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Abstract 

In practical road traffic scene, targets usually face high ground clutter, high and variable 
motion, high nonlinearity, which lead to targets tracking or identification challenging. 
What’s more, tracking and identification are usually interdependent in reality, and thus 
it is promising to solve them jointly. In this paper, we propose a novel joint tracking and 
identification (JTI) scheme to handle such problems involving coupled tracking and 
identification, i.e., JTI problems. Specifically, we formulate the JTI problem in complex 
traffic scene using a hybrid system. Then, by exploiting the generalized Bayes risk for 
JTI, we derive analytical estimator and decider for the coupling of tracking and iden-
tification in complex road targets motion. Furthermore, an unscented Kalman filter-
expected mode augmentation-based estimation strategy is creatively developed to 
improve both estimation and decision performance. In additions, a joint performance 
evaluation metric is presented to assess the performance the joint of the proposed JTI 
scheme. Finally, two simulation examples under different traffic scenarios demonstrate 
that the proposed JTI approach outperforms the traditional tracking-then-identifica-
tion and identification-then-tracking methods in joint performance.

Keywords:  Joint tracking and identification, Complex traffic scene, Joint decision and 
estimation, Joint performance metric

1  Introduction
With the rapid development of intelligent transportation, vehicles tracking and iden-
tification, as two fundamental tasks of traffic monitoring, have recently attracted great 
interests from both industry and academia [1–5]. Specifically, the vehicles tracking aims 
to estimate the target state (e.g., position, velocity, acceleration, etc.), while identifica-
tion aims to identify which class the target belongs to [6, 7], such as car, bus, tanker, and 
ambulance. In practical intelligent transportation systems, however, tracking and identi-
fication are inherently coupled and affect each other. Furthermore, in practical complex 
traffic scene, tracking and identification become more challenging due to the compli-
cated and changeable mobility, high nonlinearity, large ground clutter interference and 
so on.

To address the above challenges, various schemes are designed to improve the track-
ing and identification performance in complex traffic scene. So far, there are four kinds 
of methods to handle the problems involving both tracking and identification [8]: (a) 
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separate tracking and identification [6, 9], where tracking and identification are handled 
independently without considering their couplings at all; (b) identification-then-track-
ing, in which identification is made first without considering tracking and then tracking 
is made based on this identification without considering the possible identification error; 
(c) tracking-then-identification [10, 11], in which tracking is done first, and then, identi-
fication is based on it; (d) density-based method, which is beyond the scope of this paper 
(it is for point inference).

However, the above existing methods cannot work well [8] because the internal rela-
tionship between tracking and identification is not fully explored. Specifically, tracking 
can provide state information for different target classes, while identification helps track-
ing by selecting appropriate identity-dependent kinematic models. Therefore, a joint 
tracking and identification (JTI) approach is promising to improve tracking and iden-
tification performance jointly. Essentially, JTI is a joint decision and estimation (JDE) 
problem [12] with dual goals—decision and estimation, which are coupled. For such 
problems, an integrated JDE paradigm is proposed [12] which can fully utilize the cou-
pling between decision and estimation and finally achieve superior joint performance 
[13–17]. Within this JDE framework, a conditional JDE (CJDE) approach was proposed 
in [8] which has simple calculation and superior joint performance.

Although CJDE is superior for solving joint problems, it cannot be applied to JTI in 
complex traffic scene directly due to the particularities and complexities of the problem. 
Among many difficulties of JTI in complex traffic scene, this paper considers two typical 
and common types: complicated mobility and high nonlinearity. To capture the com-
plicated motion and obtain satisfactory estimation performance, multiple-model (MM) 
approach is usually used for tracking [18], which contains fixed-structure MM (FSMM) 
and variable-structure MM (VSMM) [1, 19, 20]. In the former, a large number of models 
are needed to improve the estimation performance. However, usages of extensive mod-
els increase the computational burden considerably; furthermore, the performance will 
deteriorate since too many models may cause excessive “competition” from the “unnec-
essary” models. Therefore, we adopt the VSMM estimation method since it can utilize 
the online mode information and is superior to a FSMM algorithm in both performance 
and computation for complicated real-world problems [19, 21].

