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1  Introduction
Clustering represents a very common and widely present unsupervised learning prob-
lem in different areas [1–4]. The k-means algorithm [5] is a well-known broadly used 
clustering method. In addition, a number of useful clustering methods have been pro-
posed, such as K-means++ [6], k-medians [7], and Bregman clustering [8].

As a valuable alternative, convex clustering has been proposed, e.g., [4, 9–12], wherein 
the clustering problem is formulated as a convex optimization problem based on a sum-
of-norms penalty. Convex clustering exhibits several favorable features when compared 
with conventional clustering methods. For example, it eliminates local minima-related 
issues present in standard methods like k-means, and, unlike k-means, it does not need 
a pre-defined number of clusters to be specified. However, current convex clustering 
approaches do not scale well with the number of data points to be clustered [4, 9–12]. 
We develop a novel, fully parallel convex clustering-like method, i.e., a method for a 
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modified SON formulation, based on ADMM [13] amenable to master–worker (server–
client) computational infrastructures. The proposed method improves scalability over 
existing convex clustering solvers. In addition, when compared with existing (paral-
lel/distributed) clustering methods, e.g., those based on k-means, our method exhibits 
comparable accuracy (e.g., in terms of the silhouette score or percentage of accurately 
clustered points when the ground truth for expected outcomes is known) and scalabil-
ity, while exhibiting convex clustering benefits (e.g., no need for a pre-defined number 
of clusters) with respect to the alternatives. We provide an open source implementa-
tion (available on [14]) of the proposed approach in the COMPSs parallel programming 
framework [15], based on the Python programming language and run on a High-Perfor-
mance Computing (HPC) computer cluster.

1.1 � Related work

k-means clustering was originally presented in [16], while Ref. [5] introduces the algo-
rithm itself (Lloyd’s algorithm). While k-means has been widely used and exhibits sev-
eral useful features, it is sensitive to initialization and may converge to a local minimum. 
The impact of different initialization methods on the algorithm behavior was empirically 
evaluated in [17]. There have been several works that develop improved initialization 
methods. In [6], a randomized seeding technique was added to the algorithm, in order to 
improve both its speed and accuracy. On the other hand, Ref. [18] proposes an algorithm 
for cluster centers initialization.

Several convex clustering formulations have been considered. In [19], an exemplar-
based likelihood function was introduced, leading to a convex minimization problem 
for clustering. This represents an efficient algorithm with guaranteed convergence to the 
globally optimal solution, proven also by a set of experiments. Reference [20] formulates 
an unsupervised learning problem as one convex “master” problem that includes non-
convex sub-problems which can be solved efficiently. Supervised convex clustering has 
been proposed in [21].

The wider use of convex clustering becomes evident in different settings. For example, 
Ref. [22] investigates the use of convex clustering approach instead of hierarchical clus-
tering in certain scenarios. An interesting approach was introduced in [23], where the 
idea is to perform sparse convex clustering. This means performing the clustering simul-
taneously with feature selection, in order to enhance performance. The Sum of Norms 
(SON) clustering was proposed in [4, 11, 12], as a convex relaxation of k-means. In [9], 
a detailed explanation of the algorithm for SON clustering can be found, including the 
presentation of its connection to k-means. It is inspired by the group lasso approach 
[24]. While the original SON clustering formulation involves all-pairwise-differences 
across cluster candidates in the SON regularization, it has been shown beneficial to uti-
lize weighted pairwise differences, including setting up many weights to zero [10, 23, 
25–29]. The weighted and sparse SON regularizations have been shown to yield faster 
algorithms and good clustering accuracies [10, 25, 28, 29]. For example, Qian [25] pro-
poses an approach based on weighted minimum spanning trees and k-means bipartite 
graphs and shows high clustering accuracies of such sparse SON regularization meth-
ods. The SON clustering exhibits good theoretical cluster recovery guarantees for 
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all-pairwise-differences SON models. Theoretical advances regarding the perfect recov-
ery properties of the convex clustering model with uniformly weighted all-pairwise-dif-
ferences regularization were proven in [30, 31]. For weighted and sparse SON models, 
theoretical recovery guarantees are limited. Reference [32] establishes sufficient condi-
tions for the perfect recovery guarantee of a general weighted convex clustering model. 
However, the weights have to be nonzero for all data point pairs within the same clus-
ter—information not known a priori.

Several numerical algorithms for solving SON clustering problems have been pro-
posed. Reference [32] introduces a semi-smooth Newton-based augmented Lagran-
gian method, for large-scale convex clustering. Additionally, the Alternating Direction 
Method of Multipliers (ADMM) and the Alternating Minimization Algorithm (AMA) 
have been proposed to solve convex clustering problems [10]. In [26], a novel method for 
convex clustering, using semi-proximal ADMM was introduced. This method is suitable 
for high-dimensional data. It is based on the sparse group lasso penalty and includes a 
set of numerical experiments in MATLAB. An interesting approach is presented in [27], 
where a networked k-means algorithm is proposed. The algorithm deals with distrib-
uted data and a multi-agent approach. Although it contains a description of an illustra-
tive numerical evaluation, this work does not conduct a thorough empirical study. In 
[28], the authors introduce a Scalable cOnvex cLustering AlgoRithm via Parallel Coor-
dinate Descent Method (SOLAR-PCDM). They combine a parallelizable algorithm with 
a compression strategy. SOLAR-PCDM includes the development of a method called 
weighted convex clustering to recover the solution path by formulating a sequence of 
smaller equivalent optimization problems and the utilization of the Parallel Coordi-
nate Descent Method (PCDM) to solve a specific convex clustering problem. Reference 
[29] introduces an efficient smoothing proximal gradient algorithm (Sproga) for convex 
clustering.

With respect to the existing literature, our main contribution is on developing a novel 
parallel and scalable solver for SON-type clustering. We adopt a sparse zero-one weights 
SON formulation and leverage it to develop an efficient parallel ADMM method. 
Unlike existing ADMM-based convex clustering methods that are sequential [26], our 
method is parallel and hence, well suited to scalable execution on HPC clusters. Exten-
sive numerical evaluations show a high clustering accuracy and a high scalability of the 
proposed method on a number of real and synthetic data sets. Specifically, the achieved 
accuracy is comparable to alternative sequential k-means solvers, while scalability is sig-
nificantly improved. It is worth noting that our sparse zero-one SON formulation does 
not guarantee perfect theoretical recovery guarantees. However, extensive numerical 
results demonstrate a high clustering accuracy of the proposed method. This is a typical 
scenario with other sparse clustering methods like, e.g., [25, 26].

The rest of the paper is organized as follows. The definition of the problem is described 
in Sect.  2, where Sect.  2.1 is dedicated to the explanation of some introductory pre-
requisites. Section  2.2 contains the definition of the ADMM-based convex cluster-
ing-like algorithm. The implementation and infrastructure are described in Sect.  2.3, 
where Sect.  2.3.1 contains the description of the input data and Sect.  2.3.2 provides 
some remarks about the stopping criterion. Section  3 is dedicated to the numerical 
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evaluations. Section  3.1 provides insights into the time consumption of different seg-
ments of the algorithm. The accuracy evaluation of the developed method is described 
in Sect.  3.2. In Sect.  3.3, the effects of choosing different reference points (see ahead 
Sect. 2.2) are considered, while in Sect. 3.4, we evaluate the effects of different ways of 
data partitioning. The scaling properties of the algorithm are described in Sect. 3.5. Sec-
tion  3.6 provides a discussion on choosing the value of parameter γ . The comparison 
of parallel ADMM-based convex clustering to other clustering approaches is given in 
Sect. 3.7, specifically: Sect. 3.7.1 contains the comparison the AMA method, Sect. 3.7.2 
with DBSCAN and Sect. 3.7.3 with the SSNAL method. Section 3.8 discusses some pos-
sible further implementation considerations. Finally, the conclusions are made in Sect. 4.

Notation. We denote by: Rd the d-dimensional real coordinate space; ‖.‖ the Euclidean 
norm; a⊤ the transpose of vector a.

2 � Methods
2.1 � Preliminaries

SON clustering. Consider the problem of clustering a set of observations {aj}Nj=1 , 
aj ∈Rd , where the number of clusters is not known in advance. The Sum Of Norms 
(SON) clustering is formulated as:

where x = (x1)
⊤, (x2)⊤, . . . , (xN )⊤

⊤ ∈ R
Nd is the optimization variable. Here, xi ∈ R

d 
plays the role of the i-th cluster center candidate, i = 1, . . . ,N  and γ > 0 is a regulari-
zation parameter. The first sum corresponds to fidelity measure, while the second sum 
represents the regularization term. It enforces zeros for ||xi − xj|| across a subset of pairs 
i, j and can be seen as a generalization of the fused Lasso penalty [33]. This means that, 
at the solution x∗ = ((x∗1)⊤, . . . , (x∗N )

⊤)⊤ of (1), there will be only a subset of K ,K < N  , 
mutually distinct vectors x∗1, . . . , x

∗
N ; these K distinct vectors, say x∗i1 , . . . , x

∗
iK

 , where 
{ii, . . . , iK } ⊂ {1, . . . ,N } are the cluster centers obtained through convex clustering. The 
cost function in (1) is strongly convex, and (1) has the unique solution x∗.

