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1  Introduction
Time delay estimation (TDE) is a fundamental signal processing problem and has wide 
applications, such as radar [1], system and process control [2, 3], and wireless communi-
cations [4–7]. In the past decades, TDE methods have gained the attention of research-
ers and have been widely studied. These TDE methods are mainly based on second-order 
statistics (SOS) or higher-order statistics (HOS) and have been proven that they exhibit 
outstanding performances under the assumption of Gaussian distribution noise [8, 9].

However, for now, it has been demonstrated that the popular Gaussian approxima-
tion is not adequate for describing the actual noise, which exhibits impulsive behavior 
in many situations [10], such as sudden bursts or sharp spikes, atmospheric noise, and 
sea clutter. Professor Nikias proposed that α-stable distribution is more appropriate 
for describing this kind of impulsive noise [11], which has been recognized by schol-
ars in various academic research fields. Unfortunately, the SOS of the α-stable distri-
bution with characteristic exponent 0 < α < 2 is infinite, and thus, the performance 
of the conventional signal processing methods based on SOS is seriously degraded in 
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the α-stable distribution noise environment. Professor Nikias’s team and the related 
researchers who continue to study this situation defined fractional lower-order sta-
tistics (FLOS), which can replace the SOS used in the conventional signal processing 
methods, including robust covariation (ROC) [12], fractional lower-order moment 
(FLOM) [13, 14], and phased fractional lower-order moment (PFLOM) [15]. In this 
context, the TDE methods based on FLOS were proposed and analyzed in [16–18]. 
Although the TDE methods based on FLOS are robust to impulsive noise, the frac-
tional lower-order parameter of FLOS is determined by the characteristic exponent of 
α-stable distribution, which is difficult to estimate in practice.

Inspired by the principles of information-theory learning and kernel functions, Profes-
sor Principe’s team defined a kind of statistics named correntropy [19]. By employing the 
correntropy, the adaptive filtering problem [20], the direction of arrival estimation prob-
lem [21], and the TDE problem [22] in impulsive noise scenarios have been addressed. In 
[23], a correntropy-based correlation (CRCO) was proposed and applied to estimate the 
direction of arrival in impulsive noise. As the Gaussian kernel function used in corren-
tropy is a bounded function compared to the p-order moment transformation used in 
FLOS, it follows that correntropy has a better suppression effect on impulsive noise than 
FLOS. The most important thing for the signal processing methods based on corren-
tropy is that the selection of kernel width has a weak reliance on the characteristic expo-
nent of α-stable distribution noise, which is another important advantage over FLOS.

Another robust method that can suppress impulsive noise is nonlinear preprocessing. 
To eliminate outliers, the amplitude of the received signals containing impulsive noise is 
limited by using a nonlinear preprocessing function. The most frequently used nonlinear 
preprocessing function is the hyperbolic tangent (tanh) function. In [24], a robust energy 
detector based on the tanh function was proposed to solve the problem that the perfor-
mance of spectrum sensing algorithm degrades under an impulsive noise environment. 
To preserve the information of the original signal, a hyperbolic tangent transform was 
defined in [25] by introducing a preset parameter into the tanh function, and the selec-
tion of the present parameter is closely related to the amplitude of the original signal. 
Then, the hyperbolic tangent transform-based correlation (HTC) was proposed to solve 
the TDE problem [26] and the joint time delay–Doppler shift estimation problem [27] 
in impulsive noise. Further, by combining the correntropy with the tanh-based correla-
tion (TC) function [26], a robust generalized correlation (GC) was defined in [28] and 
applied to estimate the direction of arrival in impulsive noise.

In this paper, inspired by the use of a nonlinear preprocessing method to limit ampli-
tude, firstly, we define a generalized logarithmic hyperbolic secant (GLHS) function and 
analyze the optimal selection of scaling parameters in the GLHS function. Next, a novel 
GLHS-based correlation (GLHSC) is further developed and utilized to estimate time 
delay to address the performance degradation of the conventional time delay estimation 
methods based on correlation under an impulsive noise environment. The comprehen-
sive Monte Carlo simulation results demonstrate that the performance of the proposed 
method outperforms its counterparts, especially in a heavy-tailed noise environment.

The remainder of this paper is organized as follows. The α-stable distribution model is 
briefly reviewed in Sect. 2, In Sect. 3, a novel nonlinear preprocessing function named 
the GLHS function is defined and the proper range of the scaling parameter is discussed. 
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Then, the GLHSC is defined and applied to construct a robust TDE method. In Sect. 4, 
simulation results for the proposed method are provided and discussed. The conclusion 
is finally drawn in Sect. 5.

