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Abstract 

Aiming at the tracking failure due to the disappearance of the target in the long-term 
target tracking process, this paper proposes a long-term target tracking network based 
on the visual transformer and template update. First of all, we construct a feature 
extraction network based on the transformer and adopt a knowledge distillation strat-
egy to improve the effectiveness of the network for global feature extraction. Secondly, 
in the modeling transformer, the target features are fully fused with the search area 
features by using encoder, and the position information in the target query is learned 
by the decoder. Then, target predictions are performed on the information from the 
encoder–decoder to obtain tracking results. Meanwhile, we design a score head model 
to judge the validity of the dynamic template of the current frame before tracking in 
the next frame. We select the appropriate dynamic template for the tracking of the 
next frame according to the score result. In this paper, we performed extensive experi-
ments on LaSOT, VOT2021-LT, TrackingNet, TLP, and UAV123 datasets, and the experi-
mental results prove the effectiveness of our method. In particular, it exceeds STARK by 
0.8 % (F score) on VOT2021-LT, 1.0 % (S score) on LaSOT, and TrackingNet exceed STARK 
by 1.1 % (NP score), which also demonstrates the superiority of the method in this 
paper.

Keywords:  Transformer, Long-term tracking, Template update

1  Introduction
Although long-term visual tracking has received significant attention from research-
ers as a research hotspot in visual target tracking, studying a robust long-term tracking 
framework remains a daunting task as it is conducted in more realistic scenarios with 
many unresolved difficulties, particularly in the case of target disappearance & reappear-
ance [1].

Currently, most approaches use a combination of CNN and Transformer [2] for long-
term visual tracking and have also achieved good results [3, 4]. Typically, researchers 
extract generic features of the input image through a CNN-based backbone network. 
However, CNN only focuses on the feature relationships between local neighborhoods 
when processing image content and features, ignoring the impact of global informa-
tion on feature extraction. In order to extract global information better, inspired by the 
success of the transformer and its recent application in computer vision [5], this paper 
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uses transformer-based DeiT [6] to replace convolutional neural network. Specifically, 
a distillation mechanism is used in the feature extraction process and combined with a 
teacher model for bootstrap optimization. The advantage of this is that the local sensory 
field and parameter sharing in CNN can be combined into the transformer to improve 
the processing capability of the transformer model for features.

In addition, in using the transformer model to solve the process of target disappear-
ance and reappearance, most methods pay attention to the importance of temporal 
information for long-time tracking in addition to global information. Template update 
is the typical approach to introduce temporal information, which typically specifies a 
target template in the first frame and uses this same template in subsequent tracking, 
ignoring the changes of the target across frames. The long tracking time of long-term 
tracking tasks can lead to problems of target disappearance and deformation. However, 
the existing method of fixing the template cannot effectively update the target template, 
which eventually leads to a situation of tracking failure. Therefore, we propose a score 
prediction head to judge the effectiveness of dynamic target templates using temporal 
information and the target state of the current frame, so as to flexibly select high-quality 
dynamic update templates to improve tracking accuracy.

To conclude, this work improves the long-term tracking model in two ways. Firstly, we 
use transformer-based DeiT to replace the original ResNet [7] as the feature extraction 
backbone, DeiT takes advantage of the ability of the transformer to extract features with 
global dependency, reducing the accumulation of errors in the subsequent trace process, 
thereby improving long-term tracking performance. Secondly, a score prediction head is 
designed to be applied to the dynamic template update branch, and the cross-attention 
operation of the score token is performed in the search area and the initial template, 
to calculate the effectiveness of the dynamic template of the current frame of the score 
judgment, and provide a reliable dynamic template for the tracking of the next frame.

In summary, this work has three contributions. 

1.	 A transformer-based long-term tracking model is proposed to capture globally 
dependent target features in video sequences, allowing extensive communication 
between the target and the search region.

2.	 An efficient score prediction head is designed to select high-quality dynamic tem-
plates through which additional temporal information is introduced to achieve an 
efficient transformer-based long-term tracker.

3.	 Our model demonstrates strong performance on five challenging benchmarks and 
achieved near real-time operation at 25 FPS on dual RTX 2080Ti GPUs.

2 � Related works
The related work in this paper incorporates both long-term tracking and tracking 
paradigm.