ADMM. The proposed parallel clustering method is based on ADMM. ADMM [13] is 
an iterative algorithm that solves the following type of problems:

where f : Rn → R and g : Rm → R are convex functions, i.e., ADMM assumes 
an objective function, that is separable to two components, x ∈ R

n and z ∈ R
m . 

A ∈Rp×n , B ∈Rp×m are real-valued matrices, where c ∈Rp . The augmented Lagrangian 
Lρ : (Rm+n)× (Rp) → R associated with (2) is:

where ρ > 0 is a penalty parameter, and � is the dual variable. Then, the ADMM algo-
rithm consists of the following iterations:

(1)min
x

N
∑

j=1

||aj − xj||2 + γ
∑

i<j

||xi − xj||,

(2)minimize f (x)+ g(z) s.t. Ax + Bz = c,

(3)Lρ(x, y; �) = f (x)+ g(y)+ �
⊤(Ax + By− c)+

ρ

2
||Ax + By− c||2,
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Here, k = 0, 1, . . . , is the iteration counter, xk ∈ R
n and yk ∈ R

m are the primal variables, 
and �k ∈ R

p is the dual variable. It is well known that (xk , yk) converges to a solution of 
(2) under mild conditions; see [13].

Regarding the stopping criterion, a common way to terminate the algorithm is to 
introduce threshold values ǫpri and ǫdual , as feasibility tolerances, for the primal and dual 
feasibility conditions:

so that the algorithm terminates if both conditions (7) and (8) are satisfied.

2.2 � Problem model and proposed parallel method

Assume we have N observations {aj}Nj=1 ∈Rd as stated before. We assume a master–
workers (nodes) computational and sharing model with K − 1 worker nodes that store 
data, perform calculations, and communicate with the master. Our goal is to construct 
an algorithm that performs cluster assignment, i.e., a function that maps a set of input 
data points to a discrete set of cluster labels. Without loss of generality, we index the 
master as the first node, and the workers as nodes 2, . . . ,K  . Each node (including mas-
ter) has a chunk of the input data a of size N/K × d1. To facilitate presentation, we 
introduce a two index notation, where aij ∈ R

d represents the j-th data point available 
at node i, i = 1, . . . ,K , j = 1, . . . , NK  . We introduce a modification of standard convex 
clustering in (1), as follows. Note that the second term in (1) involves the differences 
across all pairs (i, j), i < j , of “candidate” cluster centers. Here, we also start by letting 
xij ∈ R

d , i = 1, . . . ,N , j = 1, . . . , NK  , be a “candidate” cluster center that corresponds to 
the (i, j)-th data point. However, unlike (1), we do not penalize the differences across all 
pairs of candidate clusters. Instead, we assign to the master a “reference point” x11 . Simi-
larly, we assign to each worker i, i = 2, . . . ,K  , a local “reference point” xi1 . The selection 
of reference points can be made arbitrarily, i.e., instead of choosing the first point from 
the data chunk, we could choose an arbitrary point at each worker. These points are not 
forced to become centers, and they have no advantage over other points in the process of 
determining the final cluster centers; they only represent an element for algorithm con-
struction. The effects of choosing different reference points for the same experimental 
setup are described in details in Sect. 3.3.

We replace the second sum in (1) with the following sum:

(4)xk+1 = argminxLρ(x, y
k , �k),

(5)yk+1 = argminyLρ(x
k+1, y, �k),

(6)�
k+1 = �

k + ρ(Axk+1 + Byk+1 − c).

(7)||rk || = ||Axk + Byk − c|| ≤ ǫpri,

(8)||sk || = ||ρA⊤B(yk − yk−1)|| ≤ ǫdual,

1  For simplicity, assume that N is divisible by K; otherwise, node 1 can take ⌊ N

K
⌋ + r data points, and the remaining 

nodes take ⌊ N

K
⌋ data points, where r is the remainder when dividing N by K.
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In other words, within the data points at each node i, i = 1, . . . ,N  , we penalize the differ-
ence between the local reference point xi1 and the remaining data points xij , j = 2, . . . , NK  , 
at that node. This corresponds to the first sum in (9). In addition, regarding cross-node 
penalization, we penalize the differences between the reference point on master x11 and 
the local reference points xi1, i = 2, . . . ,K  . This corresponds to the second sum in (9). 
Finally, accounting for the sum of squared distances between each point aij and each 
candidate cluster center xij , we arrive at the following formulation for the convex clus-
tering-like method:

where the minimization is with respect to the variables xij ∈ R
d , i = 1, . . . ,K , j = 1, . . . ,

N
K

 , 
and γ > 0 . Note that formulation (10) depends on K, i.e., different values of K yield dif-
ferent optimization problems. Intuitively, for a larger K, the sum of norms penalty in (10) 
corresponds to an increasingly sparse graph, and one may expect that this results in a 
lower cluster recovering accuracy. We show by extensive experiments that the overall 
proposed method exhibits high clustering accuracy when K increases. Note that prob-
lem (10) is not equivalent to the analog of (1) below:

where the second sum includes the differences between each pair of variables xij and xlm . 
However, extensive numerical results show that solving (10) yields effective clustering 
methods.

As an intermediate step of the overall clustering procedure, for a given number of 
workers K, we add the following formulation to the described problem. It is useful to 
associate with problem (10) a graph G = (N ,E) , where N  is the set of N nodes, each 
corresponding to a single variable xij , i = 1, . . . ,K , j = 1, . . . , NK  , and E is the set of edges 
(i, j) ∼ (l,m) , such that there is an edge between nodes (i, j) and (l, m) if the second sum 
in (10) involves the term ||xij − xlm|| . Figure  1 illustrates graph G on an example with 
K = 4 nodes and NK = 4 data points per node. In Fig. 1, x11 corresponds to the reference 
point on master; xi1, i > 1 corresponds to the reference point on node (worker) i; and 
xij , i > 1, j > 1 correspond to the remaining candidate clusters. Formulation (10) penal-
izes differences ||xij − xlm|| for those pairs of xij and xlm for which an edge in G exists.

In view of the graph-based representation of (10), the original convex clustering in (1) 
is recovered when G is replaced with the full (complete) graph. Similarly, (10) may be 
seen as a weighted convex clustering [32], where unit weights are added for those pairs 
of xij ’s and xlm ’s where (i, j) ∼ (l,m) , and zero weights are added elsewhere.

Note that we do not assume beforehand any knowledge of the “structure” or “distribu-
tion” of data across different nodes. Also, the graph construction is independent of the 

(9)
K
∑

i=1

N/K
∑

j=2

||xi1 − xij|| +
K
∑

i=2

||x11 − xi1||.

(10)minimize
xij

K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − xi1||,

(11)minimize

K
∑

i=1

N/K
∑

j=1

||aij − xij||2 + γ
∑

||xij − xlm||,
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actual values of the data points aij’s. In other words, the graph construction is arbitrary 
with respect to the available data. Extensive numerical results (See Sect.  3) show that 
this leads to accurate clustering solutions. We adapt this approach because the alterna-
tive, “data-driven” graph (weights) construction, as, e.g., done in [26], incurs high com-
putational cost and communication coordination among nodes. Data-driven centers and 
graph assignments are left for future work.

The problem can now be reformulated, in order to apply ADMM, as follows:

In other words, we introduce, for each node’s reference point xi1, i = 1, . . . ,K  , an auxil-
iary variable yi1 and add the constraint yi1 = xi1 to keep problem (12) equivalent to (10). 
Clearly, variables in (12) are then {xij}, i = 1, . . . ,K , j = 1, . . . , NK  , and yi1, i = 1, . . . ,K  . 
We now dualize the constraints in (12) and form the Augmented Lagrangian function 
Lρ : RNd × R

Kd × R
Kd → R as follows:

where ρ > 0 is a penalty parameter. In (13), we denote by x ∈ R
Nd the vector that stacks 

all the xij ’s one in top of another, and by y ∈ R
Kd the vector that collects all yi1 ’s one on 

top of another. We now apply ADMM in (4)–(6) with respect to the Lagrangian Lρ in 

(12)
minimize

K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − yi1||

s.t. yi1 = xi1, i = 2 . . .K .