2 � Noise model
Since the probability density function (PDF) of the α-stable distribution lacks a unified 
closed-form expression, it is commonly expressed by its characteristic function [11]

where

and

where α denotes the characteristic exponent that controls the thickness of the tails of 
the PDF. Smaller α leads to a heavier tail, indicating that the noise is more impulsive. β 
represents the symmetry parameter, which can describe the slope of the distribution. γ 
is a dispersion parameter that is similar to the variance of the Gaussian distribution. µ 
is a location parameter, when α ∈ (0, 1) or α ∈ [1, 2] , µ denotes the median or the mean, 
respectively. When β = 0 , the α-stable distribution is symmetric about µ and is called 
symmetric α-stable ( SαS ) distribution. For the SαS distribution, when α = 1 or α = 2 , 
SαS distribution is equivalent to the Cauchy distribution or the Gaussian distribution, 
respectively.

3 � Methods
3.1 � Proposed GLHS function

In this section, we first define a novel nonlinear preprocessing function with an adjust-
able parameter. Then, in order to keep the useful information of the original signal 
unchanged and reduce the effect of the impulsive noise, the optimal selection of the 
adjustable parameter is further discussed.

3.1.1 � Definition

Inspired by the idea of amplitude limitation of the nonlinear preprocessing method, a 
generalized logarithmic hyperbolic secant (GLHS) function is defined.

Definition 1  GLHS function of a random variable s is defined as

(1)ϕ(t) = exp{jµt − γ |t|α[1+ jβsign(t)w(t,α)]},

(2)w(t,α) =
tan(πα/2)
(2/π)log|t|

α �= 1
α = 1

(3)sign(t) =






1,
0,
−1,

t > 0
t = 0
t < 0

(4)α ∈ (0, 2],β ∈ [−1, 1], γ ∈ (0,+∞),µ ∈ (−∞,+∞),
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where � > 0 is a scaling parameter. ln(•) is a natural logarithm, sech(•) is a hyperbolic 
secant function, and sech(s) = 2/(es + e−s) . The curves of the GLHS function with dif-
ferent scaling parameters � are shown in Fig. 1.

It is observed that the GLHS function is odd symmetric corresponding to the origin, 
and GLHS function increases monotonically as the |s| increases. The curve of the GLHS 
function can be divided into two parts, i.e., an approximate linear area (ALA) part near 
zero point and a suppression area (SA) part far from zero point. In the SA part, no mat-
ter how large the amplitude of the variable s is, the output value tends to be ±1 after the 
GLHS function preprocessing, so it plays an important role in suppressing the impulsive 
noise with large amplitude. In the ALA part, the GLHS function can be approximated as 
a linear function, so it can effectively maintain the useful information of the original sig-
nal unchanged. However, for the GLHS function with different scaling parameters � , the 
corresponding range of the ALA part is different, and the degree of linear approximation 
of the ALA part is also different.

3.1.2 � Scaling parameter selection of GLHS function

The more linear the ALA part is, the less influence on the useful information of the orig-
inal signal the GLHS function will have. The most important factor affecting the degree 
of linear approximation of the ALA part is the scaling parameter � , and thus, the selec-
tion of the proper scaling parameter is a problem worth discussing.

To analyze the degree of linear approximation of the GLHS function located in the 
ALA part, the range of the ALA part needs to be measured. Since curvature repre-
sents the degree to which a curve deviates from a straight line, the signal value cor-
responding to the maximum curvature point (defined as szone ) is selected as the 

(5)fGLHS(x) =
− ln sech(�s)

�s
,

Fig. 1  The GLHS function curves with different scaling parameters
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maximum range of the ALA part. In other words, szone is a dividing point between the 
ALA part and the SA part, and the range of the ALA part is [−szone, szone].

Due to different szone generated by different scaling parameters � , Table 1 shows the 
relationship between szone and �.

The data in Table  1 are fitted by a second-order exponential function. According 
to Table 1, the formula of the fitted curve is shown in Eq. (6), and the fitted figure is 
shown in Fig. 2.

It can be seen from Fig.  2 that when � ∈ (0, 1) , the range of the ALA part of the 
GLHS function changes a lot. When � ∈ (1,+∞) , the range of the ALA part of the 
GLHS function changes little. Thus, in the following demonstration, we select the 
spacing of the scaling parameters � in the range � ∈ (0, 1) to be 0.1 and the spacing in 
the range � ∈ (1,+∞) to be 0.5.