2.1 � Long‑term tracking

Since 2018, long-term trackers have been developed with the release of long-term track-
ing datasets. Equipping short-term trackers with re-detectors to improve the ability of 
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long-term tracking to deal with frequent target disappearance and reappear is a main-
stream approach at present. For example, The MBMD [8] exploits a SiamPRN-based 
network to regress the target in a local search region or every sliding window when re-
detection. Valmadre et al. [9] propose a long-term tracker. This tracker adds a simple re-
detector to SiamFC [10], and its performance is much better than the original SiamFC. 
In [9, 11–13], trackers are equipped with the re-detection scheme for long-term track-
ing, but they merely track the targets in a local search region to expect that the lost tar-
gets will reappear around the previous location. This approach carries a high level of 
risk because the output of the short-term tracker is not as reliable. To avoid this risk, 
GlobalTrack [14] performs a global instance search of the target for each frame, but 
this method not only requires a lot of computational costs but also has unsatisfactory 
results. In the same year, the template updated strategy pushed the comprehensive per-
formance of long-term tracking to a new commanding height. Updatenet [15] applied 
template matching to SiamFC and DaSiamRPN [16] to predict target locations. LTMU 
[17] utilizes SiamRPN [18] as a re-detector and Metaupdater as an online updater to 
predict whether the current state is reliable enough to be used for the update in long-
term tracking.

2.2 � Tracking paradigm

At present, the popular tracking methods [3, 4, 19, 20] are mostly combined with CNN 
and transformer, using CNN as a backbone to extract the general features of the tar-
gets, and the transformer with its powerful modeling ability is usually used for the fusion 
work between the target and the template, and finally through the simple head network 
to generate the target state. This method shows powerful performance in many works, 
for example, Transtrack [21] takes the features extracted in CNN as the query and key, 
learns to query the target location from the key by the detecting branch, and queries the 
location of the current frame by tracking the object feature of the previous frame in the 
key by the tracking branch. Based on the DETR [22], Trackformer [23] queries the tar-
get’s embedding through a series of learnable object queries, which successfully predict 
the output embedding through subsequent tasks, such as border regression or category 
prediction, to pass in the tracking of the next frame. STARK extracts the common fea-
tures through the ResNet, and then passes in the transformer to model the global spa-
tio-temporal feature dependencies between the target and the search area, and learns 
query embeddings to predict the target location. This work believes that although the 
use of CNN to extract common features can adapt to most of the tasks, in the long-term 
tracking process, this general method is not very suitable. To avoid CNN’s shortcomings 
in handling long-term dependency and understanding the global structure of objects, 
we propose a full transformer tracker, solely containing encoders and decoders and two 
simple heads, leading to a more accurate tracker with neat and compact architecture.

3 � Methods
In this section, we describe our approach in detail. In Sect. 3.1, we introduce the moti-
vation. In Sect.  3.2, we introduce the overall tracking framework of the approach. In 
Sect. 3.3, we introduce the transformer-based feature extraction network. In Sect. 3.4, 
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we introduce the transformer network for the modeling part. In Sect. 3.5, we introduce 
two simple heads. Section 3.6 describes the training loss.

3.1 � Motivation

In recent years, the more popular long-term tracking networks have used convolutional 
neural networks to extract target features. However, the disadvantage of convolutional 
neural networks is that the convolutional kernel focuses on the information in local 
regions and ignores the global information of the target and the frame-to-frame depend-
encies, therefor if we can improve the tracking network’s ability to extract global infor-
mation with long-term dependencies, the overall tracking performance of the long-term 
tracker will be improved. At the same time, this paper argues that temporal information 
is important for the performance of the trackers. If all the morphological and positional 
information in a video frame is assumed to be known when tracking a target in a frame, 
then there should be some performance improvement for problems such as target disap-
pearance and deformation.

3.2 � Long‑term tracking framework

In this section, we propose the transformer network for long-term visual tracking. The 
network architecture is demonstrated in Fig. 1, which is mainly composed of four parts. 
It is divided into feature extraction backbone, transformer structure for building a fea-
ture dependency model, a head network to track the target position, and a head network 
to control the update of dynamic templates. In Fig. 1, X represents a search region of the 
current frame, T represents a template image of the initial target object, and Z repre-
sents dynamically updated template sampled from intermediate frames.