(13)

Lρ(x, y; �) =
K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − yi1||

+
K
∑

i=2

�
T
i (yi1 − xi1)+

ρ

2

K
∑

i=2

||yi1 − xi1||2,

Fig. 1  Illustration of graph G and structure of problem (10)
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(13) to solve (12). After decomposing x and y back to blocks xij ’s and yi1’s, it can be veri-
fied that (4)–(6) translates into the set of updates in (14)–(17), as follows:

•	 x update on each worker node i = 2 . . .K  in parallel: 

	 In (14), the optimization is (jointly) with respect to xij , j = 1, . . . , NK .
•	 x update on the master node: 

	 Note that (15) is also done in parallel with (14), and the optimization in (15) is 
(jointly) with regard to x1j , j = 1, . . . , NK .

•	 y update on master node: 

	 Note that minimization (16) is with respect to (jointly) variables yi1, i = 2, . . . ,K .
•	 � update on master node: 

	 Note that all the �i’s, i = 2, . . . ,K  , are updated at the master independently, in paral-
lel.

Regarding inter-node communications (variable exchange), the procedure is as follows. 
Assume for simplicity that all the �’s, x’s and y’s are initialized to zero. Then, after the 
master and the worker nodes update x according to (14) and (15), each worker i sends 
its new reference point variable xk+1

i1  to the master. After the master performs y and � 
updates as in (16)–(17), it sends variables yk+1

i  and �k+1
i  to worker i, i = 2, . . . ,K .

We now comment on (14)–(17). At each iteration, each node and the master solve 
problems (14) and (15). These problems are of SON type, but with a sparse, star graph 
of SON penalties, and of variable size that is K times smaller than (10) and (11), hence, 
enabling scalability. Hence, for sufficiently large K, an efficient solver for moderate-sized 
SON problems can be adapted to solve (14) and (15), e.g., [29]. Actually, as detailed 
in Sect.  2.3, we used CVXPY as a general convex solver to solve (14)–(15). See also 
Sect. 2.3. Update (17) is clearly a cheap update. Finally, (16) is done closed form by evalu-
ating a proximal operator block-thresholding for the 2-norm [26].

(14)
xk+1
ij = argmin

N
K
∑

j=1

||aij − xij||2 + γ

N
K
∑

j=2

||xi1 − xij||

+ (�ki )
T (yki1 − xi1)+

1

2
ρ||yki1 − xi1||2

(15)xk+1
1j = argmin

N
K
∑

j=1

||a1j − xk1j||
2 + γ

N
K
∑

j=1

||x1j − x11|| + γ

k
∑

i=2

||x11 − yki1||

(16)

yk+1
i1 = argmin

K
∑

i=2

(�ki )
T (yi1 − xk+1

i1 )+
1

2
ρ

k
∑

i=2

||yi1 − xk+1
i1 ||2 + γ

K
∑

i=2

||xk+1
11 − yi1||.

(17)�
k+1
i = �

k
i + ρ(yk+1

i1 − xk+1
i1 )
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Note that formulation (10), unlike (11), does not guarantee perfect cluster recovery 
for any γ > 0 . However, we observe numerically that, for the solution {x∗ij} of (10), an 
approximate clustering structure emerges. That is, the {x∗ij} ’s cluster into a number, say 
K ′ , different groups, such that the x∗ij ’s within the same group are mutually very close. 
This motivates the following merging procedure.

Algorithm 1 shows the merging procedure, that is being applied after (14)–(17) con-
verges. The first stage of merging is applied locally on each node. The threshold values 
ǫi and ǫ are positive numbers, used to filter the possible centers x∗ij . We assign the first 
candidate point as a first center, and check the rest of the points. All those points that 
are close (within ǫi distance) to the points already marked as centers are being ignored. 
In the opposite case, a point is denoted as a new center. The second step is to merge 
the obtained local centers on the master node. This means that all the obtained local 
centers need to be synchronized on the master node first. The value ǫ is calculated by 
using the average distance between the obtained local centers. Then, the same merg-
ing procedure is applied as before. The result is a set of centroids on the output of the 
algorithm.

This means that we keep each next candidate for centroid only if its distance to previ-
ously kept centroids is larger than ǫ . Then, this whole set of already reduced subsets of 
possible centers from all nodes is being analyzed by the master node in the same man-
ner. The output of this process is the set of resulting centers. The pseudocode for the 
described clustering algorithm is shown in Algorithm 2.
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The overall proposed clustering method is summarized in Algorithm 2. After (14)–(17) 
converges and the merging procedure is applied as described in Algorithm 1, the master 
node makes the final centers available to the worker nodes. Then, each worker assigns 
its local data points to the cluster that corresponds to the nearest center. The algorithm 
works with 2 tunable parameters, γ and ǫ . Choosing a large value for the regularization 
parameter γ enforces more overlapping centroids. On the other hand, choosing a small 
value for the parameter can result in only slightly moving the centers, producing large 
distances between the gathered points, and hence, a too large number of clusters. See 
also Sect. 3.6.

One way to choose ǫi, i = 1, . . . ,K  is the following:

where ǫ⋆ is a tunable input parameter that can also be set to a universal, data and prob-
lem independent, constant value, e.g., equal to 5 or 10. The formulation in (18) means 
that each node calculates the average Euclidean distance between the points in its own 
data chunk and divides the result by a constant value ǫ⋆ . Similarly, ǫ can be calculated on 
master, based on the average Euclidean distance between the locally obtained centers as 
follows:

where P = P1 + · · · + PK  is the overall number of locally obtained centers on all nodes 
and the sum in (19) involves all elements from the union of sets Ci, i = 1, . . . ,K .

Calculating ǫi as in (18) involves only pairwise distances within single workers data, 
which is only O(N

2

K 2 ) pairwise distances. That is, across all nodes, we calculate O(K × N 2

K 2 ) 
pairwise distances. Compared with O(N 2) pairwise distances, needed with sequen-
tial weighted SON clustering approaches, like for example AMA [10], it is significantly 
cheaper for sufficiently large number of workers K. Alternatively, the sums in (18) may be 
replaced with minimum, i.e., to consider minimal within-workers data distances. When 

(18)ǫi =
2K 2

ǫ⋆ × N (N − K )

N
K
∑

j=1

N
K
∑

l=j

�aij − ail�,

(19)ǫ =
2

ǫ⋆ × P(P − 1)

P
∑

j=1

P
∑

l=j

�cj − cl�,
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performing the merging of the local centers, the value of ǫ on the master can be used by 
calculating it in the same manner as in (18), with the only difference that the distances of 
local centers are considered instead of the distances of data points.

Algorithm 1 may be seen as a simple instance of a pairwise clustering method; see, e.g., 
[34]. Intuitively, solving (10) usually brings the x⋆ij ’s that correspond to the data points 
aij ’s within a single “true” cluster very close to each other, but it may not make them 
exactly equal up to the full accuracy. Therefore, a simple pairwise clustering method in 
Algorithm  1 is introduced to fine-tune the results achieved by solving (10). Note that 
Algorithm  1 involves O(K × N 2

K 2 ) pairwise comparisons across all nodes, and hence, 
again it scales well when K is large. We also report that Algorithm 1 allows for a cheap 
polishing of the results, typically incurring 11.6% of the overall execution time of Algo-
rithm 2, on average.

2.3 � Implementation and infrastructure

The implementation of Algorithm 2 is developed in Python, using the COMPSs frame-
work for parallel execution [15]. COMPSs offers a simple programming model with the 
aim to facilitate the parallelization process. It has been widely adopted and extended in 
numerous scientific projects offered as a tool to develop scientific applications and opti-
mize their execution on distributed infrastructures. The testing has been performed on 
the AXIOM computing facility consisting of 16 nodes (8 x Intel i7 5820k 3.3GHz and 8 
x Intel i7 8700 3.2GHz CPU-96 cores and 16GB DDR4 RAM/node) interconnected by a 
10 Gbps network.

The Python implementation relies on the CVXPY [35, 36] package, used for the 
minimizations described in (14)–(15). The PyCOMPSs framework [37] (COMPSs for 
Python) enables a convenient way for parallelization, by simply annotating a function 
as a task. However, this requires a proper data format and distribution, as well as a syn-
chronization point, where the results of execution on different processes are being col-
lected into a predefined data structure.

2.3.1 � The input data

The input data are read from a file and resized from its two-dimensional form to a three-
dimensional form workers × chunk_size × d , where workers is the number of nodes 
operating (defined as an input parameter) and chunk_size = N

K  . The data points are 
being distributed in consecutive chunks as read from files. This means that the data dis-
tribution across workers is not ”informed” and is arbitrary, i.e., each worker usually con-
tains a mixture of data points that should belong to different clusters. The tests are based 
on both synthetical and real data sets. The synthetical data sets were generated in order 
to test scalability and accuracy of the algorithm. The data sets are generated by using a 
samples generator from the scikit-learn package [38]. Figure 2 represents an example for 
generated two-dimensional data set of small volume. It contains 30 points, with clearly 
distinguishable clustering into 3 clusters.