For nonlinear target tracking, there are generally density-based and point estimation-
based methods. The frontier has high computational complexity [22, 23] by approximat-
ing the posterior distribution, while the latter is simpler and is thus adequate for practical 
applications [24, 25]. Within the nonlinear point estimation, there are extended Kalman 
filter (EKF) [26], unscented Kalman filter (UKF) [27] using the deterministic sampling 
to compute the moments, the quadrature KF (QKF) [28], the cubature KF [29], and so 
on. For identification, studies mainly focus on video-based methods, which have been 
proven to be efficient in road target information processing [30, 31]. However, under 
complex environmental and illumination conditions, identification using these methods 
is difficult and may even fail.

In view of the above, solving JTI in complex traffic scene within the JDE framework 
faces the following difficulties. First, appropriate models are required for problem for-
mulation. The models are expected to describe practical target state evolution objec-
tively and incorporate the target identity and the coupling between state and identity 
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effectively and also can be mathematically tackled easily. Second, tracking and iden-
tification solution concerning their couplings and practical complexities is required. 
Specifically, it is desired that on the one hand, the complex mobility and high non-
linearity can be appropriately utilized to ensure the fitness of JTI solution to reality; 
on the other hand, the coupling between tracking and identification should be fully 
utilized.

Motivated by the above, this paper proposes a novel scheme for the JTI problem in 
complex traffic scene. First, we present a hybrid system containing a dynamic model 
and a measurement model, which can describe the complex mobility and also the 
coupling between tracking and identification. Based on this model, we focus on solv-
ing the JTI problem within the JDE framework.

We present a generalized Bayes risk for JTI, which unifies tracking and identifi-
cation. Then, we derive a joint solution by minimizing this JTI risk. Specifically, for 
estimation, we propose a new expected-mode augmentation (EMA) [20] estima-
tion strategy, named UKF-EMA strategy. Here, UKF is adopted due to its superior 
performance and also adaptability to the JDE framework; EMA is utilized due to its 
superiority in handling complex motion. For decision, a decider is provided by incor-
porating the effect of estimation on decision. Generally, this JTI solution with explicit 
form fully exploits the coupling between target state and identity and also utilizes the 
characteristics in complex traffic scene. Furthermore, a joint performance metric is 
provided, which considers both tracking and identification errors. Simulation results 
verify that the proposed JTI approach outperforms traditional two-step methods in 
joint performance.

More specifically, the contributions of this work are summarized as follows:

•	 We propose a hybrid system for practical JTI problems in complex traffic scene. In 
this system, both the complicated target state evolution and the coupling between 
tracking and identification are incorporated.

•	 We propose a novel and tractable JTI approach for JTI problems in complex traffic 
scene. A joint risk is first presented, which unifies estimation and decision errors. 
Then, we derive an analytical JTI solution containing an estimator and a decider 
with their couplings being accounted for. Specifically, a UKF-EMA estimation 
strategy is creatively proposed due to its nice properties. Finally, we present an 
efficient JTI algorithm.

•	 We examine the performance of the proposed JTI approach in practical complex 
traffic scene, where motion at a road corner and a crossroads is representatively 
considered. The results verify that the proposed JTI approach can utilize the cou-
pling between tracking and identification and finally outperforms the traditional 
methods in joint performance.

This paper is organized as follows. Section  2 formulates the JTI problem in complex 
traffic scene. Section  3 proposes an applicable JTI approach by considering the char-
acteristics of JTI problems and also the coupling between tracking and identification. 
Also presented is a joint performance metric. Section 4  presents simulation results 
and analyses. Section  5 concludes the paper.
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2 � Problem formulation
2.1 � Problem description

Figure  1 illustrates two typical JTI problems in complex traffic scene. A target with 
multiple possible classes moves on the road, where different classes have different 
dynamics. Specifically, in Fig. 1a, a car and a bus are moving at the corner of the road 
with different mobility, i.e., different turn rates. In Fig. 1b, a car and a bus are moving 
at the crossroads with different motion modes. Here, we aim to jointly identify and 

Fig. 1  JTI problems in complex traffic scene
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track the target using multiple sensor data under complex traffic scenes (intersection, 
high and variable motions, large ground clutter interference, etc.).

