
A parallel ADMM‑based convex clustering
method
Lidija Fodor*   , Dušan Jakovetić, Danijela Boberić Krstićev and Srđan Škrbić 

1  Introduction
Clustering represents a very common and widely present unsupervised learning prob-
lem in different areas [1–4]. The k-means algorithm [5] is a well-known broadly used
clustering method. In addition, a number of useful clustering methods have been pro-
posed, such as K-means++ [6], k-medians [7], and Bregman clustering [8].

As a valuable alternative, convex clustering has been proposed, e.g., [4, 9–12], wherein
the clustering problem is formulated as a convex optimization problem based on a sum-
of-norms penalty. Convex clustering exhibits several favorable features when compared
with conventional clustering methods. For example, it eliminates local minima-related
issues present in standard methods like k-means, and, unlike k-means, it does not need
a pre-defined number of clusters to be specified. However, current convex clustering
approaches do not scale well with the number of data points to be clustered [4, 9–12].
We develop a novel, fully parallel convex clustering-like method, i.e., a method for a

Abstract 

Convex clustering has received recently an increased interest as a valuable method for
unsupervised learning. Unlike conventional clustering methods such as k-means, its
formulation corresponds to solving a convex optimization problem and hence, allevi-
ates initialization and local minima problems. However, while several algorithms have
been proposed to solve convex clustering formulations, including those based on the
alternating direction method of multipliers (ADMM), there is currently a limited body of
work on developing scalable parallel and distributed algorithms and solvers for convex
clustering. In this paper, we develop a parallel, ADMM-based method, for a modified
convex clustering sum-of-norms (SON) formulation for master–worker architectures,
where the data to be clustered are partitioned across a number of worker nodes, and
we provide its efficient, open-source implementation (available on Parallel ADMM-
based convex clustering. https://​github.​com/​lidij​af/​Paral​lel-​ADMM-​based-​convex-​clust​
ering. Accessed on 10 June 2022) for high-performance computing (HPC) cluster
environments. Extensive numerical evaluations on real and synthetic data sets demon-
strate a high degree of scalability and efficiency of the method, when compared with
existing alternative solvers for convex clustering.

Keywords:  Distributed optimization, ADMM, High-performance computing,
Performance evaluation

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Fodor et al.
EURASIP Journal on Advances in Signal Processing (2022) 2022:108
https://doi.org/10.1186/s13634-022-00942-8

EURASIP Journal on Advances
in Signal Processing

*Correspondence:
lidija.fodor@dmi.uns.ac.rs

Department of Mathematics
and Informatics, Faculty
of Sciences, University of Novi
Sad, Trg Dositeja Obradovića 4,
Novi Sad 21000, Serbia

http://orcid.org/0000-0002-8199-7767
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00942-8&domain=pdf

Page 2 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

modified SON formulation, based on ADMM [13] amenable to master–worker (server–
client) computational infrastructures. The proposed method improves scalability over
existing convex clustering solvers. In addition, when compared with existing (paral-
lel/distributed) clustering methods, e.g., those based on k-means, our method exhibits
comparable accuracy (e.g., in terms of the silhouette score or percentage of accurately
clustered points when the ground truth for expected outcomes is known) and scalabil-
ity, while exhibiting convex clustering benefits (e.g., no need for a pre-defined number
of clusters) with respect to the alternatives. We provide an open source implementa-
tion (available on [14]) of the proposed approach in the COMPSs parallel programming
framework [15], based on the Python programming language and run on a High-Perfor-
mance Computing (HPC) computer cluster.

1.1 � Related work

k-means clustering was originally presented in [16], while Ref. [5] introduces the algo-
rithm itself (Lloyd’s algorithm). While k-means has been widely used and exhibits sev-
eral useful features, it is sensitive to initialization and may converge to a local minimum.
The impact of different initialization methods on the algorithm behavior was empirically
evaluated in [17]. There have been several works that develop improved initialization
methods. In [6], a randomized seeding technique was added to the algorithm, in order to
improve both its speed and accuracy. On the other hand, Ref. [18] proposes an algorithm
for cluster centers initialization.

Several convex clustering formulations have been considered. In [19], an exemplar-
based likelihood function was introduced, leading to a convex minimization problem
for clustering. This represents an efficient algorithm with guaranteed convergence to the
globally optimal solution, proven also by a set of experiments. Reference [20] formulates
an unsupervised learning problem as one convex “master” problem that includes non-
convex sub-problems which can be solved efficiently. Supervised convex clustering has
been proposed in [21].

The wider use of convex clustering becomes evident in different settings. For example,
Ref. [22] investigates the use of convex clustering approach instead of hierarchical clus-
tering in certain scenarios. An interesting approach was introduced in [23], where the
idea is to perform sparse convex clustering. This means performing the clustering simul-
taneously with feature selection, in order to enhance performance. The Sum of Norms
(SON) clustering was proposed in [4, 11, 12], as a convex relaxation of k-means. In [9],
a detailed explanation of the algorithm for SON clustering can be found, including the
presentation of its connection to k-means. It is inspired by the group lasso approach
[24]. While the original SON clustering formulation involves all-pairwise-differences
across cluster candidates in the SON regularization, it has been shown beneficial to uti-
lize weighted pairwise differences, including setting up many weights to zero [10, 23,
25–29]. The weighted and sparse SON regularizations have been shown to yield faster
algorithms and good clustering accuracies [10, 25, 28, 29]. For example, Qian [25] pro-
poses an approach based on weighted minimum spanning trees and k-means bipartite
graphs and shows high clustering accuracies of such sparse SON regularization meth-
ods. The SON clustering exhibits good theoretical cluster recovery guarantees for

Page 3 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

all-pairwise-differences SON models. Theoretical advances regarding the perfect recov-
ery properties of the convex clustering model with uniformly weighted all-pairwise-dif-
ferences regularization were proven in [30, 31]. For weighted and sparse SON models,
theoretical recovery guarantees are limited. Reference [32] establishes sufficient condi-
tions for the perfect recovery guarantee of a general weighted convex clustering model.
However, the weights have to be nonzero for all data point pairs within the same clus-
ter—information not known a priori.

Several numerical algorithms for solving SON clustering problems have been pro-
posed. Reference [32] introduces a semi-smooth Newton-based augmented Lagran-
gian method, for large-scale convex clustering. Additionally, the Alternating Direction
Method of Multipliers (ADMM) and the Alternating Minimization Algorithm (AMA)
have been proposed to solve convex clustering problems [10]. In [26], a novel method for
convex clustering, using semi-proximal ADMM was introduced. This method is suitable
for high-dimensional data. It is based on the sparse group lasso penalty and includes a
set of numerical experiments in MATLAB. An interesting approach is presented in [27],
where a networked k-means algorithm is proposed. The algorithm deals with distrib-
uted data and a multi-agent approach. Although it contains a description of an illustra-
tive numerical evaluation, this work does not conduct a thorough empirical study. In
[28], the authors introduce a Scalable cOnvex cLustering AlgoRithm via Parallel Coor-
dinate Descent Method (SOLAR-PCDM). They combine a parallelizable algorithm with
a compression strategy. SOLAR-PCDM includes the development of a method called
weighted convex clustering to recover the solution path by formulating a sequence of
smaller equivalent optimization problems and the utilization of the Parallel Coordi-
nate Descent Method (PCDM) to solve a specific convex clustering problem. Reference
[29] introduces an efficient smoothing proximal gradient algorithm (Sproga) for convex
clustering.

With respect to the existing literature, our main contribution is on developing a novel
parallel and scalable solver for SON-type clustering. We adopt a sparse zero-one weights
SON formulation and leverage it to develop an efficient parallel ADMM method.
Unlike existing ADMM-based convex clustering methods that are sequential [26], our
method is parallel and hence, well suited to scalable execution on HPC clusters. Exten-
sive numerical evaluations show a high clustering accuracy and a high scalability of the
proposed method on a number of real and synthetic data sets. Specifically, the achieved
accuracy is comparable to alternative sequential k-means solvers, while scalability is sig-
nificantly improved. It is worth noting that our sparse zero-one SON formulation does
not guarantee perfect theoretical recovery guarantees. However, extensive numerical
results demonstrate a high clustering accuracy of the proposed method. This is a typical
scenario with other sparse clustering methods like, e.g., [25, 26].

The rest of the paper is organized as follows. The definition of the problem is described
in Sect. 2, where Sect. 2.1 is dedicated to the explanation of some introductory pre-
requisites. Section 2.2 contains the definition of the ADMM-based convex cluster-
ing-like algorithm. The implementation and infrastructure are described in Sect. 2.3,
where Sect. 2.3.1 contains the description of the input data and Sect. 2.3.2 provides
some remarks about the stopping criterion. Section 3 is dedicated to the numerical

Page 4 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

evaluations. Section 3.1 provides insights into the time consumption of different seg-
ments of the algorithm. The accuracy evaluation of the developed method is described
in Sect. 3.2. In Sect. 3.3, the effects of choosing different reference points (see ahead
Sect. 2.2) are considered, while in Sect. 3.4, we evaluate the effects of different ways of
data partitioning. The scaling properties of the algorithm are described in Sect. 3.5. Sec-
tion 3.6 provides a discussion on choosing the value of parameter γ . The comparison
of parallel ADMM-based convex clustering to other clustering approaches is given in
Sect. 3.7, specifically: Sect. 3.7.1 contains the comparison the AMA method, Sect. 3.7.2
with DBSCAN and Sect. 3.7.3 with the SSNAL method. Section 3.8 discusses some pos-
sible further implementation considerations. Finally, the conclusions are made in Sect. 4.

Notation. We denote by: Rd the d-dimensional real coordinate space; ‖.‖ the Euclidean
norm; a⊤ the transpose of vector a.

2 � Methods
2.1 � Preliminaries

SON clustering. Consider the problem of clustering a set of observations {aj}Nj=1 ,
aj ∈Rd , where the number of clusters is not known in advance. The Sum Of Norms
(SON) clustering is formulated as:

where x = (x1)
⊤, (x2)⊤, . . . , (xN)⊤

⊤ ∈ R
Nd is the optimization variable. Here, xi ∈ R

d
plays the role of the i-th cluster center candidate, i = 1, . . . ,N and γ > 0 is a regulari-
zation parameter. The first sum corresponds to fidelity measure, while the second sum
represents the regularization term. It enforces zeros for ||xi − xj|| across a subset of pairs
i, j and can be seen as a generalization of the fused Lasso penalty [33]. This means that,
at the solution x∗ = ((x∗1)⊤, . . . , (x∗N)

⊤)⊤ of (1), there will be only a subset of K ,K < N  ,
mutually distinct vectors x∗1, . . . , x

∗
N ; these K distinct vectors, say x∗i1 , . . . , x

∗
iK

 , where
{ii, . . . , iK } ⊂ {1, . . . ,N } are the cluster centers obtained through convex clustering. The
cost function in (1) is strongly convex, and (1) has the unique solution x∗.