Large synthetic data sets are generated as Gaussian mixture models [39]. We con-
sider mixtures of k multivariate Gaussian distributions with mean µi and covariance 
Ei, i = 1 . . . k . The values for µ are d-dimensional points generated randomly, but from 
different intervals for each Gaussian k, in order to ensure that they will be distant 
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enough to represent separate clusters. Also, the values for σ are generated randomly, 
from one interval for the diagonal part and from another one for the upper triangular 
part. Regarding the value of π , the same value of π = 1

k was used for each Gaussian. 
Figure 3 shows the t-SNE embedding [40] for an example of generated data. The data set 
size is 3000 points here, with dimension 3 and 5 clusters.

2.3.2 � The stopping criterion

The stopping criterion implemented here is the usual stopping approach for ADMM. It 
requires implementing (7)–(8).

Fig. 2  Example of a two-dimensional data set of small volume

Fig. 3  t-SNE for an example of the generated three-dimensional data set of larger volume
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The residuals are being calculated at the end of each iteration, when the master pro-
cess has access to all results, obtained by the workers. The threshold values ǫpri and ǫdual 
are also being recalculated at each iteration as follows:

Here, α ∈R and β ∈R represent the absolute and relative tolerance values, respectively. 
These values can be set as input parameters and their default values are α = 10−4 and 
β = 10−2 . This means that both the residuals and the threshold values are being updated 
at the end of each iteration k, based on the values xk , yk and �k.

3 � Results and discussion
In this section, the aim is to assess the quality of different aspects of the distributed 
ADMM-based convex clustering-like algorithm. Particularly, the tests performed on 
small, two-dimensional data sets are appealing for plotting and evaluating the proper-
ties of the algorithm. One of the main ideas is to monitor the accuracy of the solution, 
which is straightforward with data sets generated under controlled conditions. For these 
synthetic data sets, the number of expected clusters is known in advance, which makes 
the first stage of the evaluation simpler. However, we will also include other accuracy 
metrics, as silhouette score and comparison with the results of plain k-means clustering. 
The second key aspect is the evaluation of performance. The scaling properties of the 
algorithm will be demonstrated through a set of tests on different data sets.

First, we discuss the time consumption of different segments of the algorithm in 
Sect. 3.1. Section 3.2 is dedicated to accuracy evaluation. These analyses include meas-
uring the percentage of accurately clustered points, where a ground truth is known. We 
use a small, synthetic data set and the Iris data set [41, 42] here. Additionally, we observe 
the accuracy of some large, synthetic data sets, by means of silhouette score values and 
comparison with k-means. Section  3.3 contains an evaluation of the effects of choos-
ing different reference points, while Sect. 3.4 considers the effects of different ways of 
input data partitioning. In Sect. 3.5, we evaluate the scalability of the proposed method, 
on some large, synthetic data sets, generated as Gaussian mixtures. Further, we discuss 
some aspects of choosing the value for the regularization parameter γ in Sect. 3.6. Sec-
tion  3.7 is about comparing the proposed method to other clustering approaches: the 
AMA method (Sect. 3.7.1), DBSCAN (Sect. 3.7.2) and SSNAL (Sect. 3.7.3). We perform 
the comparison on synthetic data sets, generated as Gaussian mixtures. We conclude the 
numerical evaluations in Sect. 3.8, where some possibilities for further enhancement are 
mentioned.

3.1 � Time consumption of different segments of the algorithm

When considering the time consumption of the different actions during the algorithm 
execution, it naturally emerges that the iterative part of algorithm consumes 88.3% of 
the overall execution time, on average. The average time spent on reading the input data 
is only 0.05%, while the average time needed for the process of merging the possible 

(20)ǫpri = α
√
N + βmax{||xk ||, || − yk ||},

(21)ǫdual = α
√
N + β||�k ||.
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centers is 11.6%. These average values are calculated over all the experiments conducted 
and mentioned in the paper.

3.2 � Accuracy evaluation

In order to gain some insights into the level of accuracy of the developed clustering 
implementation, a few approaches are used here. First, we investigate the solution for a 
small, generated two-dimensional data set, where it is straightforward to plot the results 
and gain visual insights. Figure  4 shows an example with 30 two-dimensional data 
points. The points belong to 3, clearly separable clusters, as shown by the blue dots in 
Fig. 4. The results of clustering are also shown in Fig. 4. Clearly, the algorithm is able 
to identify the centers correctly. Figure 4 displays the found centroids, as shown by the 
orange dots. These centers are the output from the merging mechanism. When the stop-
ping criterion is met, the center candidate points, that are “close”, by the definition of ǫi 
(18) are being aggregated. It can be seen that the algorithm properly detected the exist-
ence of 3 clusters and assigned the points to the clusters accurately.

The accuracy evaluation, when the ground truth is known, can be illustrated on a com-
mon example of the Iris data set. This means dealing with a higher-dimensional data set, 
where the clusters are mainly distinguishable by the nature of the underlying data.

When ground truth is available, we evaluate clustering accuracy as the percentage of 
correctly classified data points. The Iris data set [41, 42] is available in scikit-learn. It 
contains 3 different classes of the plant Iris. It has 4 attributes and 150 samples. Based 
on these attributes, a clustering algorithm could identify the existence of 3 clusters (see 
Table 1). We executed the ADMM-based convex clustering-like algorithm on this data 
set and obtained the 3 clusters. In order to further analyze the results, we compared the 
obtained labels to the real, known labels. It turns out that our algorithm assigned 93.33% 
of the data points to the correct cluster. It should be also mentioned that it assigns all 
data points belonging to the first cluster accurately, while it makes some ’mistakes’ with 
the second and third cluster. The nature of the data directly affects this, as the mentioned 

Fig. 4  Results of clustering for a generated data set 30× 2 , γ = 0.3 , ǫ⋆ = 2
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two clusters are ’close’ to each other. In fact, running the standard k-means algorithm 
on this data set for different values of k results with a highest silhouette score value of 
0.68 for k = 2 . This can be also easily seen on the t-SNE embedding of the data set, in 
Fig. 5. Table 1 also contains the percentages of accurately clustered points for the stand-
ard k-means algorithm (with the preset value of k) and for the AMA method as well, for 
reference. When running plain k-means for k = 3, the percentage of points accurately 
clustered is 89.33% . As these evaluation showed, our method can perform as accurately 
as (or even more accurately than) k-means with a correctly predefined value for k. In 
order to further investigate this test case, we also run the AMA method [10] on this data 
set. By setting the parameter γ appropriately, it is able to find the 3 clusters with 90.66% 
of points clustered accurately. This shows that the 3 different clustering algorithms per-
form with a similar degree of accuracy on this data set. This is illustrated in Fig.  6. It 
shows the accuracy percentage related to the value of the input parameter γ . The accu-
racy percentage of k-means is independent regarding the value of the input parameter γ . 
Different initializations for k-means, meaning the usage of alternate algorithms as ’elkan’ 
and ’full’ or number of runs with different centroid seeds set to {5, 10, 100}, always result 
with the same level of accuracy of 89.33% on this data set. The AMA method has its 
range γ ∈ [4.3, . . . , 9.1] , where it produces the highest accuracy. All values of γ that are 
out of this range affect significant decrease in clustering accuracy. The similar holds for 
ADMM-based convex clustering-like method, except that this range of values giving the 

Table 1  Accuracy comparison for different clustering algorithms on the Iris data set

Algorithm Parameters Number of clusters Accuracy 
(percentage)

ADMM-based convex clustering-like 
algorithm

γ = 40 , ǫ⋆ = 5 3 93.33

k-means clustering k = 3 3 88.66

AMA clustering γ ∈ [4.3, . . . , 9.1] 3 90.66

Fig. 5  The t-Sne embedding of the Iris data set
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highest accuracy is significantly broader. Intuitively, even outside of the range of γ for 
which a SON-like clustering is exact, in a vicinity of this range, “SON-like clustering still 
produces nearly-exact” clustering—that is then harnessed for correct clustering—via the 
merging procedure.

As the ground truth for clustering is not always available, some additional accuracy 
metrics can be used in order to assess the outcomes of clustering. Silhouette score is a 
common and widely used way to evaluate a clustering approach, so it is included as an 
accuracy metric in our experiments.