3.3 � Visual transformer feature extraction network

We use the transformer-based DeiT as the backbone, which introduces a teacher-stu-
dent strategy for transformer. It reduces dependence on large amounts of data by opti-
mizing data augmentation and regularization strategies. And it improves the running 
speed to a certain extent. The core of the DeiT core is the introduction of distillation 
method into the training of VIT [24], and the proposal of token-based distillation. An 
important component of DeiT is the distillation training, which combines with the 
teacher model to guide DeiT to learn the target’s feature extraction better. The distil-
lation process is rough as shown in Fig. 2, this process is mainly to use a distillation 

Fig. 1  The proposed tracking architecture
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tokens to interact with class tokens and patch tokens at the self-attention level, and 
the distillation token entered into the transformer is learned through backpropaga-
tion. This training strategy uses convolutional networks as a teacher network for dis-
tillation, which achieves better results with fewer data and fewer computing resources 
than a network using the transformer architecture as a teacher network.

The input of the DeiT backbone is a triplet: a template image of the initial target 
object X ∈ R3∗Hx∗Wx , a search area for the current frameT ∈ R3∗Ht∗Wt , and a dynami-
cally updated template image Z ∈ R3∗Hz∗Wz sampled from the intermediate frame. We 
split the input image group into patches, and then linearly projected each patch to 
obtain a sequence of patch tokens. At the same time, we spliced a class token for clas-
sification before the patch tokens, and a distillation token for distillation training after 
the patch tokens. In the process of training DeiT using distillation strategies, lots of 
error messages are learned from the teacher network. And the distillation token is 
designed to solve these error messages, and is specifically designed to receive the label 
generated by the teacher network and participate in the overall information interac-
tion process. In order to preserve the spatial location information between patches, 
we added position embedding to encode the location information of the token. We 
input the class token, patch token, and distillation token with position embedding 
added to the transformer encoder for processing. The outputs are the initial template 
featureFx ∈ R

Hx
s ∗Wx

s ∗C , the search area feature Ft ∈ R
Ht
s ∗Wt

s ∗C , and the dynamic tem-
plate featureFz ∈ R

Hz
s
∗Wz

s
∗Crespectively. This work only uses the feature extraction 

part of the DeiT, that is, removing the MLP layer and the subsequent parts, and the 
rest has not changed.

Transformer layers in DeiT contain only encoders, which are mainly stacked by 
combining self-attention and feed-forward network (FFN). The specific structure in 
the encoder is shown in Fig. 3, and it consists of a multi-head self-attention (MSA), a 
norm layer (LN), and a multi-layer perceptron (MLP) through residual connections. 
The specific process can be represented as:

Fig. 2  The distillation procedure of the DeiT
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where Xn represents the output of the multi-head self-attention and X̂n represents the 
output of the MLP output, and use a norm layer before each block.

3.4 � Modeling transformer

The transformer in the modeling phase consists of an encoder and decoder, and there are 
6 layers in both the encoder layer and the decoder layer. The encoder captures depend-
encies between all elements in the sequence and reinforces the original features with 
global contextual information. And it allows the model to learn the discriminating fea-
tures for target localization. The decoder allows the target query to focus on all location 
features and search area features on the template, learning a robust representation that 
is ultimately associated with the heads.

The feature groups output from the DeiT are stitched and then passes through a 
1*1 convolutional layer to reduce the number of channels from C to d, which is con-
sistent with the hidden layer dimension in the subsequent transformer encoder–
decoder structure. The flatten and concatenated operations to obtain a total feature 
F̂ = Hx

s
Wx
s + Ht

s
Wt
s + Hz

s
Wz
s  , and input it to transformer encoder.

3.4.1 � Encoder

Similar to the encoder in DeiT, this also consists of continuous encoder layers, each of 
which includes a multi-head self-attention and feed-forward network, where the feed-
forward network contains two-layer perceptron and GEIU activation.

(1)Xn = MSA (LN (Xn−1))+ Xn−1

(2)X̂n = MLP (LN (Xn))+ Xn

Fig. 3  Structure of the Encoder
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3.4.2 � Decoder

Similar to the encoder, the decoder also includes a self-attention, encoder–decoder 
attention, and a feed-forward network. The input of this part is the enhanced fea-
ture sequence from the encoder and the preset target query, the target query and the 
enhanced feature sequence have interacted in the decoder layer, from which the tracked 
target information is extracted, and a more robust representation is learned for subse-
quent bounding box prediction and dynamic template update judgment.