The tracking and identification are highly coupled in this problem. Accurate tracking pro-
vides the target’s location and motion information, which promotes identification. Correct 
identification benefits learn more behaviors of targets, which helps tracking. Therefore, this 
is essentially a JTI problem and good solutions require solving both tracking and identifica-
tion problems jointly.

2.2 � Modeling

Let xk denote the target state (position, velocity, acceleration, etc.) at time k, and ci denotes 
the target class i, which belongs to the possible class set {1, . . . ,N } . In the JTI problem, 
tracking is to obtain the state estimate x̂k while identification is to determine the target 
identity ci . Therefore, our goal is to obtain {x̂k , ci} jointly.

As is analyzed above, a hybrid system is expected to take both the complex target motion 
and the coupling between tracking and identification into consideration. Therefore, we pro-
pose the following hybrid system for JTI in complex traffic scene. For target class ci , the 
state evolution and measurement models are given by

where k is time index; f ik (·) and hik(·) are the state transition function and measurement 
function, respectively, which can be either linear or nonlinear. wi

k and vik are zero-mean 
Gaussian white process and measurement noises with covariance matrixes Qk and Rk , 
respectively. Note that the superscript i denotes target class i. Therefore, different target 
classes have different system model (1).

1 � Remark 1

Equation (1) describes the motion model of class ci , i.e., target class is related to the motion 
model. Meanwhile, the motion model basically describes the evolution of target state. Therefore, 
the motion model relates the target state and class. Based on these, the relationship between the 
target state and class is as follows: Target classes differ from each other in motion models.

The state transition function f ik (xk) and measurement function hik(xk) not only describe 
the transition of state and measurement, but also provide sufficient flexibility. For exam-
ple, f ik (xk) and hik(xk) can be either linear or nonlinear, time invariant or time-varying, 
etc. This fits the practical traffic scene in which the target motion may be complicated 
and changeable over time.

1 � Remark 2
As road target JTI in complex traffic scene is typically a JDE problem, good solutions 
require solving tracking and identification jointly. In the following, we first review the 
existing JDE approach. Then, as the main part of this paper, we propose an applicable JTI 
approach to solve the JTI problem in complex traffic scene.

(1)
xk+1 = f ik (xk)+ wi

k

zk = hik(xk)+ vik
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3 � Methods
3.1 � Motivation

For JDE problems, [12] proposed an integrated JDE framework based on a new generalized 
Bayes risk, as follows:

where Di and Hj are the ith decision and the jth hypothesis, respectively; x is the true 
target state with x̂ being its estimate; C̄(x, x̂) is the cost of estimating x by x̂ ; cij is the 
cost of deciding on Di but Hj is true, and E[C̄(x, x̂)|Di,Hj] is the corresponding expected 
estimation cost; and αij and βij are weight factors. This joint framework is optimal in 
the joint performance by accounting for the coupling between decision and estimation. 
Within this framework, we develop a conditional JDE (CJDE) approach by introducing 
the online data [8]. CJDE inherits the theoretical advantages of JDE but has much sim-
pler calculation.

Although CJDE has many advantages for problems involving coupled decision and 
estimation like JTI, it cannot be directly applied to JTI in complex traffic scene. That is 
because in such problems, targets usually face high maneuverability and high nonlinear-
ity, which are not considered in the original CJDE approach. Due to these complexities, 
the JTI solution in complex traffic scene is difficult to be obtained.

Therefore, great efforts are needed to overcome these difficulties so as to achieve a 
joint solution. Specifically, appropriate estimation strategy satisfying practical traffic 
scene is required, which can not only bring superior estimation performance but also be 
easily integrated into the JDE framework. Besides, the coupling between estimation and 
decision needs further exploration so as to improve the joint performance.

In the following, we propose an applicable JTI approach by accounting for the charac-
teristics of JTI in complex traffic scene and also the adaptability to the JDE framework.

3.2 � JTI solution in complex traffic scene

We propose the following CJDE risk for the JTI problem:

where Hj ,Di,αij and βij are the same as in the JDE risk (2), z is the online data, and

is the expected estimation cost when Hj is true but Di is decided, in which C(x, x̂) is the 
cost of estimating x by x̂.

To obtain the JTI estimation and decision results, we need to minimize the above CJDE 
risk.