The accuracy of the algorithm is also tested for large higher-dimensional data sets. 
These data set are generated as Gaussian mixture models, as described earlier (see 
Sect. 2.3.1). In order to visualize the results, t-distributed stochastic neighbor embedding 
(t-SNE) [40] will be used. Let us consider a few higher-dimensional data sets. Table 2 
shows the results for these experiments. It can be seen that the algorithm is mostly able 
to identify the expected number of clusters, with high silhouette score values. Addition-
ally, the scikit-learn k-means algorithm results mostly with the same number of clusters 
and similar values for silhouette score.

Figure 7 shows the t-SNE embedding for a 1000× 3 generated data set. The data points 
are colored according to their cluster labels, obtained by our ADMM-based convex clus-
tering-like algorithm. It represents an example where our clustering algorithm clusters 
the data points accurately to the expected clusters, that also corresponds to a high sil-
houette score value.

Based on the described experiments, it can be concluded that ADMM-based convex 
clustering-like method can perform with high accuracy. The accuracy of the algorithm is 
compatible with the accuracy level of k-means and AMA.

Fig. 6  The accuracy values of different methods on Iris data set

Table 2  Accuracy evaluation for higher dimensional data sets

Data size γ ǫ⋆ Clusters ADMM-based 
convex clustering-like 
method

Clusters 
k-means

ADMM-based convex 
clustering-like method 
s.score

k-means s.score

1000× 3 5.0 4 8 8 0.76 0.76

5000× 3 6.6 2 4 4 0.77 0.78

5000× 5 6.6 2 5 4 0.62 0.75

10,000× 3 6 5 10 10 0.69 0.75
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3.3 � The effects of choosing different reference points

The problem formulation in (10) proposes, for the sake of proper definition and without 
loss of generality, the first point (according to the adopted points enumeration) in each 
worker’s local data chunk to become the local reference point, and the first point in the 
data set (which is also the first point on master’s local data chunk) to become the global 
reference point. However, arbitrary points can be selected as reference points, without 
serious accuracy losses. Let us demonstrate this on a few examples. We consider 3 differ-
ent data sets: a small synthetic data set with dimension 120× 2 (generated using samples 
generator from the scikit-learn package [38], that generates isotropic Gaussian blobs for 
clustering), a larger synthetic data set with dimension 1000× 4 (generated as a Gaussian 
mixture model) and the Iris data set. Note that we first reshuffled the points for the Iris 
data set here, as they are originally arranged in order, by clusters. If we use 3 workers, 
this means that each worker gets data points from one cluster, for the original order-
ing. Instead of this, we want data points from different clusters on one worker, so that 
when we pick a reference point position, it could correspond to a point from any cluster. 
For all these considered data sets, the ground truth is known, so the accuracy percent-
age can be easily obtained. Table  3 shows the average, minimal, maximal and median 
accuracy values and the 0.98 quantile for these data sets, obtained for randomly selected 
reference points, within 500 tests for each data set. The accuracy is defined, based on 

Fig. 7  t-SNE embedding for clustering over a synthetical data set of size 1000× 3

Table 3  Accuracy for a set of tests with different selections of reference points, and fixed input 
parameter values

Data set Average 
accuracy (%)

Minimal 
accuracy (%)

Maximal 
accuracy (%)

Median 
accuracy (%)

0.98 quantile (%)

120× 2 100 100 100 100 100

1000× 4 99.87 99.2 100 99.9 99.9

Iris 90.67 48.67 91.33 91.33 91.33

Iris-with optimized γ 90.98 84 91.33 91.33 91.33
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the ground truth here. When the algorithm determines the labels of the data points, we 
compare those labels with the real ones (considering that the label marks may be differ-
ent now, for example, a cluster labeled with 1 originally can be labeled with 2 now). The 
random selection of reference points means that we allow for each worker to generate a 
random value for the reference point position, with the limitation that we never use the 
same reference points positions combination during the tests. It is important to mention 
that the input parameters γ and ǫ⋆ are fixed for each data set during these tests. For the 
smallest data set with 120× 2 data points, all the 500 test cases with different reference 
points resulted with 100% accuracy. For the larger data set with 1000× 4 data points, the 
best accuracy obtained was 100%, and the lowest value was 99.2%, which certainly does 
not represent a significant difference. In fact, in the vast majority of tests, the accuracy is 
99.9%. This can be seen in Fig. 8 that displays the histogram of the achieved accuracies 
across all 500 trials. The third test case, regarding the Iris data set, also shows a consist-
ent accuracy level in most of the cases. However, there are a few exceptions here, as it 
can be seen in Table 3. The lowest accuracy obtained for the Iris is 48.67% that occurs 
in only 1.4% of the test cases. The test cases resulting with this value can be drastically 
improved by slightly changing the input parameter γ , so that they result with high accu-
racy values, similar as the rest of the tests. The values and amounts of accuracy percent-
ages obtained for the Iris data set, with a fixed value for parameter γ , are also shown in 
Fig. 9. When we adjust the parameter γ , we can eliminate the low accuracy values. This 
is shown in the last row of Table 3 and also in Fig. 10. If the reference points are changed, 
one can adapt the parameter γ easily (e.g., by running a clusterpath), in order to main-
tain high accuracy. It is evident that the method is able to achieve a high accuracy level, 
for different selections of reference points, on different data sets.

Fig. 8  Histogram for accuracy percentage for different selections of reference points, on a synthetic data set 
of size 1000× 4



Page 19 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:108 	

3.4 � The effects of different ways of data partitioning

The way a data set is partitioned among a set of workers is an aspect that may influence 
the outcome of the algorithm. Therefore, we evaluate this aspect, on 3 different data 
sets: the synthetic 120× 2 and 1000× 4 data sets and on the Iris data set again. Table 4 

Fig. 9  Histogram for accuracy percentage for different selections of reference points, on the Iris data set

Fig. 10  Histogram for accuracy percentage for different selections of reference points, on the Iris data set, 
with optimized γ

Table 4  Accuracy for a set of tests for differently shuffled input data

Data set Average accuracy 
(%)

Minimal accuracy 
(%)

Maximal accuracy 
(%)

Median accuracy 
(%)

0.95 
quantile 
(%)

120× 2 100 100 100 100 100

1000× 4 99.1 80.8 100 88.66 100

Iris 89.22 86 93.33 90.66 91.6
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shows the results of these experiments. We conducted a set of 50 tests for each data set, 
where the data points are reshuffled each time in a different manner before distribution, 
so that each test assumes different data distributions on workers, where the number of 
workers is constant. This is achieved by randomly reshuffling the data, but using a dif-
ferent seed each time, which ensures different shuffles. For a small data set with 120× 2 
data points, the accuracy remains 100% regardless of the shuffling. For the 1000× 4 data 
set, the accuracy is a high value, close to 100, in the majority of test cases. The lowest 
accuracy value is 80% here, and it occurs only one time, considering the presented 50 
iterations for different shuffles, which represents only 2% of the considered test cases. 
The obtained results for this data set are also shown in Fig. 11. Regarding the Iris data 
set, the accuracy is in the range between 86% and 93.33% in all cases, which is also pre-
sented in Fig.  12. When the data points are reshuffled, the value of the regularization 
parameter γ needs to be adjusted in a subset of cases, which is an expected outcome. It 
can be concluded that the way the input data are partitioned influences the outcomes of 
the algorithm, to a small extent. However, the level of the accuracy is preserved inside 
a reasonable range. This trend is a direct consequence of the distributed nature of the 
algorithm, where the data set is not being consumed as a whole. Hence, the gains of a 
fast execution time of a parallel algorithm may require a cost of slight accuracy loss that 
depends on the data distribution.

3.5 � Scalability evaluation

In order to evaluate the scaling properties of the parallel ADMM-based convex cluster-
ing-like algorithm, different data sets will be used to run on a computer cluster with dif-
ferent numbers of working nodes. All the data sets in these experiments are generated 

Fig. 11  Histogram for accuracy percentage for different ways of data partitioning, on a synthetic data set of 
size 1000× 4
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as Gaussian mixtures. One aspect is to evaluate run time with respect to the number of 
workers. Here, we assume a fixed-sized data set is partitioned into an increasing number 
of workers. Another aspect is to see how the changes in number of features influences 
the execution. Finally, these tests can provide an insight into the most appropriate num-
ber of working nodes for each data set, i.e., the number of nodes that produces the low-
est execution time on the data set.2

Figures  13 and 14 represent the scaling properties of the algorithm, by showing the 
execution timings for different data sets and different number of workers.

Figure 13 displays the tests for 3 data sets with 5000 samples and 3, 5 and 10 features. 
It can be seen that the algorithm scales well and it is straightforward to identify the opti-
mal number of nodes for each data set: 12, 20 and 30, respectively. However, there is 
a whole range of number of workers where the execution time remains similarly low. 