ADMM. The proposed parallel clustering method is based on ADMM. ADMM [13] is
an iterative algorithm that solves the following type of problems:

where f : Rn → R and g : Rm → R are convex functions, i.e., ADMM assumes
an objective function, that is separable to two components, x ∈ R

n and z ∈ R
m .

A ∈Rp×n , B ∈Rp×m are real-valued matrices, where c ∈Rp . The augmented Lagrangian
Lρ : (Rm+n)× (Rp) → R associated with (2) is:

where ρ > 0 is a penalty parameter, and � is the dual variable. Then, the ADMM algo-
rithm consists of the following iterations:

(1)min
x

N
∑

j=1

||aj − xj||2 + γ
∑

i<j

||xi − xj||,

(2)minimize f (x)+ g(z) s.t. Ax + Bz = c,

(3)Lρ(x, y; �) = f (x)+ g(y)+ �
⊤(Ax + By− c)+

ρ

2
||Ax + By− c||2,

Page 5 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

Here, k = 0, 1, . . . , is the iteration counter, xk ∈ R
n and yk ∈ R

m are the primal variables,
and �k ∈ R

p is the dual variable. It is well known that (xk , yk) converges to a solution of
(2) under mild conditions; see [13].

Regarding the stopping criterion, a common way to terminate the algorithm is to
introduce threshold values ǫpri and ǫdual , as feasibility tolerances, for the primal and dual
feasibility conditions:

so that the algorithm terminates if both conditions (7) and (8) are satisfied.

2.2 � Problem model and proposed parallel method

Assume we have N observations {aj}Nj=1 ∈Rd as stated before. We assume a master–
workers (nodes) computational and sharing model with K − 1 worker nodes that store
data, perform calculations, and communicate with the master. Our goal is to construct
an algorithm that performs cluster assignment, i.e., a function that maps a set of input
data points to a discrete set of cluster labels. Without loss of generality, we index the
master as the first node, and the workers as nodes 2, . . . ,K  . Each node (including mas-
ter) has a chunk of the input data a of size N/K × d1. To facilitate presentation, we
introduce a two index notation, where aij ∈ R

d represents the j-th data point available
at node i, i = 1, . . . ,K , j = 1, . . . , NK  . We introduce a modification of standard convex
clustering in (1), as follows. Note that the second term in (1) involves the differences
across all pairs (i, j), i < j , of “candidate” cluster centers. Here, we also start by letting
xij ∈ R

d , i = 1, . . . ,N , j = 1, . . . , NK  , be a “candidate” cluster center that corresponds to
the (i, j)-th data point. However, unlike (1), we do not penalize the differences across all
pairs of candidate clusters. Instead, we assign to the master a “reference point” x11 . Simi-
larly, we assign to each worker i, i = 2, . . . ,K  , a local “reference point” xi1 . The selection
of reference points can be made arbitrarily, i.e., instead of choosing the first point from
the data chunk, we could choose an arbitrary point at each worker. These points are not
forced to become centers, and they have no advantage over other points in the process of
determining the final cluster centers; they only represent an element for algorithm con-
struction. The effects of choosing different reference points for the same experimental
setup are described in details in Sect. 3.3.

We replace the second sum in (1) with the following sum:

(4)xk+1 = argminxLρ(x, y
k , �k),

(5)yk+1 = argminyLρ(x
k+1, y, �k),

(6)�
k+1 = �

k + ρ(Axk+1 + Byk+1 − c).

(7)||rk || = ||Axk + Byk − c|| ≤ ǫpri,

(8)||sk || = ||ρA⊤B(yk − yk−1)|| ≤ ǫdual,

1  For simplicity, assume that N is divisible by K; otherwise, node 1 can take ⌊ N

K
⌋ + r data points, and the remaining

nodes take ⌊ N

K
⌋ data points, where r is the remainder when dividing N by K.

Page 6 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

In other words, within the data points at each node i, i = 1, . . . ,N  , we penalize the differ-
ence between the local reference point xi1 and the remaining data points xij , j = 2, . . . , NK  ,
at that node. This corresponds to the first sum in (9). In addition, regarding cross-node
penalization, we penalize the differences between the reference point on master x11 and
the local reference points xi1, i = 2, . . . ,K  . This corresponds to the second sum in (9).
Finally, accounting for the sum of squared distances between each point aij and each
candidate cluster center xij , we arrive at the following formulation for the convex clus-
tering-like method:

where the minimization is with respect to the variables xij ∈ R
d , i = 1, . . . ,K , j = 1, . . . ,

N
K

 ,
and γ > 0 . Note that formulation (10) depends on K, i.e., different values of K yield dif-
ferent optimization problems. Intuitively, for a larger K, the sum of norms penalty in (10)
corresponds to an increasingly sparse graph, and one may expect that this results in a
lower cluster recovering accuracy. We show by extensive experiments that the overall
proposed method exhibits high clustering accuracy when K increases. Note that prob-
lem (10) is not equivalent to the analog of (1) below:

where the second sum includes the differences between each pair of variables xij and xlm .
However, extensive numerical results show that solving (10) yields effective clustering
methods.

As an intermediate step of the overall clustering procedure, for a given number of
workers K, we add the following formulation to the described problem. It is useful to
associate with problem (10) a graph G = (N ,E) , where N is the set of N nodes, each
corresponding to a single variable xij , i = 1, . . . ,K , j = 1, . . . , NK  , and E is the set of edges
(i, j) ∼ (l,m) , such that there is an edge between nodes (i, j) and (l, m) if the second sum
in (10) involves the term ||xij − xlm|| . Figure 1 illustrates graph G on an example with
K = 4 nodes and NK = 4 data points per node. In Fig. 1, x11 corresponds to the reference
point on master; xi1, i > 1 corresponds to the reference point on node (worker) i; and
xij , i > 1, j > 1 correspond to the remaining candidate clusters. Formulation (10) penal-
izes differences ||xij − xlm|| for those pairs of xij and xlm for which an edge in G exists.

In view of the graph-based representation of (10), the original convex clustering in (1)
is recovered when G is replaced with the full (complete) graph. Similarly, (10) may be
seen as a weighted convex clustering [32], where unit weights are added for those pairs
of xij ’s and xlm ’s where (i, j) ∼ (l,m) , and zero weights are added elsewhere.

Note that we do not assume beforehand any knowledge of the “structure” or “distribu-
tion” of data across different nodes. Also, the graph construction is independent of the

(9)
K
∑

i=1

N/K
∑

j=2

||xi1 − xij|| +
K
∑

i=2

||x11 − xi1||.

(10)minimize
xij

K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − xi1||,

(11)minimize

K
∑

i=1

N/K
∑

j=1

||aij − xij||2 + γ
∑

||xij − xlm||,

Page 7 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

actual values of the data points aij’s. In other words, the graph construction is arbitrary
with respect to the available data. Extensive numerical results (See Sect. 3) show that
this leads to accurate clustering solutions. We adapt this approach because the alterna-
tive, “data-driven” graph (weights) construction, as, e.g., done in [26], incurs high com-
putational cost and communication coordination among nodes. Data-driven centers and
graph assignments are left for future work.

The problem can now be reformulated, in order to apply ADMM, as follows:

In other words, we introduce, for each node’s reference point xi1, i = 1, . . . ,K  , an auxil-
iary variable yi1 and add the constraint yi1 = xi1 to keep problem (12) equivalent to (10).
Clearly, variables in (12) are then {xij}, i = 1, . . . ,K , j = 1, . . . , NK  , and yi1, i = 1, . . . ,K  .
We now dualize the constraints in (12) and form the Augmented Lagrangian function
Lρ : RNd × R

Kd × R
Kd → R as follows:

where ρ > 0 is a penalty parameter. In (13), we denote by x ∈ R
Nd the vector that stacks

all the xij ’s one in top of another, and by y ∈ R
Kd the vector that collects all yi1 ’s one on

top of another. We now apply ADMM in (4)–(6) with respect to the Lagrangian Lρ in

(12)
minimize

K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − yi1||

s.t. yi1 = xi1, i = 2 . . .K .

(13)

Lρ(x, y; �) =
K
∑

i=1

N
K
∑

j=1

||aij − xij||2 + γ

K
∑

i=1

N
K
∑

j=2

||xi1 − xij|| + γ

K
∑

i=2

||x11 − yi1||

+
K
∑

i=2

�
T
i (yi1 − xi1)+

ρ

2

K
∑

i=2

||yi1 − xi1||2,

Fig. 1  Illustration of graph G and structure of problem (10)

Page 8 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

(13) to solve (12). After decomposing x and y back to blocks xij ’s and yi1’s, it can be veri-
fied that (4)–(6) translates into the set of updates in (14)–(17), as follows:

•	 x update on each worker node i = 2 . . .K in parallel:

	 In (14), the optimization is (jointly) with respect to xij , j = 1, . . . , NK .
•	 x update on the master node:

	 Note that (15) is also done in parallel with (14), and the optimization in (15) is
(jointly) with regard to x1j , j = 1, . . . , NK .

•	 y update on master node:

	 Note that minimization (16) is with respect to (jointly) variables yi1, i = 2, . . . ,K .
•	 � update on master node:

	 Note that all the �i’s, i = 2, . . . ,K  , are updated at the master independently, in paral-
lel.

Regarding inter-node communications (variable exchange), the procedure is as follows.
Assume for simplicity that all the �’s, x’s and y’s are initialized to zero. Then, after the
master and the worker nodes update x according to (14) and (15), each worker i sends
its new reference point variable xk+1

i1 to the master. After the master performs y and �
updates as in (16)–(17), it sends variables yk+1

i and �k+1
i to worker i, i = 2, . . . ,K .