(2)R̄ =
i,j

αijcij + βijE C̄(x, x̂)|Di
,Hj P Di

,Hj

(3)Rc(z) �
∑

i

∑
j

(
αijcij + βijξij(z)

)
P
{
Di

,Hj|z
}

(4)ξij(z) � E
[
C(x, x̂)|Di

,Hj
, z
]
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3.2.1 � Estimator

Suppose the decision Di is given and the estimation cost C(x, x̂) has the quadratic form, 
i.e., C(x, x̂) = x̃′x̃ with x̃ = x − x̂ . Then, the optimal JTI estimation which minimizes the 
JTI risk Rc(z) is the following generalized posterior mean:

where x̂(j) is the state estimate under hypothesis Hj . P̄i{Hj|z} is the generalized posterior 
probability, given by

where P{Hj|z} is the posterior hypothesis probability of Hj.

3.2.2 � Decider

According to the Bayes decision rule, the optimal decision is to minimize the decision 
risk, i.e., the decision candidate which has the smallest Bayes risk. Thus, with given 
expected estimation cost ξij(z) , the optimal JTI decider D is to choose the one whose 
posterior cost is the smallest:

in which the posterior cost

It can be seen that in order to obtain the JTI decider D, the key is to determine the pos-
terior cost Ci(z) . Specifically, as αij , cij ,βij are design parameters which are already given, 
it is the expected estimation cost ξij(z) and the posterior hypothesis probability P{Hj|z} 
that affect Ci(z) . Thus, in the following, we focus on determining ξij(z) and P{Hj|z}.

For ξij(z) , with the linear Gaussian assumption and estimation cost C(x, x̂) = x̃′x̃ , we 
can get that

where x̂(j) is the state estimate under hypothesis Hj , x̌(i) is the estimate under decision 
Di , and mse(x̂(j)|Hj , z) is the estimation mean square error (mse) under Hj.

For the posterior hypothesis probability P{Hj|z} , following the Bayes rule, we can get:

where P{Hj} is the prior probability and f (z|Hj) is the measurement likelihood of Hj.
So far, the JTI solution {x̌,D} containing an estimator (5) and a decider (7) is presented. 

This joint solution has an analytical form, which makes it more practicable. More impor-
tantly, the coupling between decision and estimation is fully taken into account.

(5)x̌(i) =
∑

j
x̂(j)P̄i{H

j|z}

(6)P̄i{H
j|z} =

βijP{H
j|z}∑

l βilP{H
l |z}

(7)D = Di
, if C

i(z) ≤ C
l(z),∀l

C
i(z) =

∑
j

(
αijcij + βijξij(z)

)
P
{
Hj|z

}

(8)
ξij(z) = E

[
x̃′x̃|Di

,Hj
, z
]

= mse

(
x̂(j)|Hj

, z
)
+

(
x̂(j) − x̌(i)

)′
·
(
x̂(j) − x̌(i)

)

(9)P
{
Hj|z

}
= f

(
z|Hj

)
P
{
Hj

}
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However, when it comes to practical JTI in complex traffic scene, the concrete decider 
and estimator {x̌,D} are difficult to be determined mainly because of the complicated 
motion patterns, e.g., high mobility, variability, nonlinearity. In the following part, we 
will strive to determine the concrete joint solution by considering the peculiarities of JTI 
in complex traffic scene.

3.3 � Determination of JTI tracker and identifier in complex traffic scene

To get full insight of the JTI solution, we conduct a detailed analysis. The JTI estima-
tor is weighed sum of the hypothesis-conditioned estimate x̂(j) , where the weight fac-
tor is related to the hypothesis probability P{Hj|z}(j = 1, 2, . . . ,N ) . The JTI decider 
is to choose the decision candidate with the smallest posterior cost, which is mainly 
determined by the hypothesis-conditioned estimate x̂(j) and the hypothesis probability 
P{Hj|z}.

In view of the above, the core of obtaining the JTI solution is to determine the hypoth-
esis-conditioned estimate x̂(j) and the corresponding hypothesis probability P{Hj|z} . 
Therefore, appropriate estimation strategy is needed, which should satisfy two basic 
requirements:

(1) It has accurate estimation performance for both linear and nonlinear systems;
(2) Through this estimation, the hypothesis probability can be easily obtained.
With these requirements, in order to derive the JTI solution, we focus on determining 

x̂(j) and P{Hj|z}(j = 1, 2, . . . ,N ) in the following parts.