Fig. 12  Histogram for accuracy percentage for different ways of data partitioning, on the Iris data set

Fig. 13  Scaling properties for the data sets with 5000 samples and 3, 5 and 10 features

2  There is always a tradeoff between communication and computation in parallel systems. Splitting the computation to 
smaller chunks, i.e., adding more nodes, reduces the time required for computation. However, the process of communi-
cation/synchronization is becoming more time consuming when increasing the number of nodes. Therefore, an optimal 
point (a particular number of workers) can be found, where these two aspects are best balanced.
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Increasing the number of working nodes reduces the execution time until reaching the 
optimal range of workers for the data set. The execution time remains approximately the 
same, within the frames of the conducted experiments. Further increasing the number 
of workers could lead to execution time increase at some point, as the cost (in terms of 
communication/synchronization) of having more nodes would then be higher than the 
gains of parallelization. At some points, the execution time of a larger data set can be 
slightly lower than the execution time for a smaller data set. The reasons for this could 
be various, including latency caused by a particular node, but also the nature of the par-
ticular data in the data set. It should be kept in mind that measuring the execution time 
of a synchronous parallel program always subsumes waiting for the slowest process to 
terminate. Figure 14 shows the scaling properties for 3 data sets with 10, 000 samples 
and again 3, 5 and 10 features. The algorithm scales well here, as expected. The optimal 
number of points is 35, 25 and 25, respectively, but the execution time also stays close 
to this optimal value for a range of different number of workers. It seems strange that 
we do not have the distribution for optimal points as expected: lower value for less fea-
tures, higher value for more features. However, this observation is not completely true. 
The reason is the following: we start with small number of workers and very high execu-
tion times. As we increase the number of workers, the execution time rapidly drops, and 
once it is reduced to certain level, it remains close to that value for further increased 
number of workers. As a result, the mention optimal number of workers corresponds to 
the lowest execution time, but that timing is only slightly different for a whole range of 
tests with different number of nodes.

The displayed experiments showed that the developed algorithm exposes good scal-
ing properties and that the gains of parallelization are evident. The execution time 
decreases nearly linearly with the number of workers in the experimental range of work-
ers considered.

As the solution of problem (10) depends on the number of workers K, we want to 
assess how this affects accuracy of the overall proposed clustering method. In order to 
asses accuracy of the proposed method, when changing the number of workers, we con-
ducted a set of experiments. Figure 15 shows the results of these experiments, for the 
synthetic 1000× 4 data set (generated as a Gaussian mixture model), for fixed values of 

Fig. 14  Scaling properties for the data sets with 10,000 samples and 3, 5 and 10 features
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input parameters. It can be seen that the accuracy percentage is being preserved when 
enlarging the number of workers. It changes slightly, as we change the number of work-
ers, but always remains above 99%. As we already showed that the way we distribute the 
data may affect the outcome of the algorithm to certain extent, we repeated the tests for 
different number of workers, with an addition of reshuffling the data, when adding a new 
worker.

The reshuffling performed here is accomplished in the following way: consider hav-
ing a sequence of M different numbers of workers K = 2, . . . ,M for the experiments. 
For K = 2 , we split the data as already explained, i.e., both workers get a chunk 
aij , i = 1, . . . ,K , j = N

K  . For K > 2 , we start with the data split for K − 1 , so that we 

leave NK  data points (from total N
K−1 ) on the workers from previous run (for K − 1 ), 

and put the rest to the new worker. This means that the “already existing” workers will 
have chunks aij , i = 1, . . .K − 1, j = 1, . . . , NK  , and the new worker will have the points 
aij , i = 1, . . . ,K − 1, j = N

K + 1, . . . , N
K−1 . Figure  16 shows the results for this evalua-

tion, for the same data set, with 1000× 4 data points. The input parameter γ needs to 
be adjusted, when the number of workers becomes more than 10 in this case, which is 
a consequence of the data shuffling, that results with changed inter-point distances on a 

Fig. 15  Accuracy percentage for different number of workers, on the 1000× 4 data set

Fig. 16  Accuracy percentage for different number of workers, on the 1000× 4 data set, with reshuffling
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worker. As Fig. 16 shows, the accuracy percentages do not change with enlarged number 
of workers, even when we reshuffle the data when adding a new worker.

3.6 � Choosing the value for the parameter γ

It is well-known that, with SON clustering, parameter γ critically influences perfor-
mance. The number of clusters for a very small γ equals the number of data points. As γ 
increases, the number of clusters typically reduces. For gamma above a large threshold, 
the number of clusters equals one. For all-pair-penalty in [30, 31], SON clustering guar-
antees to find exact clustering structure, if it exists, for a range of γ . In practice, one can 
start with a small γ and re-solve the SON problem multiple times, each time increasing 
γ by a multiplicative functor. This is also known as clusterpath [12]. With our approach, 
for a fixed ǫ , we observe a similar behavior: the number of clusters reduces when we 
increase γ , while for a range of γ , we obtain exact recovery (Figs. 4, 6, 7).

We illustrate clusterpath on an example with 30× 2 data points, that is suitable for 
easily plotting the results, as effects of changes in the value of γ . This data set was gener-
ated using samples generator from the scikit-learn package [38] that generates isotropic 
Gaussian blobs for clustering. Table 5 lists the experiments performed for different val-
ues of γ . For the value γ = 0.3 , the algorithm results with 3 centers and high silhou-
ette score value. As we increase the regularization parameter, the silhouette score value 
is getting lower, as well as the number of clusters. For γ = 3.5 , we still have 3 centers, 
but they are obviously closer to each other than for γ = 0.3 . The silhouette score value 
is preserved, as the clustering of the data points in this case remains the same as for 
γ = 0.3 . Increasing the value further as γ = 5.0 , two centers already overlap, resulting 
with 2 clusters and lower silhouette score value accordingly. Choosing even larger values 
for γ forces the two centers to become even more close to each other. At the end, for 
γ = 50.0 , only 1 center remains, as the candidate points for centers overlap.

An approach to choose γ is to evaluate an initial value γ ∗ , and search in a neighbor-
hood of that value. One way to compute γ ∗ is as follows:

Then, we can consider the values γ = { γ ⋆

100 ,
γ ⋆

10 , γ
⋆ 10× γ ⋆ 100× γ ⋆}.

(22)γ ∗ = max
i=1...K

maxj �=l{||aij − ail ||}
N
K

,

Table 5  The impact of choosing different values for γ , on a synthetic 30× 2 data set

γ Centroids Silhouette 
score

0.3 3 0.89

3.5 3 0.89

5.0 2 0.59

10 2 0.59

25 2 0.54

50 1 0.48
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3.7 � Comparison with other clustering methods

3.7.1 � Comparison with splitting method for convex clustering

In [10], two convex clustering methods are introduced, one based also on ADMM and 
the other based on alternating minimization algorithm (AMA). The authors provide a 
rich set of results, based on different tests on synthetic and real data. They clearly iden-
tify AMA significantly more efficient. However, the tests described are performed on at 
most 500 data points, as the subgradient algorithm, used as a benchmark takes a large 
portion of time to converge on larger data. The R code for these algorithms is available in 
earlier versions of the CRAN repository.

In order to be able to compare the performance of the AMA method with ADMM-
based convex clustering, we measure the execution time of cvxclust_path_ama, for only 
one value of γ , as it corresponds to our setup, where we run our algorithm once for some 
defined parameter value.

We run a set of tests for the AMA method. The machine used for the tests has 24 GB 
RAM and an Intel i5-4590 CPU with 4 × 3.30GHz. We also run ADMM-based convex 
clustering on the same data sets on our cluster, for different number of workers.

Let us first consider a comparison, where the algorithms solve the same underlying 
problems. The AMA method can solve problem (10). In order to achieve this, we need 
to define the weights for AMA, as they are defined in our approach, by the underly-
ing graph. More precisely, we generate the weights for AMA, based on the number of 
workers, that we use with our algorithm. This weight matrix consists of zeros and ones. 
Then, we can make a comparison on how efficiently different solvers solve formulation 
(10). Table 6 shows the comparison of execution times for the AMA method and our 
approach, when solving the same problems. For smaller data sets, the AMA method per-
forms better, as it represents an efficient serial solver. However, when working on larger 
data sets, the execution time of our parallel approach can be multiple times lower. Also, 
as a serial solver, AMA has a limitation on the size of the input data set that can be 
handled on a single machine. For that reason, the execution of the AMA method on the 
200,000× 3 data set is not possible. On the other hand, a parallel implementation is only 
limited by a number of computing units, available on a cluster environment.