We now comment on (14)–(17). At each iteration, each node and the master solve
problems (14) and (15). These problems are of SON type, but with a sparse, star graph
of SON penalties, and of variable size that is K times smaller than (10) and (11), hence,
enabling scalability. Hence, for sufficiently large K, an efficient solver for moderate-sized
SON problems can be adapted to solve (14) and (15), e.g., [29]. Actually, as detailed
in Sect. 2.3, we used CVXPY as a general convex solver to solve (14)–(15). See also
Sect. 2.3. Update (17) is clearly a cheap update. Finally, (16) is done closed form by evalu-
ating a proximal operator block-thresholding for the 2-norm [26].

(14)
xk+1
ij = argmin

N
K
∑

j=1

||aij − xij||2 + γ

N
K
∑

j=2

||xi1 − xij||

+ (�ki)
T (yki1 − xi1)+

1

2
ρ||yki1 − xi1||2

(15)xk+1
1j = argmin

N
K
∑

j=1

||a1j − xk1j||
2 + γ

N
K
∑

j=1

||x1j − x11|| + γ

k
∑

i=2

||x11 − yki1||

(16)

yk+1
i1 = argmin

K
∑

i=2

(�ki)
T (yi1 − xk+1

i1)+
1

2
ρ

k
∑

i=2

||yi1 − xk+1
i1 ||2 + γ

K
∑

i=2

||xk+1
11 − yi1||.

(17)�
k+1
i = �

k
i + ρ(yk+1

i1 − xk+1
i1)

Page 9 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

Note that formulation (10), unlike (11), does not guarantee perfect cluster recovery
for any γ > 0 . However, we observe numerically that, for the solution {x∗ij} of (10), an
approximate clustering structure emerges. That is, the {x∗ij} ’s cluster into a number, say
K ′ , different groups, such that the x∗ij ’s within the same group are mutually very close.
This motivates the following merging procedure.

Algorithm 1 shows the merging procedure, that is being applied after (14)–(17) con-
verges. The first stage of merging is applied locally on each node. The threshold values
ǫi and ǫ are positive numbers, used to filter the possible centers x∗ij . We assign the first
candidate point as a first center, and check the rest of the points. All those points that
are close (within ǫi distance) to the points already marked as centers are being ignored.
In the opposite case, a point is denoted as a new center. The second step is to merge
the obtained local centers on the master node. This means that all the obtained local
centers need to be synchronized on the master node first. The value ǫ is calculated by
using the average distance between the obtained local centers. Then, the same merg-
ing procedure is applied as before. The result is a set of centroids on the output of the
algorithm.

This means that we keep each next candidate for centroid only if its distance to previ-
ously kept centroids is larger than ǫ . Then, this whole set of already reduced subsets of
possible centers from all nodes is being analyzed by the master node in the same man-
ner. The output of this process is the set of resulting centers. The pseudocode for the
described clustering algorithm is shown in Algorithm 2.

Page 10 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

The overall proposed clustering method is summarized in Algorithm 2. After (14)–(17)
converges and the merging procedure is applied as described in Algorithm 1, the master
node makes the final centers available to the worker nodes. Then, each worker assigns
its local data points to the cluster that corresponds to the nearest center. The algorithm
works with 2 tunable parameters, γ and ǫ . Choosing a large value for the regularization
parameter γ enforces more overlapping centroids. On the other hand, choosing a small
value for the parameter can result in only slightly moving the centers, producing large
distances between the gathered points, and hence, a too large number of clusters. See
also Sect. 3.6.

One way to choose ǫi, i = 1, . . . ,K is the following:

where ǫ⋆ is a tunable input parameter that can also be set to a universal, data and prob-
lem independent, constant value, e.g., equal to 5 or 10. The formulation in (18) means
that each node calculates the average Euclidean distance between the points in its own
data chunk and divides the result by a constant value ǫ⋆ . Similarly, ǫ can be calculated on
master, based on the average Euclidean distance between the locally obtained centers as
follows:

where P = P1 + · · · + PK is the overall number of locally obtained centers on all nodes
and the sum in (19) involves all elements from the union of sets Ci, i = 1, . . . ,K .

Calculating ǫi as in (18) involves only pairwise distances within single workers data,
which is only O(N

2

K 2) pairwise distances. That is, across all nodes, we calculate O(K × N 2

K 2)
pairwise distances. Compared with O(N 2) pairwise distances, needed with sequen-
tial weighted SON clustering approaches, like for example AMA [10], it is significantly
cheaper for sufficiently large number of workers K. Alternatively, the sums in (18) may be
replaced with minimum, i.e., to consider minimal within-workers data distances. When

(18)ǫi =
2K 2

ǫ⋆ × N (N − K)

N
K
∑

j=1

N
K
∑

l=j

�aij − ail�,

(19)ǫ =
2

ǫ⋆ × P(P − 1)

P
∑

j=1

P
∑

l=j

�cj − cl�,

Page 11 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

performing the merging of the local centers, the value of ǫ on the master can be used by
calculating it in the same manner as in (18), with the only difference that the distances of
local centers are considered instead of the distances of data points.

Algorithm 1 may be seen as a simple instance of a pairwise clustering method; see, e.g.,
[34]. Intuitively, solving (10) usually brings the x⋆ij ’s that correspond to the data points
aij ’s within a single “true” cluster very close to each other, but it may not make them
exactly equal up to the full accuracy. Therefore, a simple pairwise clustering method in
Algorithm 1 is introduced to fine-tune the results achieved by solving (10). Note that
Algorithm 1 involves O(K × N 2

K 2) pairwise comparisons across all nodes, and hence,
again it scales well when K is large. We also report that Algorithm 1 allows for a cheap
polishing of the results, typically incurring 11.6% of the overall execution time of Algo-
rithm 2, on average.

2.3 � Implementation and infrastructure

The implementation of Algorithm 2 is developed in Python, using the COMPSs frame-
work for parallel execution [15]. COMPSs offers a simple programming model with the
aim to facilitate the parallelization process. It has been widely adopted and extended in
numerous scientific projects offered as a tool to develop scientific applications and opti-
mize their execution on distributed infrastructures. The testing has been performed on
the AXIOM computing facility consisting of 16 nodes (8 x Intel i7 5820k 3.3GHz and 8
x Intel i7 8700 3.2GHz CPU-96 cores and 16GB DDR4 RAM/node) interconnected by a
10 Gbps network.

The Python implementation relies on the CVXPY [35, 36] package, used for the
minimizations described in (14)–(15). The PyCOMPSs framework [37] (COMPSs for
Python) enables a convenient way for parallelization, by simply annotating a function
as a task. However, this requires a proper data format and distribution, as well as a syn-
chronization point, where the results of execution on different processes are being col-
lected into a predefined data structure.

2.3.1 � The input data

The input data are read from a file and resized from its two-dimensional form to a three-
dimensional form workers × chunk_size × d , where workers is the number of nodes
operating (defined as an input parameter) and chunk_size = N

K  . The data points are
being distributed in consecutive chunks as read from files. This means that the data dis-
tribution across workers is not ”informed” and is arbitrary, i.e., each worker usually con-
tains a mixture of data points that should belong to different clusters. The tests are based
on both synthetical and real data sets. The synthetical data sets were generated in order
to test scalability and accuracy of the algorithm. The data sets are generated by using a
samples generator from the scikit-learn package [38]. Figure 2 represents an example for
generated two-dimensional data set of small volume. It contains 30 points, with clearly
distinguishable clustering into 3 clusters.

Large synthetic data sets are generated as Gaussian mixture models [39]. We con-
sider mixtures of k multivariate Gaussian distributions with mean µi and covariance
Ei, i = 1 . . . k . The values for µ are d-dimensional points generated randomly, but from
different intervals for each Gaussian k, in order to ensure that they will be distant

Page 12 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

enough to represent separate clusters. Also, the values for σ are generated randomly,
from one interval for the diagonal part and from another one for the upper triangular
part. Regarding the value of π , the same value of π = 1

k was used for each Gaussian.
Figure 3 shows the t-SNE embedding [40] for an example of generated data. The data set
size is 3000 points here, with dimension 3 and 5 clusters.

2.3.2 � The stopping criterion

The stopping criterion implemented here is the usual stopping approach for ADMM. It
requires implementing (7)–(8).

Fig. 2  Example of a two-dimensional data set of small volume

Fig. 3  t-SNE for an example of the generated three-dimensional data set of larger volume

Page 13 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

The residuals are being calculated at the end of each iteration, when the master pro-
cess has access to all results, obtained by the workers. The threshold values ǫpri and ǫdual
are also being recalculated at each iteration as follows:

Here, α ∈R and β ∈R represent the absolute and relative tolerance values, respectively.
These values can be set as input parameters and their default values are α = 10−4 and
β = 10−2 . This means that both the residuals and the threshold values are being updated
at the end of each iteration k, based on the values xk , yk and �k.

3 � Results and discussion
In this section, the aim is to assess the quality of different aspects of the distributed
ADMM-based convex clustering-like algorithm. Particularly, the tests performed on
small, two-dimensional data sets are appealing for plotting and evaluating the proper-
ties of the algorithm. One of the main ideas is to monitor the accuracy of the solution,
which is straightforward with data sets generated under controlled conditions. For these
synthetic data sets, the number of expected clusters is known in advance, which makes
the first stage of the evaluation simpler. However, we will also include other accuracy
metrics, as silhouette score and comparison with the results of plain k-means clustering.
The second key aspect is the evaluation of performance. The scaling properties of the
algorithm will be demonstrated through a set of tests on different data sets.

First, we discuss the time consumption of different segments of the algorithm in
Sect. 3.1. Section 3.2 is dedicated to accuracy evaluation. These analyses include meas-
uring the percentage of accurately clustered points, where a ground truth is known. We
use a small, synthetic data set and the Iris data set [41, 42] here. Additionally, we observe
the accuracy of some large, synthetic data sets, by means of silhouette score values and
comparison with k-means. Section 3.3 contains an evaluation of the effects of choos-
ing different reference points, while Sect. 3.4 considers the effects of different ways of
input data partitioning. In Sect. 3.5, we evaluate the scalability of the proposed method,
on some large, synthetic data sets, generated as Gaussian mixtures. Further, we discuss
some aspects of choosing the value for the regularization parameter γ in Sect. 3.6. Sec-
tion 3.7 is about comparing the proposed method to other clustering approaches: the
AMA method (Sect. 3.7.1), DBSCAN (Sect. 3.7.2) and SSNAL (Sect. 3.7.3). We perform
the comparison on synthetic data sets, generated as Gaussian mixtures. We conclude the
numerical evaluations in Sect. 3.8, where some possibilities for further enhancement are
mentioned.