3.5 � Head

3.5.1 � Bounding box prediction head

In order to predict the information of the bounding box more accurately, a more stable 
prediction box is generated. Like the STARK Corner Prediction Head, we use a fully con-
voluted corner point locator head to directly estimate the bounding box of the tracked 
object, solely with several Conv-BN-ReLU layers to predict the coordinates of top-left 
and bottom-right corners, respectively. Finally, the bounding box is obtained by calculat-
ing the expectation of the angular point probability distribution.

3.5.2 � Score head

Dynamic template plays a key role in capturing time information and changes in the 
appearance of the target. If the target is completely obscured or out of view or due to 
the deformation of the target and causes the model to drift, the crop of the dynamic 
template is not trustworthy. To solve these problems, we designed a score head, which is 
composed of a scoring prediction head, dynamic template update judgment, and simple 
crop operation. This head controls how the dynamic template is updated by predicting 
whether the confidence level of the current frame is correct.

The structure of the scoring prediction head is shown in Fig. 4, which mainly con-
sists of a depth-wise cross-correlation, an attention block, and an MLP. First, a learna-
ble score token acts as a query to interact with the decoder’s output in-depth, allowing 
the score token to encode the extracted enhanced target information. At the same 
time, the score token focuses on the position of the target token in the dynamic tem-
plate to compare with the target state in the next frame. Finally, the score is calculated 
through the MLP layer and sigmoid activation. We use the score to judge the timing 
of dynamic template updating, to prevent the generation of inferior quality dynamic 

Fig. 4  Structure of the score prediction head
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templates with fuzzy targets or severely deformed targets. Therefore, we set a thresh-
old τ to compare with the score, if the score is higher than the threshold τ , the cur-
rent state is considered reliable, and the dynamic template of this frame is cropped, if 
the score is below the threshold τ , the current state is considered unreliable, and the 
dynamic template of the previous frame is maintained. Here τ we set it to 0.5.

To focus on more target local spatial information, the attention block in the score 
prediction head uses the asymmetric mixed attention proposed by MixFormer [25], 
It performs separable depth-wise convolutional projection on each feature map (i.e., 
query, key, and value), then flattens each feature map and process it through a linear 
projection to generate a query, key, and value for attention operations. This mixed 
attention is defined as follows:

where D represents the dimension of the key, qt , kt and vt represent target, Attention is 
the attention maps of the target.

3.6 � Training loss

This work uses the learning method of joint learning positioning and classification, 
so our training is divided into two stages: localization and classification. In the first 
stage, the whole network, except for the scoring head, is trained end-to-end only with 
the L1 loss and GIoU [26] loss to supervise the bounding box prediction results, and 
the calculation formula of the entire framework loss function L is as follows:

In the second stage, only the score head is optimized with binary cross-entropy loss 
defined as

where B̂ is the bounding box groundtruth, B is the prediction result, �1 and �2 are the 
loss weight coefficient, this work sets 5 and 2, Pi is the predicted confidence.

During inference, three templates and corresponding features are initialized in 
the first frame, and they are fed into the network to generate a bounding box and 
a confidence score. The dynamic template is updated only when the update interval 
is reached and the confidence level is greater than the threshold τ . To improve effi-
ciency, we set the update interval to 200 frames. The new template is cropped from 
the original image and then imported as a new dynamic template image for feature 
extraction.

(3)Attention = Softmax
qtk

T
t√
D

vt

(4)LGIoU =1− GIoU(B, B̂)

(5)L1 =B− B̂

(6)L =�1L1(B, B̂)+ �2LGIoU (B, B̂)

(7)L̂ = B̂log(Pi)+ (1− B̂)log(1− Pi)
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4 � Experimental results and discussion
In this section, we evaluate the proposed method on five benchmarks and compare it 
with other advanced tracking networks. Section 4.1 introduces the relevant details of 
the experiments. Section 4.2 presents the results of the quantitative evaluation of the 
5 benchmarks, including the experimental datasets and the evaluation criteria of the 
experiments. Section 4.3 presents the ablation experiments, analyzing the results of 
the qualitative evaluation, and Sect. 4.4 describes the visualization results, providing 
visualizations of the LaSOT datasets to demonstrate the superiority of our model.