In addition to the described comparison of the two solvers of (10) for the same setup, 
we also want to make a higher level comparison, where we use both methods as pro-
posed, i.e., as complete clustering methods that deliver clustering assignments as 

Table 6  The comparison of execution time (in seconds) for AMA and ADMM-based convex 
clustering-like method, with the same sub-problems

Data set Workers AMA method ADMM-based convex 
clustering- like 
method

1000× 3 8 0.94 9.73

5000× 3 25 11.35 14.15

10,000× 3 25 61.2 22.01

5000× 5 25 14.5 14.37

10,000× 10 25 52.63 30.29

200,000× 3 25 NA 564.1
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outputs. The aim of this comparison is to compare the final clustering outcomes, and 
execution times needed to achieve that outcomes. We now consider a comparison of our 
method with AMA, but without setting the weights in AMA as in our setup. Instead, 
we use AMA in its standard form, with the recommended weight computation. The 
results of comparison regarding the Iris data set with known ground truth were already 
described in Sect. 3.2. The results for other data sets are displayed in Table 7. Note that 
the lowest execution time for ADMM-based convex clustering-like method is marked in 
bold, for each data set in Table 7. It can be seen that for data sets of smaller volume, the 
AMA method can again perform even better than our approach. This is observable for 
the data set with 1000× 3 points. Also, the execution times in Table 7 are higher than 
in Table 6 for the same tests with AMA. This is expected, as the results in Table 6 are 
for tests that work with sparse weight graph structures. The AMA method, available in 
R language is actually a wrapper around C code, which is a low level programming lan-
guage, so the performance is expectably good. Running a smaller example on a cluster 
naturally does not pay off as in the cases with higher volume of data. For a little larger 
data set with 5000× 3 points, the performance of the AMA method is still very close 
to the performance that can be obtained on the cluster. However, as we increase the 
volume of the data, it becomes obvious that the ADMM-based convex clustering-like 
method can perform much better. For the 10,000× 3 data set, it performs 2 times faster, 
while for the 10,000× 10 data set, it performs 3 time faster, when using an appropri-
ate number of workers. Enlarging the data set size even further leads us to cases where 
the AMA method cannot be run, as it cannot allocate a data structure of the defined 
volume, due to its serial nature. This is the case for the 200,000× 3 data set. The AMA 
method cannot obtain the results, but the ADMM-based convex clustering-like methods 
solve the problem for 9.4 min with 25 workers. This illustrates the advantage of a parallel 
approach that can solve large-scale problems.

The AMA method can solve the convex clustering problem with uniform weights. 
Therefore, we could compare the performance of the AMA method with uniform 
weights, with our approach. Table  8 illustrates this on the 1000× 3 data set. The exe-
cution of the AMA method is twice slower, than for our approach. A comparison for 
larger data sets is not feasible, as the AMA method is limited by the memory of a single 
machine, when allocating large, dense structures. The AMA method’s implementation 

Table 7  The comparison of execution time (in seconds) for AMA and ADMM-based convex 
clustering methods

Data set AMA method ADMM-based 
conv. clust. 
like method 4 
workers

ADMM-
based conv. 
clust like 
method 8 
workers

ADMM-based 
conv. clust 
like method 
10 workers

ADMM-based 
conv. clust. 
like method 
20 workers

ADMM-based 
conv. clust. 
like method 
25 workers

1000× 3 2.8 12.65 9.73 13.79 11.45 12.24

5000× 3 17.55 38.38 19.95 16.45 19.35 14.15
10,000× 3 45.46 96.0 51.17 40.84 37.3 22.01
5000× 5 22.74 39.29 19.65 16.87 16.15 14.37
10,000× 10 100.2 136.76 72.63 59.33 50.23 30.29
200,000× 3 N.A. – – – – 564.1



Page 27 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:108 	

requires the weights specified in an array of size N × (N − 1)/2 , where N is the number 
of input data points. It can be concluded that our approach performs better and is more 
robust than AMA, even when AMA is used with uniform weights.

3.7.2 � Comparison with DBSCAN

The ADMM-based convex clustering-like algorithm should also be compared to an other 
algorithm where the number of clusters is also unknown in advance. We decided to use 
Density-based spatial clustering of applications with noise (DBSCAN) [43] for this pur-
pose. We use the implementation of DBSCAN from the scikit-learn library. By default, 
the algorithm uses Euclidean distance as a metric for obtaining the distance values. It 
accepts a parameter ǫ , representing the maximum distance between two samples for one 
to be considered as in the neighborhood of the other. This value can be set according to 
the data set. We set the number of samples in a neighborhood for a point to be consid-
ered as a core point to value 2 for all the tests, and run all the tests mentioned before 
with DBSCAN in order to catch the results for those ǫ values that produce the highest 
silhouette score.

Table  9 lists the results of experiments, containing the number of clusters and sil-
houette score for ADMM-based convex clustering-like method, scikit-learn k-means 
and DBSCAN, respectively. The values for DBSCAN silhouette score assume that there 
are points labeled as noisy by the algorithm that are not assigned to any of the clus-
ters. For the smallest example ( 30× 2 data set), DBSCAN performs in the same man-
ner as our proposed method and k-means, as the number of clusters and the silhouette 
scores are the same. Let us consider an example of a noisy data set, where the clusters 
are not clearly separated. For an example of a 40× 2 data set, where the data are noisy, 
DBSCAN performs slightly better than our method, resulting with the highest silhou-
ette score value and (expected) 3 clusters, but also leaving some points unlabeled. For 
the bigger, generated data sets, DBSCAN performs very similar to ADMM-based convex 
clustering-like method and k-means. Based on these tests, we can conclude that when a 
clear cluster structure exists, both methods perform satisfactorily.

Table 8  The execution time comparison for ADMM-based convex clustering-like algorithm and for 
AMA method with uniform weights

Data set ADMM-based convex clustering-like algorithm AMA method

1000× 4 9.73 s 18.19 s

Table 9  Comparison of ADMM-based convex clustering-like method with DBSCAN

Data set No clust. 
ADMM

ADMM s.sc. No clust. 
k-means

k-means s.sc. DB- SCAN ǫ No clust. 
DB- SCAN

DB- SCAN s.sc.

30× 2 3 0.89 3 0.89 0.5 3 0.89

40× 2 6 0.39 5 0.57 0.8 3 0.65

1000× 3 8 0.76 8 0.76 2.5 8 0.75

5000× 3 4 0.77 4 0.78 2.5 4 0.76

5000× 5 5 0.62 4 0.75 5.0 4 0.75

10,000× 3 10 0.69 10 0.75 2.5 10 0.75
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3.7.3 � Comparison with SSNAL method

In [32], a semismooth Newton-based augmented Lagrangian method for solving large-
scale convex clustering problems was introduced, called SSNAL. It represents an effi-
cient and robust approach for large-scale problems. The algorithm is developed in 
MATLAB. A comparison with the AMA method shows great advantage of SSNAL over 
AMA, in execution time. In order to compare ADMM-based convex clustering-like 
method with SSNAL, we need a reasonably larger data set, as the performance of a par-
allel algorithm does not come to expression, when the expenses of parallelization and 
synchronization are higher than the gains gathered in computation. In order to compare 
our approach to SSNAL method, let us consider a data set of volume 200,000× 3 gener-
ated as a Gaussian mixture model. The results are illustrated in Table 10. It can be seen 
that our proposed approach performs better than SSNAL, even if we consider only the 
execution time of 321.79 s without computing the weights for SSNAL. It should also be 
noted that the presented time for our method also includes the time spent on merging 
the cluster centers when the algorithm terminates.

As the comparison above showed, the computation of weights for the SSNAL method 
requires a tremendous amount of time. We expect that SSNAL cannot scale as effec-
tively as the proposed approach on larger data sets due to the serial implementation and 
calculation of weights that are pair-wise across all pairs of data in the data set. To further 
demonstrate this, we evaluated execution times for weights calculation for data sets of 
different sizes. Note that the weights calculation time represents a lower bound on the 
execution time of the overall SSNAL method. Therefore, if the execution time of the pro-
posed method is smaller than that of the weight calculation, it follows that the execution 
time of the proposed method is smaller than that of SSNAL overall. We also want to 
investigate the cost of the weight assignment, when implemented as in [32] and meas-
ure the time required for this kind of preprocessing. Assigning weights according to the 
nature of the data is very useful, but the process has a certain cost. We want to identify 
how much time is needed for this kind of preprocessing, in order to compare it to our 
execution time. The calculation of the weights, as stated in [32], can be done as follows:

Here, E = UN
i=1{(i, j)|aj is among ai ’s k nearest neighbors, i < j ≤ N } . This kind of pre-

processing is not applicable in this form to ADMM-based convex clustering-like method, 
due to its distributed nature. Computing the pairwise distances among points that are 
assigned to different workers could be very expensive. However, it is indisputable that 
assigning weights could seriously affect the performance of the algorithm afterwards. 
Therefore, we analyze the execution time required for obtaining the weights, as well as 

(23)wij =
{

exp(−0.5||ai − aj||2 if (i, j) ∈ E,
0 otherwise

Table 10  The comparison of SSNAL and ADMM-based convex clustering-like method

SSNAL ADMM-based convex 
clustering-like method 
with 25 workers

ADMM-based convex 
clustering-like method 
with 50 workers

ADMM-based convex 
clustering-like method 
with 100 workers

3215.79 s + 5390.91 s (for 
weights)

564.14 s 744.01 s 315.76 s
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the execution time of ADMM-based convex clustering-like method itself. We wrote a 
Python script that works sequentially with sparse data structures, and tested it for 2 data 
sets and a few different values of k, used for k-nearest neighbors.