3.1 � Time consumption of different segments of the algorithm

When considering the time consumption of the different actions during the algorithm
execution, it naturally emerges that the iterative part of algorithm consumes 88.3% of
the overall execution time, on average. The average time spent on reading the input data
is only 0.05%, while the average time needed for the process of merging the possible

(20)ǫpri = α
√
N + βmax{||xk ||, || − yk ||},

(21)ǫdual = α
√
N + β||�k ||.

Page 14 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

centers is 11.6%. These average values are calculated over all the experiments conducted
and mentioned in the paper.

3.2 � Accuracy evaluation

In order to gain some insights into the level of accuracy of the developed clustering
implementation, a few approaches are used here. First, we investigate the solution for a
small, generated two-dimensional data set, where it is straightforward to plot the results
and gain visual insights. Figure 4 shows an example with 30 two-dimensional data
points. The points belong to 3, clearly separable clusters, as shown by the blue dots in
Fig. 4. The results of clustering are also shown in Fig. 4. Clearly, the algorithm is able
to identify the centers correctly. Figure 4 displays the found centroids, as shown by the
orange dots. These centers are the output from the merging mechanism. When the stop-
ping criterion is met, the center candidate points, that are “close”, by the definition of ǫi
(18) are being aggregated. It can be seen that the algorithm properly detected the exist-
ence of 3 clusters and assigned the points to the clusters accurately.

The accuracy evaluation, when the ground truth is known, can be illustrated on a com-
mon example of the Iris data set. This means dealing with a higher-dimensional data set,
where the clusters are mainly distinguishable by the nature of the underlying data.

When ground truth is available, we evaluate clustering accuracy as the percentage of
correctly classified data points. The Iris data set [41, 42] is available in scikit-learn. It
contains 3 different classes of the plant Iris. It has 4 attributes and 150 samples. Based
on these attributes, a clustering algorithm could identify the existence of 3 clusters (see
Table 1). We executed the ADMM-based convex clustering-like algorithm on this data
set and obtained the 3 clusters. In order to further analyze the results, we compared the
obtained labels to the real, known labels. It turns out that our algorithm assigned 93.33%
of the data points to the correct cluster. It should be also mentioned that it assigns all
data points belonging to the first cluster accurately, while it makes some ’mistakes’ with
the second and third cluster. The nature of the data directly affects this, as the mentioned

Fig. 4  Results of clustering for a generated data set 30× 2 , γ = 0.3 , ǫ⋆ = 2

Page 15 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

two clusters are ’close’ to each other. In fact, running the standard k-means algorithm
on this data set for different values of k results with a highest silhouette score value of
0.68 for k = 2 . This can be also easily seen on the t-SNE embedding of the data set, in
Fig. 5. Table 1 also contains the percentages of accurately clustered points for the stand-
ard k-means algorithm (with the preset value of k) and for the AMA method as well, for
reference. When running plain k-means for k = 3, the percentage of points accurately
clustered is 89.33% . As these evaluation showed, our method can perform as accurately
as (or even more accurately than) k-means with a correctly predefined value for k. In
order to further investigate this test case, we also run the AMA method [10] on this data
set. By setting the parameter γ appropriately, it is able to find the 3 clusters with 90.66%
of points clustered accurately. This shows that the 3 different clustering algorithms per-
form with a similar degree of accuracy on this data set. This is illustrated in Fig. 6. It
shows the accuracy percentage related to the value of the input parameter γ . The accu-
racy percentage of k-means is independent regarding the value of the input parameter γ .
Different initializations for k-means, meaning the usage of alternate algorithms as ’elkan’
and ’full’ or number of runs with different centroid seeds set to {5, 10, 100}, always result
with the same level of accuracy of 89.33% on this data set. The AMA method has its
range γ ∈ [4.3, . . . , 9.1] , where it produces the highest accuracy. All values of γ that are
out of this range affect significant decrease in clustering accuracy. The similar holds for
ADMM-based convex clustering-like method, except that this range of values giving the

Table 1  Accuracy comparison for different clustering algorithms on the Iris data set

Algorithm Parameters Number of clusters Accuracy
(percentage)

ADMM-based convex clustering-like
algorithm

γ = 40 , ǫ⋆ = 5 3 93.33

k-means clustering k = 3 3 88.66

AMA clustering γ ∈ [4.3, . . . , 9.1] 3 90.66

Fig. 5  The t-Sne embedding of the Iris data set

Page 16 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

highest accuracy is significantly broader. Intuitively, even outside of the range of γ for
which a SON-like clustering is exact, in a vicinity of this range, “SON-like clustering still
produces nearly-exact” clustering—that is then harnessed for correct clustering—via the
merging procedure.

As the ground truth for clustering is not always available, some additional accuracy
metrics can be used in order to assess the outcomes of clustering. Silhouette score is a
common and widely used way to evaluate a clustering approach, so it is included as an
accuracy metric in our experiments.

The accuracy of the algorithm is also tested for large higher-dimensional data sets.
These data set are generated as Gaussian mixture models, as described earlier (see
Sect. 2.3.1). In order to visualize the results, t-distributed stochastic neighbor embedding
(t-SNE) [40] will be used. Let us consider a few higher-dimensional data sets. Table 2
shows the results for these experiments. It can be seen that the algorithm is mostly able
to identify the expected number of clusters, with high silhouette score values. Addition-
ally, the scikit-learn k-means algorithm results mostly with the same number of clusters
and similar values for silhouette score.

Figure 7 shows the t-SNE embedding for a 1000× 3 generated data set. The data points
are colored according to their cluster labels, obtained by our ADMM-based convex clus-
tering-like algorithm. It represents an example where our clustering algorithm clusters
the data points accurately to the expected clusters, that also corresponds to a high sil-
houette score value.

Based on the described experiments, it can be concluded that ADMM-based convex
clustering-like method can perform with high accuracy. The accuracy of the algorithm is
compatible with the accuracy level of k-means and AMA.

Fig. 6  The accuracy values of different methods on Iris data set

Table 2  Accuracy evaluation for higher dimensional data sets

Data size γ ǫ⋆ Clusters ADMM-based
convex clustering-like
method

Clusters
k-means

ADMM-based convex
clustering-like method
s.score

k-means s.score

1000× 3 5.0 4 8 8 0.76 0.76

5000× 3 6.6 2 4 4 0.77 0.78

5000× 5 6.6 2 5 4 0.62 0.75

10,000× 3 6 5 10 10 0.69 0.75

Page 17 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

3.3 � The effects of choosing different reference points

The problem formulation in (10) proposes, for the sake of proper definition and without
loss of generality, the first point (according to the adopted points enumeration) in each
worker’s local data chunk to become the local reference point, and the first point in the
data set (which is also the first point on master’s local data chunk) to become the global
reference point. However, arbitrary points can be selected as reference points, without
serious accuracy losses. Let us demonstrate this on a few examples. We consider 3 differ-
ent data sets: a small synthetic data set with dimension 120× 2 (generated using samples
generator from the scikit-learn package [38], that generates isotropic Gaussian blobs for
clustering), a larger synthetic data set with dimension 1000× 4 (generated as a Gaussian
mixture model) and the Iris data set. Note that we first reshuffled the points for the Iris
data set here, as they are originally arranged in order, by clusters. If we use 3 workers,
this means that each worker gets data points from one cluster, for the original order-
ing. Instead of this, we want data points from different clusters on one worker, so that
when we pick a reference point position, it could correspond to a point from any cluster.
For all these considered data sets, the ground truth is known, so the accuracy percent-
age can be easily obtained. Table 3 shows the average, minimal, maximal and median
accuracy values and the 0.98 quantile for these data sets, obtained for randomly selected
reference points, within 500 tests for each data set. The accuracy is defined, based on

Fig. 7  t-SNE embedding for clustering over a synthetical data set of size 1000× 3

Table 3  Accuracy for a set of tests with different selections of reference points, and fixed input
parameter values

Data set Average
accuracy (%)

Minimal
accuracy (%)

Maximal
accuracy (%)

Median
accuracy (%)

0.98 quantile (%)

120× 2 100 100 100 100 100

1000× 4 99.87 99.2 100 99.9 99.9

Iris 90.67 48.67 91.33 91.33 91.33

Iris-with optimized γ 90.98 84 91.33 91.33 91.33

Page 18 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

the ground truth here. When the algorithm determines the labels of the data points, we
compare those labels with the real ones (considering that the label marks may be differ-
ent now, for example, a cluster labeled with 1 originally can be labeled with 2 now). The
random selection of reference points means that we allow for each worker to generate a
random value for the reference point position, with the limitation that we never use the
same reference points positions combination during the tests. It is important to mention
that the input parameters γ and ǫ⋆ are fixed for each data set during these tests. For the
smallest data set with 120× 2 data points, all the 500 test cases with different reference
points resulted with 100% accuracy. For the larger data set with 1000× 4 data points, the
best accuracy obtained was 100%, and the lowest value was 99.2%, which certainly does
not represent a significant difference. In fact, in the vast majority of tests, the accuracy is
99.9%. This can be seen in Fig. 8 that displays the histogram of the achieved accuracies
across all 500 trials. The third test case, regarding the Iris data set, also shows a consist-
ent accuracy level in most of the cases. However, there are a few exceptions here, as it
can be seen in Table 3. The lowest accuracy obtained for the Iris is 48.67% that occurs
in only 1.4% of the test cases. The test cases resulting with this value can be drastically
improved by slightly changing the input parameter γ , so that they result with high accu-
racy values, similar as the rest of the tests. The values and amounts of accuracy percent-
ages obtained for the Iris data set, with a fixed value for parameter γ , are also shown in
Fig. 9. When we adjust the parameter γ , we can eliminate the low accuracy values. This
is shown in the last row of Table 3 and also in Fig. 10. If the reference points are changed,
one can adapt the parameter γ easily (e.g., by running a clusterpath), in order to main-
tain high accuracy. It is evident that the method is able to achieve a high accuracy level,
for different selections of reference points, on different data sets.