In the ALA part, as it can be approximated as a linear function with a slope of k 
passing through the origin point, the GLHS function can effectively maintain the 
useful information of the original signal unchanged. For the GLHS functions with 

(6)szone = 14.7 exp (−7.28�)+ 1.3 exp (−0.3�).

Table 1  The different szone corresponding to the different scaling parameters of GLHS function

� 0.1 0.2 0.3 0.4 0.5 0.6 0.7

szone 8.48 4.25 2.85 2.16 1.73 1.48 1.29

� 0.8 0.9 1.0 1.2 1.4 1.6 1.8

szone 1.15 1.04 0.95 0.83 0.75 0.68 0.64

� 2.0 2.2 2.4 2.6 2.8 3.0 3.2

szone 0.60 0.57 0.54 0.52 0.50 0.49 0.47

� 3.4 3.6 3.8 4.0 4.2 4.6 4.8

szone 0.46 0.45 0.44 0.42 0.41 0.41 0.40

� 5.0 5.2 5.4 5.6 5.8 6.0 6.2

szone 0.38 0.37 0.37 0.36 0.35 0.35 0.34

Fig. 2  szone corresponding to � and its fitted curve
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different scaling parameters � , the slope k of the corresponding linear function is 
different, and the degree of approximation between the GLHS function and the lin-
ear function is also different. It can be considered that the better the approximation 
between the GLHS function and the linear function, the stronger the ability of the 
GLHS function to maintain the useful information of the original signal unchanged. 
Three indicators are used to measure the degree of approximation between the GLHS 
function and the linear function, i.e., squares due to error (SSE), root mean square 
error (RMSE), and R-square, which are defined as.

where yl = fGLHS(sl) , ŷi = ksl is the linear function, yi is the mean of yl , and 
sl , l = 1, 2, · · · L is the uniform sampling value in the range [−szone, szone] . The closer SSE 
and RMSE are to 0, and the closer R-square is to 1, which means that the better the 
degree of approximation between the GLHS function and the linear function. The slope 
k and the degree of linear approximation of the GLHS functions with different scaling 
parameters � are given in Table 2.

As shown in Table 2, from the perspective of the RMSE and the R-square indicators, 
the smaller the scaling parameter � , the better the degree of linear approximation of the 
GLHS function. However, from the perspective of the SSE indicator, the variation rule 
of the degree of linear approximation of the GLHS function with scaling parameter � 
is different in the range where � > 1 and � < 1 . In addition, it can be seen from Table 1 
that when the scaling parameter � is relatively small, the ALA part is relatively large (the 
SA part is relatively small at the same time), which is not conducive to suppressing the 
impulsive noise. However, when the scaling parameter � is relatively large, the ALA part 
is relatively small (the SA part is relatively large at the same time), which is not condu-
cive to keeping the useful information of the signal unchanged. Therefore, to summa-
rize these effects, in order to obtain both a better degree of linear approximation of the 
GLHS function located in the ALA part and a better effect for suppressing impulsive 
noise, the scaling parameter � is selected in the range � ∈ [0.2, 1].

3.2 � Application on TDE

3.2.1 � Signal model

In the problem of TDE, two received signals x(t)andg(t) are defined as.

(7)SSE =

L∑

l=1

(
yl − ŷi

)2
,

(8)RMSE =

√√√√1

L

L∑

l=1

(
yl − ŷi

)2
,

(9)R - square =

∑L
l=1

(
ŷi − yl

)2
∑L

l=1

(
yl − yi

)2 ,

(10)x(t) = s(t)+ n1(t),
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where D is the time delay between two received signals. n1(t) and n2(t) denote the addi-
tive noises, which are uncorrelated with each other and are independent of the signal 
s(t) . The conventional TDE methods using second-order statistics (SOS) are easy to 
implement and have a satisfactory estimation performance in the Gaussian noise envi-
ronment. However, when the additive noise deviates from the ideal Gaussian distribu-
tion and is characterized by the SαS distribution, SOS of SαS distribution noise with 
characteristic exponent α ∈ (0, 2) is infinite, resulting in the severe degradation of per-
formance of TDE methods based on SOS in the SαS distribution noise environment.

3.2.2 � Proposed GLHSC‑based TDE method

In this section, GLHS-based correlation (GLHSC) is defined and applied to solve the 
TDE problem in the SαS distribution noise environment.