The execution time for different values of k, for the mentioned 2 data sets, is shown in 
Table 11. For the smaller data set with 200,000× 3 data points and k = 10 and k = 100 , 
the required time for weights calculation is low, compared to the overall execution time 
of 9.4 min on the cluster. However, when increasing k to k = 1000 , the time grows to 15 
min, that is longer than the time required to solve the problem by ADMM-based convex 
clustering-like method on the cluster. Considering the larger data set, with 2,000,000× 3 
data points, the execution time for weight calculation is extensive. For k = 100 , it takes 
almost an hour. Setting the parameter k for KNN is always an open issue. However, for a 
data set of large volume, as the data sets displayed here, it is likely that a larger value of 
k will be needed. This could result with a very time consuming preprocessing step that 
can actually be higher than the execution time for ADMM-based convex clustering-like 
method on a cluster that does not use any preprocessing. Our approach uses pairwise 
distances only within workers, when the value of ǫ is being computed, for the merging 
process.

Similarly as the AMA method, the SSNAL method can solve the convex cluster-
ing problem, by using uniform weights. Let us consider an example. We compare the 
execution time for our approach and the SSNAL method in Table  12. It displays the 
results for the 1000× 4 data set. The execution time required for setting up the weights 
with SSNAL method is still high, as it represents an allocation of a large matrix that 
is dense. This could be completely bypassed by replacing the multiplications with ele-
ments from the weights matrix with ones in the code directly. However, we are inter-
ested in the amount of time, required for the rest of the computation. It can be easily 
seen from Table 12, that the time required for the algorithm only is 39.67 s, which is a 
couple of times more than the execution time for our method. This comparison cannot 
be made for larger data sets, as the large dense weight matrices deplete the resources of 
the machine, for SSNAL method. It could be possibly achieved by completely removing 

Table 11  The execution time required for obtaining the weights

Data set size k for KNN Time

200,000× 3 10 24.4 s

200,000× 3 100 61.38 s

200,000× 3 1000 959.32 s

2,000,000× 3 10 18.46 min

2,000,000× 3 100 59.05 min

Table 12  The execution time comparison for ADMM-based convex clustering-like algorithm and for 
SSNAL method with uniform weights

Data set ADMM-based convex 
clustering-like algorithm

SSNAL method with uniform 
weights total time

SSNAL method with uniform 
weights time for weights setup

1000× 4 9.73 s 230.79 s 191.12 s
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the matrix from the code, as already stated, but this is left for future comparison, as the 
main trend is already presented with the 1000× 4 data set.

Various methods utilize different stopping criteria that are adjusted to particular algo-
rithms. Besides comparing different clustering approaches with their own stopping con-
ditions, we also want to make a comparison, regardless of those stopping criteria. We 
illustrate this for SSNAL method. The aim is to investigate how the different solvers for 
ADMM-based convex clustering-like method and SSNAL algorithm relate. Therefore, 
we let the algorithms run without stopping conditions for the same value of the regulari-
zation parameter γ , while recording the execution time and the current solution, as the 
iterations progress. This means that we use a predefined large, fixed number of iterations 
for both methods, ensuring high solution accuracy. In order to make a fair comparison, 
we initialize the solutions to all zeros and generate a weight matrix of zeros and ones for 
SSNAL method that corresponds to our SON penalty structure as in formulation (10) 
for a particular number of workers. For each computed solution update, we determine 
the error, by computing the Euclidean distance to a benchmark solution, obtained by 
solving (10), with CVXPY. We illustrate these results for a synthetic data set containing 
1000× 4 data points (generated as a Gaussian mixture model), used with 5 workers, in 
Fig. 17. Note that the methods do not have the same staring point, as we show the error 
values after the first results are obtained. Figure 17 shows that both methods reduce the 
error over time. For our method, there is a gradual decrease in error rate during the iter-
ations, while SSNAL tends to consume a larger portion of time at the beginning, while 
setting up the weights and performing the first phase of the algorithm, meant for warm 
start. Evidently, our method approaches the neighborhood of the solution sooner, even 
for the described, relatively small volume of the problem.

3.8 � Further implementation considerations

The current implementation of the proposed method utilizes CVXPY to solve sub-prob-
lems, and it can be set to use the so-called warm start option. Generally, improvements 
in execution time can be expected if we use a “warm start” in updates (14), (15) and (16) 
and initialize the new variables with their values from the previous iteration. In addition, 
as commonly used with ADMM, the sub-problems (12) may not be solved to full accu-
racy, i.e., they can be solved inexactly. (Theoretically, the accuracy of solving (12) should 
be increasing with the iterations counter for exact convergence). We examine these two 

Fig. 17  A comparison of solvers for ADMM-based convex clustering-like method and SSNAL method
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strategies on the CVXPY implementation. This way the solver starts with the solution 
from the previous iteration, which can reduce the execution time. Another approach is 
to set a solver property such that the expected accuracy becomes lower during the first 
few iterations. The ECOS solver, used by CVXPY in this case, has the property abstol, 
which corresponds to absolute accuracy tolerance, and it has a default value of 1e−8 . 
By enlarging this value, we permit greater difference, i.e., lower accuracy. We tested this 
approach by using 0.0001 during the first 3 iterations of the algorithm.

Let us illustrate the impacts of these enhancements to performance. Table 13 shows 
the execution time for different variants of the algorithm: without enhancement, with 
warm start, with tolerance set up and with both warm start and tolerance set up. Appar-
ently, these enhancements can reduce the execution time to certain extent. For the data 
set with 10,000× 3 points, the time reduction is 2.7 s, i.e., 7% roughly. This is not a dras-
tic difference, but it certainly represents an improvement in performance.

In addition, subproblems (12) can be solved by adopting efficient moderate-size 
problem SON clustering solvers like [26], instead of using the general-purpose solver 
like CVXPY. This approach can expose equally good or even better performance than 
CVXPY. For example, some initial tests show that the data set with 10,000× 3 points 
(generated as a Gaussian mixture model) can be solved for 6.7 s with 25 workers, where 
with the CVXPY solver, the same problem was solved for 22 s, with the same num-
ber of workers. The accuracy of the solution is the same as for CVXPY. Therefore, this 
approach represents a promising direction for further enhancement.

4 � Conclusions
In this paper, we introduce a parallel ADMM-based convex clustering-like algorithm 
and provide a parallel implementation for it, supported by a wide set of test cases. The 
comprehensive empirical evaluations prove that the algorithm satisfies a similar level of 
accuracy as the other widely used clustering approaches. It was also shown that the algo-
rithm can work with large data sets efficiently, exhibiting good scaling properties on a 
cluster environment.

The tests were performed on an HPC computer cluster, AXIOM. The configuration of 
the AXIOM computing facility consists of 16 nodes, where each node has a processor 
with 6 CPU cores (eighth-generation Core i7 cores). The nodes are connected by an Eth-
ernet network with speed of 10 Gbps. The described behavior of the algorithm during 
the tests should be preserved when tested on other cluster environment. The execution 
time may be shorter on a cluster with newer generation of processors, but the overall 
performance characteristics as the scaling properties and the advantages of parallel exe-
cution are expected to be the same. A higher network speed is expected to produce good 
performance with more nodes than in our experiments, so the range of the number of 
nodes with lowest execution time would be different, but still detectable.

Table 13  The impact of solver enhancement on performance

Data set No enhancement Warm start Accuracy adjustment Warm start and accuracy adjustment

10,000× 3 38.65 s 37.5 s 37.7 s 35.88 s
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There are several possibilities for expanding the idea of the ADMM-based convex clus-
tering-like algorithm. For instance, in order to enhance further the algorithm speed, effi-
cient sub-problem solvers could be further designed. In addition, data-dependent sparse 
graph construction for (14)–(15) and weighted sparse SON penalty can be considered 
with an additional preprocessing cost.
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