3.3.1 � Determination of x̂(j)

Determination of each hypothesis-conditioned estimate
For estimation, it has been demonstrated that variable-structure multiple model 

(VSMM) has superior performance and low computational complexity. Note that track-
ing and identification in complex scene are a difficult problem due to the complicated 
and changeable target motion. Therefore, VSMM is very suitable for this problem.

The essential issue of the VSMM approach is model set adaptation (MSA). Many MSA 
methods have been proposed, among which expected-mode augmentation (EMA) is 
widely used and extensively researched. In the EMA approach, the original set of mod-
els is augmented by a variable set of models intended to match the expected value of the 
unknown true mode. Specifically, the newly activated models are generated adaptively in 
real time which are probabilistically weighted sums of mode estimates over the model set.

By combining the variable-structure interacting-multiple model (VSIMM) with the 
EMA approach, we propose to use the EMA-VSIMM algorithm in this paper. Specifi-
cally, EMA-VSIMM algorithm consists of six steps: (1) probability prediction; (2) MSA 
using EMA approach; (3) interaction/mixing of the estimates; (4) filtering in each fil-
ters; (5) probability update; and (6) estimate fusion. Compared to fixed-structure MM 
method, the adaptive model set in this algorithm is obtained using the EMA algorithm. 
More details about EMA-VSIMM can be found in [32].

Based on the above, we propose the following estimation strategy for JTI, as illustrated 
in Fig. 2. Assume that there are two possible target classes ( H1 and H2 ), and under each 
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class, there are M models composing the EMA filter, i.e., M is the total number of mod-
els in the EMA filter (for any target class).

In the lower layer, each basic filter (e.g., KF, UKF, etc.) runs and outputs the model-
based state estimate x̂jq and the corresponding model probability µjq , where j = 1, 2 and 
q = 1, . . . ,M . Here, the subscript j is the variable denoting the jth hypothesis (i.e., Hj ), 
while q is the variable denoting the qth model. Then, under each hypothesis Hj , through 
the EMA estimation process, the state estimate x̂(j) and the hypothesis probability P{Hj} 
( j = 1, 2 ) can be obtained.

In the upper layer, JTI approach runs based on ( ̂x(1),P{H1|z} ) , (x̂(2),P{H2|z}) , which 
are output by the EMA estimator under hypothesis H1 and H2 , respectively. Finally, the 
JTI solution ( ̂x,D ) can be obtained by Eqs. (5) and (7).

Determination of each model-based estimator
Considering the above two requirements for estimation, a new estimation strategy is 

required. For linear case, Kalman filter can be applied easily since it is optimal in mini-
mum mean square error (MMSE) sense, and it can also output the analytical estimation 
result and the corresponding model probability. However, this paper considers nonlinear 
case, which is much more common in practical traffic scene.

For nonlinear case, we propose to use UKF as it satisfies the requirements mentioned 
earlier in Sect. 3.3:

(a) It has satisfactory estimation performance and low calculation for handling the 
nonlinear estimation problem;

(b) It can output the required posterior hypothesis probability.
Suppose under hypothesis Hj(j = 1, 2, . . . ,N ) , there are totally M models in the model 

set for EMA, and mjq denotes the qth ( q = 1, 2, . . . ,M ) model in the model set given Hj . 
Then, as shown in Fig. 2, every basic filter (based on model mjq ) is UKF. For each mjq

(q = 1, 2, . . . ,M ), the estimation process based on UKF is as follows.
Generally, UKF is based on the UT conversion, whose basic idea can be described as: 

For nonlinear conversion y = f (x) , x is the n-dimensional state vector with x̄ being its 
mean and P being its variance. We can get 2n+ 1 Sigma points X with the corresponding 
weight ω to compute the statistics of y. Specifically, one cycle of the unscented Kalman 
filter is as follows:

Fig. 2  Estimation strategy of JTI in complex traffic scene
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(1) Given x̂k−1|k−1,Pk−1|k−1 , compute the one-step predict state x̂k|k−1 and the predict 
error covariance matrix Pk|k−1.