Fig. 8  Histogram for accuracy percentage for different selections of reference points, on a synthetic data set
of size 1000× 4

Page 19 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

3.4 � The effects of different ways of data partitioning

The way a data set is partitioned among a set of workers is an aspect that may influence
the outcome of the algorithm. Therefore, we evaluate this aspect, on 3 different data
sets: the synthetic 120× 2 and 1000× 4 data sets and on the Iris data set again. Table 4

Fig. 9  Histogram for accuracy percentage for different selections of reference points, on the Iris data set

Fig. 10  Histogram for accuracy percentage for different selections of reference points, on the Iris data set,
with optimized γ

Table 4  Accuracy for a set of tests for differently shuffled input data

Data set Average accuracy
(%)

Minimal accuracy
(%)

Maximal accuracy
(%)

Median accuracy
(%)

0.95
quantile
(%)

120× 2 100 100 100 100 100

1000× 4 99.1 80.8 100 88.66 100

Iris 89.22 86 93.33 90.66 91.6

Page 20 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

shows the results of these experiments. We conducted a set of 50 tests for each data set,
where the data points are reshuffled each time in a different manner before distribution,
so that each test assumes different data distributions on workers, where the number of
workers is constant. This is achieved by randomly reshuffling the data, but using a dif-
ferent seed each time, which ensures different shuffles. For a small data set with 120× 2
data points, the accuracy remains 100% regardless of the shuffling. For the 1000× 4 data
set, the accuracy is a high value, close to 100, in the majority of test cases. The lowest
accuracy value is 80% here, and it occurs only one time, considering the presented 50
iterations for different shuffles, which represents only 2% of the considered test cases.
The obtained results for this data set are also shown in Fig. 11. Regarding the Iris data
set, the accuracy is in the range between 86% and 93.33% in all cases, which is also pre-
sented in Fig. 12. When the data points are reshuffled, the value of the regularization
parameter γ needs to be adjusted in a subset of cases, which is an expected outcome. It
can be concluded that the way the input data are partitioned influences the outcomes of
the algorithm, to a small extent. However, the level of the accuracy is preserved inside
a reasonable range. This trend is a direct consequence of the distributed nature of the
algorithm, where the data set is not being consumed as a whole. Hence, the gains of a
fast execution time of a parallel algorithm may require a cost of slight accuracy loss that
depends on the data distribution.

3.5 � Scalability evaluation

In order to evaluate the scaling properties of the parallel ADMM-based convex cluster-
ing-like algorithm, different data sets will be used to run on a computer cluster with dif-
ferent numbers of working nodes. All the data sets in these experiments are generated

Fig. 11  Histogram for accuracy percentage for different ways of data partitioning, on a synthetic data set of
size 1000× 4

Page 21 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

as Gaussian mixtures. One aspect is to evaluate run time with respect to the number of
workers. Here, we assume a fixed-sized data set is partitioned into an increasing number
of workers. Another aspect is to see how the changes in number of features influences
the execution. Finally, these tests can provide an insight into the most appropriate num-
ber of working nodes for each data set, i.e., the number of nodes that produces the low-
est execution time on the data set.2

Figures 13 and 14 represent the scaling properties of the algorithm, by showing the
execution timings for different data sets and different number of workers.

Figure 13 displays the tests for 3 data sets with 5000 samples and 3, 5 and 10 features.
It can be seen that the algorithm scales well and it is straightforward to identify the opti-
mal number of nodes for each data set: 12, 20 and 30, respectively. However, there is
a whole range of number of workers where the execution time remains similarly low.

Fig. 12  Histogram for accuracy percentage for different ways of data partitioning, on the Iris data set

Fig. 13  Scaling properties for the data sets with 5000 samples and 3, 5 and 10 features

2  There is always a tradeoff between communication and computation in parallel systems. Splitting the computation to
smaller chunks, i.e., adding more nodes, reduces the time required for computation. However, the process of communi-
cation/synchronization is becoming more time consuming when increasing the number of nodes. Therefore, an optimal
point (a particular number of workers) can be found, where these two aspects are best balanced.

Page 22 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

Increasing the number of working nodes reduces the execution time until reaching the
optimal range of workers for the data set. The execution time remains approximately the
same, within the frames of the conducted experiments. Further increasing the number
of workers could lead to execution time increase at some point, as the cost (in terms of
communication/synchronization) of having more nodes would then be higher than the
gains of parallelization. At some points, the execution time of a larger data set can be
slightly lower than the execution time for a smaller data set. The reasons for this could
be various, including latency caused by a particular node, but also the nature of the par-
ticular data in the data set. It should be kept in mind that measuring the execution time
of a synchronous parallel program always subsumes waiting for the slowest process to
terminate. Figure 14 shows the scaling properties for 3 data sets with 10, 000 samples
and again 3, 5 and 10 features. The algorithm scales well here, as expected. The optimal
number of points is 35, 25 and 25, respectively, but the execution time also stays close
to this optimal value for a range of different number of workers. It seems strange that
we do not have the distribution for optimal points as expected: lower value for less fea-
tures, higher value for more features. However, this observation is not completely true.
The reason is the following: we start with small number of workers and very high execu-
tion times. As we increase the number of workers, the execution time rapidly drops, and
once it is reduced to certain level, it remains close to that value for further increased
number of workers. As a result, the mention optimal number of workers corresponds to
the lowest execution time, but that timing is only slightly different for a whole range of
tests with different number of nodes.

The displayed experiments showed that the developed algorithm exposes good scal-
ing properties and that the gains of parallelization are evident. The execution time
decreases nearly linearly with the number of workers in the experimental range of work-
ers considered.

As the solution of problem (10) depends on the number of workers K, we want to
assess how this affects accuracy of the overall proposed clustering method. In order to
asses accuracy of the proposed method, when changing the number of workers, we con-
ducted a set of experiments. Figure 15 shows the results of these experiments, for the
synthetic 1000× 4 data set (generated as a Gaussian mixture model), for fixed values of

Fig. 14  Scaling properties for the data sets with 10,000 samples and 3, 5 and 10 features

Page 23 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

input parameters. It can be seen that the accuracy percentage is being preserved when
enlarging the number of workers. It changes slightly, as we change the number of work-
ers, but always remains above 99%. As we already showed that the way we distribute the
data may affect the outcome of the algorithm to certain extent, we repeated the tests for
different number of workers, with an addition of reshuffling the data, when adding a new
worker.

The reshuffling performed here is accomplished in the following way: consider hav-
ing a sequence of M different numbers of workers K = 2, . . . ,M for the experiments.
For K = 2 , we split the data as already explained, i.e., both workers get a chunk
aij , i = 1, . . . ,K , j = N

K  . For K > 2 , we start with the data split for K − 1 , so that we

leave NK data points (from total N
K−1 ) on the workers from previous run (for K − 1 ),

and put the rest to the new worker. This means that the “already existing” workers will
have chunks aij , i = 1, . . .K − 1, j = 1, . . . , NK  , and the new worker will have the points
aij , i = 1, . . . ,K − 1, j = N

K + 1, . . . , N
K−1 . Figure 16 shows the results for this evalua-

tion, for the same data set, with 1000× 4 data points. The input parameter γ needs to
be adjusted, when the number of workers becomes more than 10 in this case, which is
a consequence of the data shuffling, that results with changed inter-point distances on a

Fig. 15  Accuracy percentage for different number of workers, on the 1000× 4 data set

Fig. 16  Accuracy percentage for different number of workers, on the 1000× 4 data set, with reshuffling

Page 24 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

worker. As Fig. 16 shows, the accuracy percentages do not change with enlarged number
of workers, even when we reshuffle the data when adding a new worker.

3.6 � Choosing the value for the parameter γ

It is well-known that, with SON clustering, parameter γ critically influences perfor-
mance. The number of clusters for a very small γ equals the number of data points. As γ
increases, the number of clusters typically reduces. For gamma above a large threshold,
the number of clusters equals one. For all-pair-penalty in [30, 31], SON clustering guar-
antees to find exact clustering structure, if it exists, for a range of γ . In practice, one can
start with a small γ and re-solve the SON problem multiple times, each time increasing
γ by a multiplicative functor. This is also known as clusterpath [12]. With our approach,
for a fixed ǫ , we observe a similar behavior: the number of clusters reduces when we
increase γ , while for a range of γ , we obtain exact recovery (Figs. 4, 6, 7).

We illustrate clusterpath on an example with 30× 2 data points, that is suitable for
easily plotting the results, as effects of changes in the value of γ . This data set was gener-
ated using samples generator from the scikit-learn package [38] that generates isotropic
Gaussian blobs for clustering. Table 5 lists the experiments performed for different val-
ues of γ . For the value γ = 0.3 , the algorithm results with 3 centers and high silhou-
ette score value. As we increase the regularization parameter, the silhouette score value
is getting lower, as well as the number of clusters. For γ = 3.5 , we still have 3 centers,
but they are obviously closer to each other than for γ = 0.3 . The silhouette score value
is preserved, as the clustering of the data points in this case remains the same as for
γ = 0.3 . Increasing the value further as γ = 5.0 , two centers already overlap, resulting
with 2 clusters and lower silhouette score value accordingly. Choosing even larger values
for γ forces the two centers to become even more close to each other. At the end, for
γ = 50.0 , only 1 center remains, as the candidate points for centers overlap.

An approach to choose γ is to evaluate an initial value γ ∗ , and search in a neighbor-
hood of that value. One way to compute γ ∗ is as follows:

Then, we can consider the values γ = { γ ⋆

100 ,
γ ⋆

10 , γ
⋆ 10× γ ⋆ 100× γ ⋆}.

(22)γ ∗ = max
i=1...K

maxj �=l{||aij − ail ||}
N
K

,

Table 5  The impact of choosing different values for γ , on a synthetic 30× 2 data set

γ Centroids Silhouette
score

0.3 3 0.89

3.5 3 0.89

5.0 2 0.59

10 2 0.59

25 2 0.54

50 1 0.48

Page 25 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

3.7 � Comparison with other clustering methods

3.7.1 � Comparison with splitting method for convex clustering

In [10], two convex clustering methods are introduced, one based also on ADMM and
the other based on alternating minimization algorithm (AMA). The authors provide a
rich set of results, based on different tests on synthetic and real data. They clearly iden-
tify AMA significantly more efficient. However, the tests described are performed on at
most 500 data points, as the subgradient algorithm, used as a benchmark takes a large
portion of time to converge on larger data. The R code for these algorithms is available in
earlier versions of the CRAN repository.