GLHSC of two signals x(t)andg(t) is defined as

where E[•] indicates the statistical expectation operator, and (•)∗ is the conjugate opera-
tor. Rxg

GLHSC(τ ) can be regarded as the correlation of two signals x(t)andg(t) after nonlin-
ear preprocessing by GLHS function. According to the analysis of the GLHS function, 
the impulsive noise embedded in the received signal is usually located in the SA part 
due to the large amplitude of the impulsive noise, and thus, GLHS function can play 
a good inhibitory effect by limiting the amplitude of the impulsive noise. However, the 
signal s(t) in the received signal is usually located in the ALA part, in which the GLHS 

(11)g(t) = s(t − D)+ n2(t),

(12)R
xg
GLHSC(τ ) = E

[
fGLHS(x(t))

(
fGLHS

(
g(t + τ)

))∗]
,

Table 2  The slope k and the degree of linear approximation of the GLHS functions with different 
scaling parameters �

� k SSE RMSE R-square

0.1 0.0468 0.3371 0.0063 0.9968

0.2 0.0935 0.1732 0.0064 0.9967

0.3 0.1402 0.1207 0.0065 0.9966

0.4 0.1868 0.0962 0.0067 0.9965

0.5 0.2331 0.0830 0.0068 0.9964

0.6 0.2792 0.0757 0.0071 0.9962

0.7 0.3250 0.0718 0.0074 0.9959

0.8 0.3706 0.0703 0.0078 0.9957

0.9 0.4157 0.0708 0.0082 0.9953

1 0.4605 0.0723 0.0086 0.9950

1.5 0.6780 0.0975 0.0116 0.9898

2 0.8841 0.1451 0.0155 0.9887

2.5 1.0790 0.2141 0.0199 0.9838

3 1.2630 0.2976 0.0245 0.9780

3.5 1.4400 0.3914 0.0292 0.9717

4 1.6090 0.4926 0.0338 0.9648

4.5 1.7720 0.5999 0.0384 0.9575

5 1.9310 0.6974 0.0425 0.9504
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function is an approximately linear function that is conducive to maintaining the char-
acteristics of the signal itself unchanged. Therefore, Rxg

GLHSC(τ ) has the maximum value 
when τ = D , and the time delay can be estimated by searching the peak of Rxy

GLHSC(τ ),

4 � Results and discussion
Consider the case that the received signals x(t)andg(t) are quadrature amplitude modu-
lated (QAM) signals and the additive noise is modeled by the SαS distribution model 
with the characteristic exponent α . The variance of SαS distribution is infinite, and thus, 
the conventional signal-to-noise ratio (SNR) is no longer effective. In this context, the 
concept of generalized signal-to-noise ratio (GSNR) is defined as the ratio between the 
signal power and the noise dispersion γ as follows

In this section, by comparing the performances of the GHLSC-based TDE methods 
with different scaling parameters � , we verify the results of the optimal selection of scal-
ing parameter discussed in Sect. 3.1.2. In addition, a battery of numerical simulations 
is conducted to compare the performance of the proposed GHLSC-based TDE method 
with existing TDE estimation methods, including ROC-based TDE method, FLOC-
based TDE method, PFLOC-based TDE method, CRCO-based TDE method, TC-based 
TDE method, HTC-based TDE method, and GC-based TDE method. The performance 
indicator named RMSE for the TDE method is calculated by.

RMSE =

√
1
M

M∑
m=1

∣∣∣d̂m − D
∣∣∣
2
. (15)

Another performance indicator named probability of resolution Pa is calculated by

where d̂m is the mth estimated value of the true time delay D , and D = 20 sample 
interval is used in simulation experiments. Besides a single estimation experiment, 
each simulation experiment will be executed for M = 500 independent Monte Carlo 
experiments.

4.1 � Selection of scaling parameters �

To verify the influence of the scaling parameters � on the performance of the GLHSC-
based TDE method in the SαS distribution noise environment, the characteristic expo-
nent of SαS distribution is set from strong impulsiveness α = 1 to weak impulsiveness 
α = 2 , and the cases of GSNR = 2dB are given, and the estimation performances of the 
GLHSC-based TDE methods with different scaling parameters � are shown in Fig. 3.

(13)D̂ = argmax
∣∣∣Rxg

GLHSC(τ )

∣∣∣.

(14)GSNR = 10 log10

(
|s(t)|2

γ

)
.