(a) Compute the σ point ξ (i)k−1|k−1
, i = 1, 2, . . . , 2n , that is,

(b) Calculate the σ point of ξ (i)k|k−1
, i = 1, 2, . . . , 2n propagating through the state evolu-

tion function, that is,

(2) Obtain the propagation of the σ point x̂k|k−1,Pk|k−1 through the measurement equa-
tion using UT.

(a) Calculate the propagation of σ point x̂k|k−1,Pk|k−1 through the measurement equa-
tion to xk , i.e.,

(b) Compute the one-step predict of the output, i.e.,

(3) After obtaining the new measurement zk , update the following quantities:





ξ
(0)

k−1|k−1
= x̂k−1|k−1

ξ
(i)
k−1|k−1

= x̂k−1|k−1 + (
�
(n+ �)Pk−1|k−1)i,

i = 1, 2, . . . , n

ξ
(i)
k−1|k−1

= x̂k−1|k−1 − (
�

(n+ �)Pk−1|k−1)i,

i = n+ 1, n+ 2, . . . , 2n





ξ
(i)
k|k−1

= fk(ξ
(i)
k−1|k−1

), i = 1, 2, . . . , 2n

x̂k|k−1 =
2n�
i=0

ω
(m)
i ξ

(i)
k|k−1

Pk|k−1 =
2n�
i=0

ω
(c)
i (ξ

(i)
k|k−1

− x̂k|k−1)(ξ
(i)
k|k−1

− x̂k|k−1)
T

+Qk−1





ξ
(0)

k = x̂k|k−1

ξ
(i)
k = x̂k|k−1 + (

�
(n+ �)Pk−1|k−1)i

i = 1, 2, . . . , n

ξ
(i)
k = x̂k|k−1 − (

�
(n+ �)Pk−1|k−1)i,

i = n+ 1, n+ 2, . . . , 2n





ζ
(i)
k|k−1

= hk(ξ
(i)
k ), i = 1, 2, . . . , 2n

ẑk|k−1 =
2n�
i=0

ω
(m)
i ζ

(i)
k|k−1

Pz̄k =
2n�
i=0

ω
(c)
i (ζ

(i)
k|k−1

− ẑk|k−1)(ζ
(i)
k|k−1

− ẑk|k−1)
T + Rk

P�xk�zk =
2n�
i=0

ω
(c)
i (ξ

(i)
k − x̂k|k−1)(ξ

(i)
k − x̂k|k−1)

T

(10)x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1)

Kk = Px̃k z̃k P
−1
z̄k

(11)Pk|k = Pk|k−1 − KkPz̄kK
T
k
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where Kk is the filter gain.
Based on the above steps, each model mjq(q = 1, 2, . . . ,M)−based state estimate 

and the corresponding estimation MSE can be obtained by (10) and (11), respectively.
Besides, the probability of each model mjq(q = 1, 2, . . . ,M) can be determined as 

follows. Under the Gaussian assumption, the probability of each model is calculated 
by

where Ljq(k) is the likelihood of the model mjq ; rjq(k) and Sjq(k) are its residual and 
covariance, respectively, which can be given by UKF as follows:

The probability prediction is given by

where µjq(k|k − 1) is the predicted probability from time k − 1 to k , µjp(k − 1) is the 
probability of the pth ( p = 1, 2, . . . ,M ) model at time k − 1 , and πpq is the (p, q)th ele-
ment of the transition probability matrix (TPM) for EMA. Note that this likelihood 
Ljq(k) is the basis of computing the hypothesis probability, which further plays impor-
tant role in obtaining the JTI solution.

3.3.2 � Determination of P{Hj |z}

In the following, we focus on determining the posterior probability of hypothesis Hj , i.e., 
P{Hj|z},where j = 1, 2, . . . ,N  . According to the Bayesian rule, the probability of Hj is 
given by:

in which P{Hj} is the prior probability and f {z|Hj} is the likelihood of Hj . Therefore, the 
key is to obtain f {z|Hj}.