In order to be able to compare the performance of the AMA method with ADMM-
based convex clustering, we measure the execution time of cvxclust_path_ama, for only
one value of γ , as it corresponds to our setup, where we run our algorithm once for some
defined parameter value.

We run a set of tests for the AMA method. The machine used for the tests has 24 GB
RAM and an Intel i5-4590 CPU with 4 × 3.30GHz. We also run ADMM-based convex
clustering on the same data sets on our cluster, for different number of workers.

Let us first consider a comparison, where the algorithms solve the same underlying
problems. The AMA method can solve problem (10). In order to achieve this, we need
to define the weights for AMA, as they are defined in our approach, by the underly-
ing graph. More precisely, we generate the weights for AMA, based on the number of
workers, that we use with our algorithm. This weight matrix consists of zeros and ones.
Then, we can make a comparison on how efficiently different solvers solve formulation
(10). Table 6 shows the comparison of execution times for the AMA method and our
approach, when solving the same problems. For smaller data sets, the AMA method per-
forms better, as it represents an efficient serial solver. However, when working on larger
data sets, the execution time of our parallel approach can be multiple times lower. Also,
as a serial solver, AMA has a limitation on the size of the input data set that can be
handled on a single machine. For that reason, the execution of the AMA method on the
200,000× 3 data set is not possible. On the other hand, a parallel implementation is only
limited by a number of computing units, available on a cluster environment.

In addition to the described comparison of the two solvers of (10) for the same setup,
we also want to make a higher level comparison, where we use both methods as pro-
posed, i.e., as complete clustering methods that deliver clustering assignments as

Table 6  The comparison of execution time (in seconds) for AMA and ADMM-based convex
clustering-like method, with the same sub-problems

Data set Workers AMA method ADMM-based convex
clustering- like
method

1000× 3 8 0.94 9.73

5000× 3 25 11.35 14.15

10,000× 3 25 61.2 22.01

5000× 5 25 14.5 14.37

10,000× 10 25 52.63 30.29

200,000× 3 25 NA 564.1

Page 26 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

outputs. The aim of this comparison is to compare the final clustering outcomes, and
execution times needed to achieve that outcomes. We now consider a comparison of our
method with AMA, but without setting the weights in AMA as in our setup. Instead,
we use AMA in its standard form, with the recommended weight computation. The
results of comparison regarding the Iris data set with known ground truth were already
described in Sect. 3.2. The results for other data sets are displayed in Table 7. Note that
the lowest execution time for ADMM-based convex clustering-like method is marked in
bold, for each data set in Table 7. It can be seen that for data sets of smaller volume, the
AMA method can again perform even better than our approach. This is observable for
the data set with 1000× 3 points. Also, the execution times in Table 7 are higher than
in Table 6 for the same tests with AMA. This is expected, as the results in Table 6 are
for tests that work with sparse weight graph structures. The AMA method, available in
R language is actually a wrapper around C code, which is a low level programming lan-
guage, so the performance is expectably good. Running a smaller example on a cluster
naturally does not pay off as in the cases with higher volume of data. For a little larger
data set with 5000× 3 points, the performance of the AMA method is still very close
to the performance that can be obtained on the cluster. However, as we increase the
volume of the data, it becomes obvious that the ADMM-based convex clustering-like
method can perform much better. For the 10,000× 3 data set, it performs 2 times faster,
while for the 10,000× 10 data set, it performs 3 time faster, when using an appropri-
ate number of workers. Enlarging the data set size even further leads us to cases where
the AMA method cannot be run, as it cannot allocate a data structure of the defined
volume, due to its serial nature. This is the case for the 200,000× 3 data set. The AMA
method cannot obtain the results, but the ADMM-based convex clustering-like methods
solve the problem for 9.4 min with 25 workers. This illustrates the advantage of a parallel
approach that can solve large-scale problems.

The AMA method can solve the convex clustering problem with uniform weights.
Therefore, we could compare the performance of the AMA method with uniform
weights, with our approach. Table 8 illustrates this on the 1000× 3 data set. The exe-
cution of the AMA method is twice slower, than for our approach. A comparison for
larger data sets is not feasible, as the AMA method is limited by the memory of a single
machine, when allocating large, dense structures. The AMA method’s implementation

Table 7  The comparison of execution time (in seconds) for AMA and ADMM-based convex
clustering methods

Data set AMA method ADMM-based
conv. clust.
like method 4
workers

ADMM-
based conv.
clust like
method 8
workers

ADMM-based
conv. clust
like method
10 workers

ADMM-based
conv. clust.
like method
20 workers

ADMM-based
conv. clust.
like method
25 workers

1000× 3 2.8 12.65 9.73 13.79 11.45 12.24

5000× 3 17.55 38.38 19.95 16.45 19.35 14.15
10,000× 3 45.46 96.0 51.17 40.84 37.3 22.01
5000× 5 22.74 39.29 19.65 16.87 16.15 14.37
10,000× 10 100.2 136.76 72.63 59.33 50.23 30.29
200,000× 3 N.A. – – – – 564.1

Page 27 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

requires the weights specified in an array of size N × (N − 1)/2 , where N is the number
of input data points. It can be concluded that our approach performs better and is more
robust than AMA, even when AMA is used with uniform weights.

3.7.2 � Comparison with DBSCAN

The ADMM-based convex clustering-like algorithm should also be compared to an other
algorithm where the number of clusters is also unknown in advance. We decided to use
Density-based spatial clustering of applications with noise (DBSCAN) [43] for this pur-
pose. We use the implementation of DBSCAN from the scikit-learn library. By default,
the algorithm uses Euclidean distance as a metric for obtaining the distance values. It
accepts a parameter ǫ , representing the maximum distance between two samples for one
to be considered as in the neighborhood of the other. This value can be set according to
the data set. We set the number of samples in a neighborhood for a point to be consid-
ered as a core point to value 2 for all the tests, and run all the tests mentioned before
with DBSCAN in order to catch the results for those ǫ values that produce the highest
silhouette score.

Table 9 lists the results of experiments, containing the number of clusters and sil-
houette score for ADMM-based convex clustering-like method, scikit-learn k-means
and DBSCAN, respectively. The values for DBSCAN silhouette score assume that there
are points labeled as noisy by the algorithm that are not assigned to any of the clus-
ters. For the smallest example ( 30× 2 data set), DBSCAN performs in the same man-
ner as our proposed method and k-means, as the number of clusters and the silhouette
scores are the same. Let us consider an example of a noisy data set, where the clusters
are not clearly separated. For an example of a 40× 2 data set, where the data are noisy,
DBSCAN performs slightly better than our method, resulting with the highest silhou-
ette score value and (expected) 3 clusters, but also leaving some points unlabeled. For
the bigger, generated data sets, DBSCAN performs very similar to ADMM-based convex
clustering-like method and k-means. Based on these tests, we can conclude that when a
clear cluster structure exists, both methods perform satisfactorily.

Table 8  The execution time comparison for ADMM-based convex clustering-like algorithm and for
AMA method with uniform weights

Data set ADMM-based convex clustering-like algorithm AMA method

1000× 4 9.73 s 18.19 s

Table 9  Comparison of ADMM-based convex clustering-like method with DBSCAN

Data set No clust.
ADMM

ADMM s.sc. No clust.
k-means

k-means s.sc. DB- SCAN ǫ No clust.
DB- SCAN

DB- SCAN s.sc.

30× 2 3 0.89 3 0.89 0.5 3 0.89

40× 2 6 0.39 5 0.57 0.8 3 0.65

1000× 3 8 0.76 8 0.76 2.5 8 0.75

5000× 3 4 0.77 4 0.78 2.5 4 0.76

5000× 5 5 0.62 4 0.75 5.0 4 0.75

10,000× 3 10 0.69 10 0.75 2.5 10 0.75

Page 28 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

3.7.3 � Comparison with SSNAL method

In [32], a semismooth Newton-based augmented Lagrangian method for solving large-
scale convex clustering problems was introduced, called SSNAL. It represents an effi-
cient and robust approach for large-scale problems. The algorithm is developed in
MATLAB. A comparison with the AMA method shows great advantage of SSNAL over
AMA, in execution time. In order to compare ADMM-based convex clustering-like
method with SSNAL, we need a reasonably larger data set, as the performance of a par-
allel algorithm does not come to expression, when the expenses of parallelization and
synchronization are higher than the gains gathered in computation. In order to compare
our approach to SSNAL method, let us consider a data set of volume 200,000× 3 gener-
ated as a Gaussian mixture model. The results are illustrated in Table 10. It can be seen
that our proposed approach performs better than SSNAL, even if we consider only the
execution time of 321.79 s without computing the weights for SSNAL. It should also be
noted that the presented time for our method also includes the time spent on merging
the cluster centers when the algorithm terminates.

As the comparison above showed, the computation of weights for the SSNAL method
requires a tremendous amount of time. We expect that SSNAL cannot scale as effec-
tively as the proposed approach on larger data sets due to the serial implementation and
calculation of weights that are pair-wise across all pairs of data in the data set. To further
demonstrate this, we evaluated execution times for weights calculation for data sets of
different sizes. Note that the weights calculation time represents a lower bound on the
execution time of the overall SSNAL method. Therefore, if the execution time of the pro-
posed method is smaller than that of the weight calculation, it follows that the execution
time of the proposed method is smaller than that of SSNAL overall. We also want to
investigate the cost of the weight assignment, when implemented as in [32] and meas-
ure the time required for this kind of preprocessing. Assigning weights according to the
nature of the data is very useful, but the process has a certain cost. We want to identify
how much time is needed for this kind of preprocessing, in order to compare it to our
execution time. The calculation of the weights, as stated in [32], can be done as follows:

Here, E = UN
i=1{(i, j)|aj is among ai ’s k nearest neighbors, i < j ≤ N } . This kind of pre-

processing is not applicable in this form to ADMM-based convex clustering-like method,
due to its distributed nature. Computing the pairwise distances among points that are
assigned to different workers could be very expensive. However, it is indisputable that
assigning weights could seriously affect the performance of the algorithm afterwards.
Therefore, we analyze the execution time required for obtaining the weights, as well as

(23)wij =
{

exp(−0.5||ai − aj||2 if (i, j) ∈ E,
0 otherwise

Table 10  The comparison of SSNAL and ADMM-based convex clustering-like method

SSNAL ADMM-based convex
clustering-like method
with 25 workers

ADMM-based convex
clustering-like method
with 50 workers

ADMM-based convex
clustering-like method
with 100 workers

3215.79 s + 5390.91 s (for
weights)

564.14 s 744.01 s 315.76 s

Page 29 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

the execution time of ADMM-based convex clustering-like method itself. We wrote a
Python script that works sequentially with sparse data structures, and tested it for 2 data
sets and a few different values of k, used for k-nearest neighbors.