4.1 � Implementation details

Our trackers are implemented using Python 3.6 and PyTorch 1.7.0. The experiments 
are conducted on a server with GeForce RTX 2080 Ti/PCle/SSE2. Especially, this is a 
neat tracker without post-processing and multi-layer feature aggregation strategy.

4.1.1 � Model

The backbone is initialized with the parameters pre-trained with 300 epochs on 
ImageNet with a distillation strategy. The transformer of the backbone has only an 
encoder, and no decoder, and the heads and layers are both 12. The transformer struc-
ture of the modeling section consists of 1 encoder layer and 1 decoder layer, for a total 
of 6 transformers, including a multi-head attention layer (MSA) and forward network 
(FFN). The MSA has 8 heads with a width of 256, while the FFN has hidden units of 
2048.

4.1.2 � Training

The training data consists of the train-splits of LaSOT [27], GOT-10K [28], 
COCO2017 [29], and TrackingNet [30]. The sizes of search images and templates 
are 320 × 320 pixels and 128 × 128 pixels, respectively, corresponding to 52 and 22 
times the target bounding box area. The minimal training data unit for our model is 
a triplet, consisting of two templates and one search image. The entire training pro-
cess consists of two stages, the first stage requires 500 epochs and the second stage 
requires 50 epochs, each with 6000 samples. The network is optimized using AdamW 
optimizer and weight decay 10−4 , The initial learning rates for the backbone and the 
rest are 10−5 and 10−4, respectively. To stabilize the training to ensure convergence, 
the gradient cropping and learning rate attenuation strategies were adopted, and the 
learning rate decreased by 10 times after the 400th epoch in the first stage and 10 
times after the 40th epoch in the second stage.

4.2 � Comparison with the state‑of‑the‑art models

We verify the performance of our model on five benchmarks, including VOT2021-LT 
[31], LaSOT [27], TrackingNet [30], UAV123 [32], and TLP [33]. The main algorithms 
involved are SiamRPN++ [34] and SiamRCNN [11] based on twin networks; TREG 
[19] and STARK [4] based on transformer. LTMU [17], LT-DSE [35], and UpdateNet 
[15] based on template update, where STARK-ST [4] also uses the template update 
strategy; TLD [36],SPLT [37], RLT-DiMP [38] and Globletrack [14] based on 
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Local-global Switching strategy; and other classical algorithms, such as DiMP [39], 
PrDiMP [40], ATOM [41], DMTrack [42], etc.

4.2.1 � LaSOT

LaSOT is a large-scale long-term tracking benchmark, which contains 1400 videos 
with an average length of 2512 frames. It has 70 target categories and 20 videos in 
each category, covering a variety of challenges in the field. Divided into 20% as test 
sets, it includes a total of 280 videos. Fig. 5 shows that our model surpasses all other 
trackers by a large margin. Compared to STARK-ST101, SiamRCNN, and LTMU, our 
model achieves 1.0% ,2.8% , and 7.6% gains on the LaSOT test set, respectively.

To verify the effectiveness of our method for different attributes, detailed results 
of the success rate of eight typical difficulties on the LaSOT dataset are provided in 
Figs. 6 and 7, including fast motion (FM), background clutter (BC), motion blur (MB), 
deformation (DEF), illumination change (IV), partial occlusion (POC), out-of-field 
(OV), and scale change (SV).

As shown by the results in Figs. 6 and 7, the adaptability of the tracking network 
becomes necessary in the case of deformation and out-of-field. The method proposed 
in this paper can effectively establish the long-term dependence of features, and 
accurately utilize the historical feature information in the case of target deformation 
or target disappearance. At the same time, our method also has some performance 
improvement in occlusion and scale change, thanks to the transformer feature extrac-
tion network’s ability to obtain the most representative feature vectors. In the case of 
motion blur, the tracking networks need to be able to perform accurate target track-
ing in low-resolution video frames. Our method compensates for the effect of motion 
blur on the tracker to some extent and improves the performance of the tracker. How-
ever, the method in this paper seems to be ineffective in the case of background clut-
ter and illumination changes, probably because too much background information is 
introduced during feature extraction and dynamic template update to affect the judg-
ment of the tracker.

