5

RA-SL 0.4426 81 0.7089 71 0.9729 66.5

CNN 0.5115 79 0.7859 65 0.6600 65.5

② RA-CAE-SSL 0.0724 96.5 0.2017 88.5 0.4961 78.5

CAE-SSL 0.1474 93.5 0.2917 87 0.6400 77

RA-SL 0.2232 90.5 0.4707 83.5 0.8701 71

CNN 0.3506 81.5 0.4183 82.5 0.7301 65.5

③ RA-CAE-SSL 0.0100 100 0.0250 98.5 0.1589 91.5

CAE-SSL 0.0439 98 0.0839 96.5 0.3671 89

RA-SL 0.0535 98.5 0.0543 97 0.6296 82

CNN 0.0252 98.5 0.2213 91 .0.5442 82

④ RA-CAE-SSL 0.0077 100 0.0115 99.5 0.0219 99

CAE-SSL 0.0350 99 0.1135 94 0.1435 92

RA-SL 0.0177 99.5 0.0466 97 0.1455 94

CNN 0.0381 98.5 0.0562 96.5 0.2309 88.5
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4.2 � Source localization results for the first dataset division method

To validate the performance of the proposed semi-supervised framework when the 
number of labeled data is reduced, we selected 75%, 37.5% and 15% of the entire labeled 
data as the training set for step 2, respectively. Meanwhile, in order to show the contri-
bution of dataset bandwidth to localization performance, we conduct experiments using 
narrowband dataset consisting of single frequency and broadband dataset consisting of 
multiple frequencies, respectively, and the localization performance is shown as follows 
(Table 1).

Tables 2 and 3 give the localization performance under different model, different per-
centages of labeled dataset and different bandwidth of frequency.

We give the analysis of the results as follows:

1.	  Comparing the localization results of RA-CAE-SSL model and RA-SL model, it is 
found that the localization performance of the semi-supervised learning model 
out-performs the supervised learning in most cases, especially after the number 
of labeled data is reduced, the localization performance of the supervised learning 
model decreases, and the advantage of the semi-supervised learning model is more 
obvious, so we can say semi-supervised learning strategy is more suitable for under-
water acoustic source localization when labeled data are not enough but unlabeled 
data are relatively abundant;

2.	  Comparing the localization results of RA-CAE-SSL model and CAE-SSL model, it 
is found that the introduction of the residual self-attention mechanism module can 
effectively improve the localization performance of the semi-supervised learning 
model, and it can be more useful when training data are insufficient;

3.	 Comparing the test results of broadband dataset and narrowband dataset, it is found 
that the localization performance of broadband datasets is better than that of nar-
rowband datasets, and the more frequency points the samples contain, the better the 
localization performance. This is because the broadband samples carry more loca-
tion information, which effectively reducing the uncertainty. This also appears in the 
matching field processing results;

4.	  Comparing the localization results of narrowband dataset at different frequency 
points, it is found that the localization performance of high-frequency dataset is bet-
ter than that of low-frequency datasets. We speculate that it is due to there is more 
significant variation between different elements within the covariance matrix of 
high-frequency dataset, which is more conducive to feature extraction. This is con-
sistent with the rule in the conventional beam formation, that the higher the fre-
quency of the signal source, the smaller the main lobe is.

5.	  We find the performance of 198Hz is clearly better than other single frequency. 
From the perspective of normal modes, the higher the frequency of the source means 
the more normal wave modes are excited and therefore more information about the 
location of the source is contained in the signal. So it is understandable.

To give a more visual comparison, we chose sample localization result of dataset 
whose frequency is 163 Hz and {109,127,145,163,198,232,280} Hz, then plot the result as 
shown in Figs. 9 and 10.
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From Figs. 9 and 10, it can be seen that the prediction accuracy of each model is high 
in the range of 1–4 km from the sound source; at greater than 4 km, there are differ-
ent degrees of outliers in the prediction points, which is because the farther the sound 
source is, the greater the signal energy attenuation in the propagation process, the 
lower the signal-to-noise ratio at the receiving end, and the sound signal propagation 
process is more complex, and the location features are more difficult to extract com-
pared with those at close distances. In addition, it can be found that broadband outliers 
are less compared with narrowband, and semi-supervised methods have fewer outliers 
compared with supervision, and the introduction of an attention mechanism can further 
reduce the outliers.

There also are some limitations in the experiment, such as, we did not use simula-
tion data to verify the effect of the methods, if did, the results may be more credible. In 
addition, for getting more datasets, the number of snapshot used to get SCM may be 
not enough, which will reduce the ability to estimate statistical characteristics, and as a 
result, the model’s ability to extract correct features is weakened.