The execution time for different values of k, for the mentioned 2 data sets, is shown in
Table 11. For the smaller data set with 200,000× 3 data points and k = 10 and k = 100 ,
the required time for weights calculation is low, compared to the overall execution time
of 9.4 min on the cluster. However, when increasing k to k = 1000 , the time grows to 15
min, that is longer than the time required to solve the problem by ADMM-based convex
clustering-like method on the cluster. Considering the larger data set, with 2,000,000× 3
data points, the execution time for weight calculation is extensive. For k = 100 , it takes
almost an hour. Setting the parameter k for KNN is always an open issue. However, for a
data set of large volume, as the data sets displayed here, it is likely that a larger value of
k will be needed. This could result with a very time consuming preprocessing step that
can actually be higher than the execution time for ADMM-based convex clustering-like
method on a cluster that does not use any preprocessing. Our approach uses pairwise
distances only within workers, when the value of ǫ is being computed, for the merging
process.

Similarly as the AMA method, the SSNAL method can solve the convex cluster-
ing problem, by using uniform weights. Let us consider an example. We compare the
execution time for our approach and the SSNAL method in Table 12. It displays the
results for the 1000× 4 data set. The execution time required for setting up the weights
with SSNAL method is still high, as it represents an allocation of a large matrix that
is dense. This could be completely bypassed by replacing the multiplications with ele-
ments from the weights matrix with ones in the code directly. However, we are inter-
ested in the amount of time, required for the rest of the computation. It can be easily
seen from Table 12, that the time required for the algorithm only is 39.67 s, which is a
couple of times more than the execution time for our method. This comparison cannot
be made for larger data sets, as the large dense weight matrices deplete the resources of
the machine, for SSNAL method. It could be possibly achieved by completely removing

Table 11  The execution time required for obtaining the weights

Data set size k for KNN Time

200,000× 3 10 24.4 s

200,000× 3 100 61.38 s

200,000× 3 1000 959.32 s

2,000,000× 3 10 18.46 min

2,000,000× 3 100 59.05 min

Table 12  The execution time comparison for ADMM-based convex clustering-like algorithm and for
SSNAL method with uniform weights

Data set ADMM-based convex
clustering-like algorithm

SSNAL method with uniform
weights total time

SSNAL method with uniform
weights time for weights setup

1000× 4 9.73 s 230.79 s 191.12 s

Page 30 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

the matrix from the code, as already stated, but this is left for future comparison, as the
main trend is already presented with the 1000× 4 data set.

Various methods utilize different stopping criteria that are adjusted to particular algo-
rithms. Besides comparing different clustering approaches with their own stopping con-
ditions, we also want to make a comparison, regardless of those stopping criteria. We
illustrate this for SSNAL method. The aim is to investigate how the different solvers for
ADMM-based convex clustering-like method and SSNAL algorithm relate. Therefore,
we let the algorithms run without stopping conditions for the same value of the regulari-
zation parameter γ , while recording the execution time and the current solution, as the
iterations progress. This means that we use a predefined large, fixed number of iterations
for both methods, ensuring high solution accuracy. In order to make a fair comparison,
we initialize the solutions to all zeros and generate a weight matrix of zeros and ones for
SSNAL method that corresponds to our SON penalty structure as in formulation (10)
for a particular number of workers. For each computed solution update, we determine
the error, by computing the Euclidean distance to a benchmark solution, obtained by
solving (10), with CVXPY. We illustrate these results for a synthetic data set containing
1000× 4 data points (generated as a Gaussian mixture model), used with 5 workers, in
Fig. 17. Note that the methods do not have the same staring point, as we show the error
values after the first results are obtained. Figure 17 shows that both methods reduce the
error over time. For our method, there is a gradual decrease in error rate during the iter-
ations, while SSNAL tends to consume a larger portion of time at the beginning, while
setting up the weights and performing the first phase of the algorithm, meant for warm
start. Evidently, our method approaches the neighborhood of the solution sooner, even
for the described, relatively small volume of the problem.

3.8 � Further implementation considerations

The current implementation of the proposed method utilizes CVXPY to solve sub-prob-
lems, and it can be set to use the so-called warm start option. Generally, improvements
in execution time can be expected if we use a “warm start” in updates (14), (15) and (16)
and initialize the new variables with their values from the previous iteration. In addition,
as commonly used with ADMM, the sub-problems (12) may not be solved to full accu-
racy, i.e., they can be solved inexactly. (Theoretically, the accuracy of solving (12) should
be increasing with the iterations counter for exact convergence). We examine these two

Fig. 17  A comparison of solvers for ADMM-based convex clustering-like method and SSNAL method

Page 31 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

strategies on the CVXPY implementation. This way the solver starts with the solution
from the previous iteration, which can reduce the execution time. Another approach is
to set a solver property such that the expected accuracy becomes lower during the first
few iterations. The ECOS solver, used by CVXPY in this case, has the property abstol,
which corresponds to absolute accuracy tolerance, and it has a default value of 1e−8 .
By enlarging this value, we permit greater difference, i.e., lower accuracy. We tested this
approach by using 0.0001 during the first 3 iterations of the algorithm.

Let us illustrate the impacts of these enhancements to performance. Table 13 shows
the execution time for different variants of the algorithm: without enhancement, with
warm start, with tolerance set up and with both warm start and tolerance set up. Appar-
ently, these enhancements can reduce the execution time to certain extent. For the data
set with 10,000× 3 points, the time reduction is 2.7 s, i.e., 7% roughly. This is not a dras-
tic difference, but it certainly represents an improvement in performance.

In addition, subproblems (12) can be solved by adopting efficient moderate-size
problem SON clustering solvers like [26], instead of using the general-purpose solver
like CVXPY. This approach can expose equally good or even better performance than
CVXPY. For example, some initial tests show that the data set with 10,000× 3 points
(generated as a Gaussian mixture model) can be solved for 6.7 s with 25 workers, where
with the CVXPY solver, the same problem was solved for 22 s, with the same num-
ber of workers. The accuracy of the solution is the same as for CVXPY. Therefore, this
approach represents a promising direction for further enhancement.

4 � Conclusions
In this paper, we introduce a parallel ADMM-based convex clustering-like algorithm
and provide a parallel implementation for it, supported by a wide set of test cases. The
comprehensive empirical evaluations prove that the algorithm satisfies a similar level of
accuracy as the other widely used clustering approaches. It was also shown that the algo-
rithm can work with large data sets efficiently, exhibiting good scaling properties on a
cluster environment.

The tests were performed on an HPC computer cluster, AXIOM. The configuration of
the AXIOM computing facility consists of 16 nodes, where each node has a processor
with 6 CPU cores (eighth-generation Core i7 cores). The nodes are connected by an Eth-
ernet network with speed of 10 Gbps. The described behavior of the algorithm during
the tests should be preserved when tested on other cluster environment. The execution
time may be shorter on a cluster with newer generation of processors, but the overall
performance characteristics as the scaling properties and the advantages of parallel exe-
cution are expected to be the same. A higher network speed is expected to produce good
performance with more nodes than in our experiments, so the range of the number of
nodes with lowest execution time would be different, but still detectable.

Table 13  The impact of solver enhancement on performance

Data set No enhancement Warm start Accuracy adjustment Warm start and accuracy adjustment

10,000× 3 38.65 s 37.5 s 37.7 s 35.88 s

Page 32 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108

There are several possibilities for expanding the idea of the ADMM-based convex clus-
tering-like algorithm. For instance, in order to enhance further the algorithm speed, effi-
cient sub-problem solvers could be further designed. In addition, data-dependent sparse
graph construction for (14)–(15) and weighted sparse SON penalty can be considered
with an additional preprocessing cost.

Abbreviations
COMPSs		� COMPS superscalar
HPC		� High-Performance Computing
I/O		� Input/Output
ADMM		� Alternating Direction Method of Multipliers
SON clustering	� Sum Of Norms clustering

Acknowledgements
The work of this paper has been carried out within EU Project CYRENE, which has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 952690. This publication reflects
the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the
information contained therein. The authors gratefully acknowledge the AXIOM HPC facility at Faculty of Sciences, Univer-
sity of Novi Sad, where all the numerical simulations were run.

Author contributions
LF developed the implementation of the algorithm and performed the empirical evaluations. DJ contributed with the
theoretical advances and design of algorithm. DBK and SS contributed to improving the quality of experimentation and
design. All authors participated in the main research flow development and in writing and revising the manuscript. All
authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The code for parallel ADMM-based convex clustering can be found in the following GitHub repository: https://​github.​
com/​lidij​af/​Paral​lel-​ADMM-​based-​convex-​clust​ering. The datasets used and analyzed during the current study are avail-
able from the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 21 June 2022 Accepted: 24 October 2022

References
	1.	 T. Warren Liao, Clustering of time series data—a survey. Pattern Recogn. 38(11), 1857–1874 (2005). https://​doi.​org/​

10.​1016/j.​patcog.​2005.​01.​025
	2.	 X. Dai, T. Kuosmanen, Best-practice benchmarking using clustering methods: application to energy regulation.