Fig. 5  Comparisons on LaSOT test set
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4.2.2 � TrackingNet

TrackingNet is a carefully selected video dataset specifically for target tracking from 
large-scale object detection datasets. A total of 30,643 videos, with an average dura-
tion of 16.6s, included 511 videos and 70 target categories in the test set. Table 1 shows 
that our model surpasses all other models with a large margin. Specifically, our model 
achieves the top-ranked performance on NP of 88.0% , surpassing STARK by 1.1%.

4.2.3 � UAV123

UAV123 includes 123 videos captured by the low-altitude drone platform, with a clean 
background and a wide variation in viewing angle, averaging 915 frames. The dataset has 
the problems of the invisible target, complete occlusion, and small target scale, which 
requires our tracker to have faster learning ability and the ability to extract global infor-
mation. Table 1 shows our results on the UAV123 dataset. Our model outperforms all 
other models.

TrackingNet and UAV123 datasets adopt the one-pass evaluation (OPE) strategy, and 
the evaluation indicators are Precision (P), Normalized Precision (NP), and Success (S). 

Fig. 6  The success rate of different attributes on the LaSOT
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The precision is calculated by comparing the distance between the predicted result and 
the ground truth, and the success rate is calculated by measuring the Intersection over 
Union (IoU) between the two. Since the precision is very sensitive to the target size and 

Fig. 7  The success rate of different attributes on the LaSOT

Table 1  AUC on TrackingNet and UAV123 dataset

TrackingNet UAV123

AUC​ NP P AUC​ P

ATOM 70.3 77.1 64.8 64.3 –

DiMP 74.0 80.1 68.7 65.4 –

SiamRPN++ 73.3 80.0 69.4 61.0 80.3

SiamRCNN 81.2 85.4 80.0 64.9 83.4

Globletrack 65.6 75.4 70.4 – –

TREG 78.5 83.8 78.5 66.9 88.4

UpdateNet  67.6 75.2  62.5 – –

STARK-ST101 82.0 86.9 – 68.3 89.3

Ours 82.9 88.0 83.1 69.0 90.2
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image resolution, the normalized accuracy is calculated by normalizing the accuracy 
according to the size of the ground truth. The final result is usually compared based on 
the Area Under Curve (AUC) of the success rate graph.

4.2.4 � TLP

This is a long-term single-target tracking dataset that includes 50 long HD videos from 
real scenes with an average sequence length of over 13,000 frames and a total video dura-
tion of over 400 minutes. Table 2 reports the AUC and precision scores on the TLP data-
set. Our method has some gains compared to other trackers. For example, our method 
achieves 0.7% and 1.8% AUC gain compared to STARK-ST101 and LTMU, two methods 
that use template updates, respectively.

4.2.5 � VOT2021‑LT

The VOT2021-LT dataset contains 50 videos with 215294 frames in total, in which tar-
get objects disappear and reappear frequently. The accuracy evaluation of the dataset 
mainly includes tracking precision (Pr), tracking recall (Re), and tracking F-score. Preci-
sion and recall are computed under a series of confidence thresholds. F-score, defined as 
F = 2PrRe

Pr+Re
 , is used to rank different trackers. Different trackers are ranked according to 

the tracking F-score. We compare our model to the currently popular tracker and report 
the evaluation results in Table  3 It can be seen that the F-score of our model is 70.3, 
which is better than all previous methods.

4.3 � Ablation study

In this section, we use the LaSOT dataset to perform ablation analysis of our model. 
Through different experimental settings, we did four experiments with different track-
ers, namely “Baseline,” “Model 1,” “Model 2, “ and “Ours.” The meaning of these con-
cepts is explained below. (1) “Baseline” denotes the STARK-ST101 model. (2) “Model1” 
denotes a model that uses DeiT as a feature extraction network. (3) “Model2” denotes a 
model of adding the score prediction head based on STARK-ST101. (4) “Ours” denotes a 
long-term tracking network that uses both the DeiT feature extraction network and the 
score prediction head.