4.3 � Source localization performance for the second dataset division method

To verify the generalization ability of the model, the second dataset division method 
given in Sect. 4.2 is adopted in this subsection, and the data distributions of the training 
and test sets in the second step are different even in the case of the same label. And we 

(a) (b)

(c) (d)
Fig. 9  Prediction plots for the narrowband dataset {163} Hz: a RA-CAE-SSL model; b CAE-SSL model; c RA- SL 
model; d CNN model
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adjust the number of output channels of the autoencoder convolution layers to find the 
network with the best generalization ability for the test set in this subsection. The locali-
zation performance of the proposed framework with different number of output chan-
nels of the autoencoder convolution layers is shown in Table 4.

From the table, it can be seen that the model has the strongest generalization abil-
ity to the test set when encoder3 is used. Therefore, the encoder structure of following 
experiments is referred to encoder3, and the decoder structure is symmetric with the 
encoder.

The predicted results of the proposed model and the control group are shown in 
Table 5. The dataset used in the Step 2, which needs label, represents 25% of the entire 
datasets. And the frequency of dataset is {109,127,145,163,198,232,280} Hz.

The localization performance results in this section show that the proposed frame-
work RA-CAE-SSL has better generalization ability and robustness in the case of "mis-
match" between the training and test sets, both compared with the control groups and 
MFP. As can be seen from Fig.  11a, the prediction points of the RA-CAE-SSL model 
deviate from the actual distance to different degrees, but they are all close to the actual 
distance trajectory, and most of the prediction points are within the 5% error limit line, 
which indicates that the current network model can alleviate the influence of "mismatch" 

Fig. 10  Prediction plots for the broadband dataset {109, 127, 145, 163, 198, 232, 280} Hz: a RA-CAE-SSL 
model; b CAE-SSL model; c RA- SL model; (d) CNN model
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to a certain extent, but cannot fundamentally solve the "The possible reasons for this 
are: the small amount of data and the limitation that the type of data distribution in our 
dataset is not rich enough.

In addition, this also shows that the self-encoder can not only learn the complex sound 
field structure of the shallow sea waveguide, but also summarize the knowledge of the 

Table 4  Parameters of the encoder in CAE

Conv2D_1 Conv2D_2 Conv2D_3 MAE(km) PCL−5%(%)

Number of output channels(encoder1) 64 128 256 0.0748 59

Number of output channels(encoder2) 64 128 32 0.0666 63

Number of output channels(encoder3) 64 32 16 0.0584 65.5

Table 5  Localization performance of proposed framework and control groups

MAE (km) PCL−5%(%)

RA-CAE-SSL 0.0584 65.5

RA-SL 0.0715 58.5

CAE-SSL 0.0731 59

CNN 0.0809 59

Fig. 11  Prediction results of acoustic source localization: a RA-CAE-SSL model; b CAE-SSL model; c RA- SL 
model; d CNN model
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regularity adapting to different waveguide environments, but the network structure 
and data richness used in this paper are not enough to further verify this ability of the 
autoencoder.

5 � Conclusion
In this paper, using the idea of semi-supervised learning, the acoustic source localiza-
tion task is divided into two steps to complete for practical scenarios where labeled data 
are insufficient and unlabeled data are relatively abundant. A convolutional autoencoder 
structure incorporating a residual self-attention mechanism module is proposed. The 
critical feature extraction capability of the autoencoder is effectively improved by SA 
under the condition where data are affected by noise.

The semi-supervised learning framework for underwater acoustic source localiza-
tion proposed in this paper is a data-driven approach that, compared to MFP, gets rid 
of the dependence on precise environmental parameters and theoretically avoids the 
problem of environmental parameter mismatch. As a consequence, the performance 
of the proposed framework is clearly better than MFP, but it is not fair to compare 
them under every scenarios since the prior required by them is different. The data-
driven approach mainly depends on the available data: when training data and test 
data with the same label satisfy the condition of the same distribution, the network 
model can achieve the best prediction capability; conversely, when the same distri-
bution condition is no longer satisfied, the prediction capability of the model will be 
significantly affected. It can be seen that the main factor limiting the development 
of data-driven underwater acoustic source localization methods are the number and 
quality of data. Based on the data from the SWellEX96 experiment, this paper verifies 
the localization performance of the proposed method in two cases, and the results 
show that: 1. The semi-supervised learning framework proposed in this paper is more 
adaptable to the underwater acoustic field in which limited access to data (mini-
mal access to label data), and the localization performance is more vital than that of 
supervised learning, especially in the case of the reduced number of label samples, 
and SA also contributed to it. 2. The network generalization ability of the proposed 
method is more vital than that of the supervised learning, while has a certain toler-
ance for differences in data distribution.

It is worth mentioning that the primary purpose of this paper is to demonstrate the 
advantages of a semi-supervised framework for application in the underwater acoustics. 
With larger datasets and richer sample data, the framework of this paper can be applied 
to more complex and powerful networks when better sound source localization perfor-
mance can be expected to be obtained.
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