Omega 42(1), 179–188 (2014). https://​doi.​org/​10.​1016/j.​omega.​2013.​05.​007
	3.	 T. Chaira, A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl. Soft

Comput. 11(2), 1711–1717 (2011). https://​doi.​org/​10.​1016/j.​asoc.​2010.​05.​005
	4.	 F. Lindsten, H. Ohlsson, L. Ljung, Clustering using sum-of-norms regularization: with application to particle filter

output computation, in 2011 IEEE Statistical Signal Processing Workshop (SSP) (2011), pp. 201–204. https://​doi.​org/​10.​
1109/​SSP.​2011.​59676​59

	5.	 S. Lloyd, Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). https://​doi.​org/​10.​1109/​TIT.​
1982.​10564​89

	6.	 D. Arthur, S. Vassilvitskii, K-means++: the advantages of careful seeding, in Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’07 (Society for Industrial and Applied Mathematics, USA, 2007),
pp. 1027–1035

	7.	 S. Arora, P. Raghavan, S. Rao, Approximation schemes for Euclidean k-medians and related problems, in Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing. STOC ’98 (Association for Computing Machinery,
New York, NY, USA, 1998), pp. 106–113. https://​doi.​org/​10.​1145/​276698.​276718

	8.	 A. Banerjee, S. Merugu, I.S. Dhillon, J. Ghosh, Clustering with Bregman divergences. J. Mach. Learn. Res. 6(58),
1705–1749 (2005). https://​doi.​org/​10.​1137/1.​97816​11972​740.​22

	9.	 F. Lindsten, H. Ohlsson, L. Ljung, Just relax and come clustering!: a convexification of k-means clustering (2011).
http://​liu.​diva-​portal.​org/​smash/​get/​diva2:​650707/​FULLT​EXT01.​pdf

https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1016/j.omega.2013.05.007
https://doi.org/10.1016/j.asoc.2010.05.005
https://doi.org/10.1109/SSP.2011.5967659
https://doi.org/10.1109/SSP.2011.5967659
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1145/276698.276718
https://doi.org/10.1137/1.9781611972740.22
http://liu.diva-portal.org/smash/get/diva2:650707/FULLTEXT01.pdf

Page 33 of 33Fodor et al. EURASIP Journal on Advances in Signal Processing (2022) 2022:108 	

	10.	 E.C. Chi, K. Lange, Splitting methods for convex clustering. J. Comput. Graph. Stat. 24(4), 994–1013 (2015). https://​
doi.​org/​10.​1080/​10618​600.​2014.​948181

	11.	 K. Pelckmans, J.D. Brabanter, B.D. Moor, J.A.K. Suykens, Convex clustering shrinkage, in Workshop on Statistics and
Optimization of Clustering Workshop (PASCAL) (2005)

	12.	 T.D. Hocking, A. Joulin, F. Bach, J.-P. Vert, Clusterpath: an algorithm for clustering using convex fusion penalties, in
Proceedings of the 28th International Conference on International Conference on Machine Learning. ICML’11 (Omnipress,
Madison, WI, USA, 2011), pp. 745–752

	13.	 S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating
direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://​doi.​org/​10.​1561/​22000​00016

	14.	 Parallel ADMM-based convex clustering. https://​github.​com/​lidij​af/​Paral​lel-​ADMM-​based-​convex-​clust​ering.
Accessed on 10 June 2022

	15.	 E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R.M. Badia, J. Torres, T. Cortesand, J. Labarta, PyCOMPSs: parallel compu-
tational workflows in python. Int. J. High Perform. Comput. Appl. 31(1), 66–82 (2017). https://​doi.​org/​10.​1177/​10943​
42015​594678

	16.	 H. Steinhaus, Sur la division des corps matériels en parties. Bull. Acad. Pol. Sci., Cl. III 4, 801–804 (1957)
	17.	 J.M. Peña, J.A. Lozano, P. Larrañaga, An empirical comparison of four initialization methods for the k-means algo-

rithm. Pattern Recognit. Lett. 20(10), 1027–1040 (1999). https://​doi.​org/​10.​1016/​S0167-​8655(99)​00069-0
	18.	 S.S. Khan, A. Ahmad, Cluster center initialization algorithm for k-means clustering. Pattern Recognit. Lett. 25(11),

1293–1302 (2004). https://​doi.​org/​10.​1016/j.​patrec.​2004.​04.​007
	19.	 D. Lashkari, P. Golland, Convex Clustering with Exemplar-Based Models (MIT Press, Cambridge, MA, 2007), pp.825–832
	20.	 S. Nowozin, G. Bakir, A decoupled approach to exemplar-based unsupervised learning, in Proceedings of the 25th

International Conference on Machine Learning. ICML ’08 (Association for Computing Machinery, New York, NY, USA,
2008), pp. 704–711. https://​doi.​org/​10.​1145/​13901​56.​13902​45

	21.	 M. Wang, T. Yao, G.I. Allen, Supervised convex clustering. arXiv preprint arXiv:​2005.​12198 (2020)
	22.	 G.K. Chen, E.C. Chi, J.M. Ranola, K. Lange, Convex clustering: an attractive alternative to hierarchical clustering. PLoS

Comput. Biol. 11(5), e1004228 (2015). https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10042​28
	23.	 B. Wang, Y. Zhang, W. Sun, Y. Fang, Sparse convex clustering. J. Comput. Graph. Stat. 27(2), 393–403 (2018). https://​

doi.​org/​10.​1080/​10618​600.​2017.​13770​81
	24.	 M. Yuan, Y. Lin, Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68, 49–67

(2006). https://​doi.​org/​10.​1111/j.​1467-​9868.​2005.​00532.x
	25.	 Q. Qian, On algorithmic regularization and convex clustering. PhD thesis, SOhio State University. OhioLINK Electronic

Theses and Dissertations Center (2019). http://​rave.​ohiol​ink.​edu/​etdc/​view?​acc_​num=​osu15​65945​73920​941
	26.	 Y.L. Huangyue Chen, Lingchen Kong, A novel convex clustering method for high-dimensional data using semiproxi-

mal ADMM. Math. Probl. Eng. 2020, Article ID 9216351, 12 (2020)
	27.	 S. Kar, B. Swenson, Clustering with distributed data (2019). https://​doi.​org/​10.​48550/​ARXIV.​1901.​00214. arXiv:​1901.​

00214
	28.	 W. Zhou, H. Yi, G. Mishne, E. Chi, Scalable algorithms for convex clustering, in 2021 IEEE Data Science and Learning

Workshop (DSLW) (2021), pp. 1–6. https://​doi.​org/​10.​1109/​DSLW5​1110.​2021.​95234​11
	29.	 X. Zhou, C. Du, X. Cai, An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering. arXiv (2020).

https://​doi.​org/​10.​48550/​ARXIV.​2006.​12592. arXiv:​2006.​12592
	30.	 C. Zhu, H. Xu, C. Leng, S. Yan, Convex optimization procedure for clustering: theoretical revisit, in Advances in Neural

Information Processing Systems, vol. 27, ed. by Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K.Q. Weinberger
(Curran Associates Inc., New York, 2014), pp.1619–1627

	31.	 A. Panahi, D. Dubhashi, F.D. Johansson, C. Bhattacharyya, Clustering by sum of norms: stochastic incremental
algorithm, convergence and cluster recovery, in Proceedings of the 34th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 70, ed. by D. Precup, Y.W. Teh (PMLR, Sydney, 2017), pp.2769–2777

	32.	 D. Sun, K.-C. Toh, Y. Yuan, Convex clustering: model, theoretical guarantee and efficient algorithm. J. Mach. Learn.
Res. 22, 9–1932 (2021)

	33.	 R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the fused lasso. J. R. Stat. Soc.: Ser.
B (Stat. Methodol.) 67(1), 91–108 (2005). https://​doi.​org/​10.​1111/j.​1467-​9868.​2005.​00490.x

	34.	 Y. Gdalyahu, D. Weinshall, M. Werman, A randomized algorithm for pairwise clustering, in NIPS (1998)
	35.	 S. Diamond, S. Boyd, CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res.

17(83), 1–5 (2016)
	36.	 A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization problems. J. Control

Decis. 5(1), 42–60 (2018)
	37.	 E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R.M. Badia, J.T. Toni Cortes, J. Labarta, PyCOMPSs: parallel computational

workflows in Python. IJHPCA 31(1), 66–82 (2017). https://​doi.​org/​10.​1177/​10943​42015​594678
	38.	 scikit-learn: Machine learning in Python. https://​scikit-​learn.​org/​stable/. Accessed on 20 March 2022
	39.	 C. Rasmussen, The infinite gaussian mixture model, in Advances in Neural Information Processing Systems, vol. 12, ed.

by S. Solla, T. Leen, K. Müller (MIT Press, Cambridge, MA, 1999)
	40.	 L. van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
	41.	 E. Anderson, The species problem in Iris. Ann. Mo. Bot. Gard. 23(3), 457–509 (1936)
	42.	 R.A. Fisher, The use of multiple measurements in taxonomic problems. Ann. Hum. Genet. 7, 179–188 (1936)
	43.	 M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases

with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96
(AAAI Press, Palo Alto, CA, 1996), pp. 226–231

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/10618600.2014.948181
https://doi.org/10.1080/10618600.2014.948181
https://doi.org/10.1561/2200000016
https://github.com/lidijaf/Parallel-ADMM-based-convex-clustering
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1016/S0167-8655(99)00069-0
https://doi.org/10.1016/j.patrec.2004.04.007
https://doi.org/10.1145/1390156.1390245
http://arxiv.org/abs/2005.12198
https://doi.org/10.1371/journal.pcbi.1004228
https://doi.org/10.1080/10618600.2017.1377081
https://doi.org/10.1080/10618600.2017.1377081
https://doi.org/10.1111/j.1467-9868.2005.00532.x
http://rave.ohiolink.edu/etdc/view?acc_num=osu156594573920941
https://doi.org/10.48550/ARXIV.1901.00214
http://arxiv.org/abs/1901.00214
http://arxiv.org/abs/1901.00214
https://doi.org/10.1109/DSLW51110.2021.9523411
https://doi.org/10.48550/ARXIV.2006.12592
http://arxiv.org/abs/2006.12592
https://doi.org/10.1111/j.1467-9868.2005.00490.x
https://doi.org/10.1177/1094342015594678
https://scikit-learn.org/stable/

	A parallel ADMM-based convex clustering method
	Abstract
	1 Introduction
	1.1 Related work

	2 Methods
	2.1 Preliminaries
	2.2 Problem model and proposed parallel method
	2.3 Implementation and infrastructure
	2.3.1 The input data
	2.3.2 The stopping criterion

	3 Results and discussion
	3.1 Time consumption of different segments of the algorithm
	3.2 Accuracy evaluation
	3.3 The effects of choosing different reference points
	3.4 The effects of different ways of data partitioning
	3.5 Scalability evaluation
	3.6 Choosing the value for the parameter
	3.7 Comparison with other clustering methods
	3.7.1 Comparison with splitting method for convex clustering
	3.7.2 Comparison with DBSCAN
	3.7.3 Comparison with SSNAL method

	3.8 Further implementation considerations

	4 Conclusions
	Acknowledgements
	References