Table 2  AUC and P on the TLD dataset

TLD SPLT Globaltrack DMTrack LTMU STARK-ST101 Ours

AUC(%) 15.4 41.6 50.1 54.1 55.8 56.9 57.6

P(%) 16.7 40.3 70.1 59.1 60.8 61.3 61.1

Table 3  Comparisons on VOT-LT2021 benchmark. The best results are marked in the red font

SPLT RLT-DiMP LTMU LT-DSE STARK-ST101 Ours

F-score(%) 56.5 67.0 69.1 69.5 69.5 70.3

Pr(%) 58.7 65.7 70.1 71.5 69.1 73.9

Re(%) 54.4 63.5 68.1 67.7 69.8 67.1
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The results of the different variants on the LaSOT dataset in Table 4, and the speed, 
FLOPs, and Params of the different variants in Table 5, from which we can obtain the 
following conclusions. (1) ’model1’ achieves an S of 67.3, which is also competitive com-
pared to other state-of-the-art methods (shown in Fig. 5). The applicability of the trans-
former to long-term tracking tasks is also verified. But it also brings a corresponding 
flaw, the large number of parameters of the transformer model drags down the running 
speed. (2) By comparing “model2” and “baseline,” we can conclude that the score predic-
tion head proposed in this work can improve the long-term performance to some extent, 
which also means that reliable dynamic templates can bring better gains to the tracker. 
(3) Comparing ’ours’ with ’model1’ and ’model2’ yields that both the transformer back-
bone and the score prediction head control template update are indispensable through-
out the tracing process.

4.4 � Visualization

To show the actual tracking effect of different networks in complex situations such as 
target disappearance, deformation, and scale change. We select video sequences (fox, 
motorcycle, skate, racing, and volleyball) from LaSOT, a large real-world scene tracking 
dataset, to visualize the tracking results, as shown in Fig. 8.

As shown in Fig.  8, the top-down sequences are the “fox” sequence, “motorcycle” 
sequence, “skate” sequence, “racing” sequence, and “volleyball” sequence, respectively. 
In the “motorcycle” and “racing” sequences, the targets appear to disappear and reap-
pear frequently, and the proposed algorithm could still obtain accurate target state 
estimation and high-quality tracking results due to the combined effect of the trans-
former and template update mechanisms. When the target disappears, STARK-ST101, 
SiamRCNN, and LTMU all drift to other similar targets easily, and the target does not 
track the correct target in time when it reappears. In the “fox” and “state” sequences, 
the targets have severe scale changes, occlusion, and deformation phenomenon, STARK-
ST101 and other trackers cannot get accurate target state estimation and have tracking 
failure, while our tracker could track the target accurately, and handle these situations 

Table 4  Ablation analysis of the proposed tracker on the LaSOT dataset

P NP S

Baseline 71.88 76.7 66.8

Model1 72.35 77.3 67.3

Model2 72.03 77.0 67.03

Ours 74.13 77.5 68.1

Table 5  Comparison about the speed, FLOPs, and Params

Speed(fps) FLOPs(G) Params(M)

Baseline 30 20.5 47.2

Model1 25 39.7 105.1

Model2 30 20.4 47.1

Ours 24 40.5 105.2
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better. It is worth noting that there are difficulties in the ’volleyball’ sequence with fast 
motion, background clutter, and small targets, our tracker has experienced tracking 
errors. Specifically, when attributes such as fast motion, background clutter, and small 
targets appear in the same video at the same time, the dynamic template strategy in our 
approach introduces too much background information to affect the tracker’s judgment, 
which leads to a tracking failure situation. In this case, SiamRCNN is better than the 
method in this paper because it does not use a complex template update strategy.

5 � Conclusion
This paper proposes a new transformer-based long-term tracking framework. We 
improve the existing transformer-based tracking network and enhance the feature 
extraction ability by introducing the visual transformer based on the attention mecha-
nism as the backbone network. A score prediction head is designed to control dynamic 
template updating using asymmetric mixed attention and score token interactive learn-
ing. Experimental results show that our model designed in this work is better than the 
current mainstream tracking networks on five long-term tracking benchmarks. As there 

Fig. 8  Qualitative comparison of ours with other state-of-the-art trackers on 5 video sequences from the 
LaSOT dataset
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are more parameters in the network, the running speed does not reach real-time, so 
next, we intend to study in the direction of a low number of parameters and high run-
ning speed.
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