(16)Pa =



1−
1

M

M�

m=1

���d̂m − D
���

D



× 100%.
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It can be seen from Fig. 3 that when the scaling parameter is a fixed constant, as the 
increase in the characteristic exponent, the RMSEs of the proposed methods decrease, 
and the probabilities of resolution of the proposed methods improve. When the scal-
ing parameter � is greater than 1, the ALA part of the GLHS function is relatively small, 
so it is not conducive to keeping the useful information of signals. Simultaneously, the 
GLHSC-based TDE methods perform poorly since the degree of linear approximation 
of the GLHS function located in the ALA part is not good. When the scaling parameter 
� is less than 0.2, the degree of linear approximation of the GLHS function located in 
the ALA part is good, but the range of the ALA part is relatively large at the same time. 
It is not conducive to inhibiting the impulsive noise, and thus, it follows that the perfor-
mance of the GLHSC-based TDE method is also not good. When the scaling parameter 

Fig. 3  Performances of the GLHSC-based TDE methods with different scaling parameters � ( GSNR = 2dB ) a 
RMSE, b Probability of resolution
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0.2 ≤ � ≤ 1, the GLHSC-based TDE methods have a good estimation performance, 
because the ranges of the SA and the ALA parts are reasonable and there is a good linear 
approximation in the ALA part. � = 0.3 is selected for the GLHSC-based TDE method 
in the following simulation experiments.

4.2 � A single estimate experiment

To directly reflect the effectiveness of the proposed method for estimating time delay 
in the SαS distribution noise, GSNR = 0dB and the characteristic exponent α = 1.4 are 
used, and a single estimation result of the eight methods is shown in Fig. 4.

As can be seen from Fig. 4, compared with the other seven methods which are based 
on FLOS, correntropy, and tanh function, the GLHSC-based TDE method has the 
sharpest peak value, and the difference between the peak value and the secondary peak 
value is the largest, so it is most conducive to accurately estimating correct time delay.

Fig. 4  The single estimation results of the eight methods in SαS distribution noise ( GSNR = 0dB and α = 1.4

)
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4.3 � Monte Carlo experiments

Experiment 1: Simulations with different characteristic exponents. To verify the robust-
ness of the proposed method to impulsive noise, GSNR = 2dB is used, and the char-
acteristic exponent of SαS distribution is set from strong impulsiveness α = 1 to weak 
impulsiveness α = 2 . The performances of the eight methods are shown in Fig. 5.

It can be seen that as the increase in characteristic exponent α , the RMSEs of the eight 
methods decrease and the probabilities of resolution of the eight methods increase. Note 
that the performances of all methods are similar in the environment close to Gaussian 
noise α = 2 . However, the performance of the GHLSC-based TDE method is better than 
the competitors under the 1 < α < 1.8 strong impulsiveness environments. For example, 
when α = 1.2 , the probability of resolution of the GHLSC-based TDE method can reach 

Fig. 5  Performance versus characteristic exponent ( GSNR = 2dB ). a RMSE, b Probability of resolution
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83%, the probabilities of resolution of the HTC and TC-based TDE methods are 67% and 
65%, respectively, and the probability of resolution of the GC-based TDE method is 62%, 
whereas the probabilities of resolution of the CRCO, PFLOC, FLOC, and ROC-based 
TDE methods are less than 50%.

Experiment 2: Simulations with different GSNRs. Considering the cases of SαS dis-
tribution noise with characteristic exponent α = 1.2 . When the GSNR ranges from − 
2dB to 10 dB, the performances of the eight methods are shown in Fig. 6.

It can be seen that as the GSNR increases, the RMSEs of the eight methods 
decrease, and the probabilities of resolution of the eight methods increase. However, 
the performance of the GHLSC-based TDE method is better than that of the other 
seven methods. For example, when GSNR = 6dB , the probability of resolution of the 

Fig. 6  Performance versus GSNR ( α = 1.2 ). a RMSE, b Probability of resolution
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GHLSC-based TDE method can reach 95%, and the probability of resolution of the 
HTC-based TDE method is 86%, whereas the probabilities of resolution of the other 
six methods are less than 80%.

5 � Conclusion
In this paper, a novel TDE method is proposed in order to contend with the problem 
that the TDE methods based on conventional correlation degrade under an impul-
sive noise environment. First, the GLHS preprocessing function is defined which can 
keep the useful information of signal sources unchanged and limit the amplitude of 
the impulsive noise within the bounds, and then, the optimal selection of the scaling 
parameter regarding the GLHS function is discussed. Subsequently, GLHSC is con-
structed and used to estimate time delay in impulsive noise. The reliable estimation 
result is obtained by finding the peak of the GLHSC. The simulations demonstrate the 
superiority of the proposed method compared to the existing methods, especially in 
the environment of heavy-tailed noise.
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