Since the EMA estimation method is adopted, the likelihood f {z|Hj} is the total likeli-
hood of all models given hypothesis Hj , i.e.,

in which f {z|mjq ,H
j} denotes the model likelihood of mjq given hypothesis Hj , and 

P{mjq|H
j} means the model probability of mjq under hypothesis Hj.

Specifically, under hypothesis Hj ,the model likelihood of mjq is

(12)µjq(k) = P(mjq(k)|z
k) =

Ljq(k) · µjq(k|k − 1)∑
p
Ljp(k) · µjp(k|k − 1)

(13)Ljq(k) =
1

(2π)m/2|Sjq(k)|1/2
e
−rTjq (k)|Sjq(k)|

1/2rjq(k)/2

rjq(k) = zk − ẑk|k−1, Sjq(k) = Pz̄k

µjq(k|k − 1) = P
(
mjq(k)|z

k−1
)
=

∑

p

πpqµjp(k − 1)

(14)P
{
Hj|z

}
= f

{
z|Hj

}
P
{
Hj

}

f
{
z|Hj

}
=

M∑

q=1

f
{
z|mjq ,H

j
}
P
{
mjq|H

j
}
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where Ljq(k) is given in (13).
The model probability of mjq is

where µjq(k) is given in (12).

1 � Remark 3

Based on the above, both the hypothesis-conditioned estimate x̂(j) and the posterior 
hypothesis probability P{Hj|z}(j = 1, 2, . . . ,N ) can be obtained, which are critical in JTI 
tracker and identifier.

1 � Remark 4
To make it more clear, we state the JTI tracking and identification results again.

First, for tracking, the JTI tracking solution is given in (5), which is a weighted sum of 
the hypothesis-conditioned estimate x̂(j)(j = 1, 2, . . . ,N ) with the weight being closely 
related to the hypothesis probability P{Hj|z} . Based on these, we can obtain the final JTI 
tracking result x̌(i). (Suppose decision is Di.)

Second, for identification, the JTI identification solution is given in (7), where the key is 
the expected estimation cost ξij(z) and the posterior hypothesis probability P{Hj|z} . Spe-
cifically, for the former ξij(z) = mse(x̂(j)|Hj , z)+ (x̂(j) − x̌(i))′(·) [given in (8)], the key is 
to obtain mse(x̂(j)|Hj , z), x̂(j) , and x̌(i) . Among these, mse(x̂(j)|Hj , z) and x̂(j) can be deter-
mined by EMA under hypothesis Hj , and x̌(i) can be determined by (5). For the latter 
P{Hj|z} , the detailed calculation is given in (14).

3.4 � A JTI algorithm in complex traffic scene

Based on the above JTI tracking and identification results, we propose the following JTI 
algorithm at time k.

1. Initialization. Under each hypothesis Hj ( j = 1, 2, . . . ,N ), calculate the hypothesis-conditioned estimate 
x̂
(j)
k−1

 , the corresponding MSE P(j)k−1
 , and the hypothesis probability P{Hj |zk−1} at time k − 1.

2. One-step prediction. Following the UKF-EMA-based estimation method, calculate the one-step predicted 
state estimate x̂(j)k|k−1

 and MSE P(j)k|k−1
.

3. Update. When data zk comes, update x̂(j)k|k and P̂(j)k|k . Based on these, calculate x̌(i)k|k ( i = 1, 2, . . . ,N ) according 
to (5).

4. Further calculation. Calculate the expected estimation cost ξij(zk) by (8) and the posterior cost Ci(zk) . Then, 
JTI decision is Di

k , if C
i(zk) ≤ C

l(zk), ∀l.

5. Output Output the constrained JTI solution for time k: Dk = Di
k in step 4 and x̂k = x̌

(i)
k  in step 3.

f
{
z|mjq ,H

j
}
= Ljq(k)

P
{
mjq|H

j
}
= µjq(k)
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1 � Remark 5

The complexity of the proposed JTI algorithm is analyzed as follows.

(a) The tracking and identification results can be obtained jointly without iteration. The 
above algorithm steps show that to achieve the dual goals (tracking and identification), 
no iteration is required. Once new data come, after simple implementation of steps 1, 2, 
and 3, we can achieve the dual goals simultaneously.

(b) All elements are obtained by point estimation without any density estimation, which 
makes it easy in implementation. Specifically, the hypothesis-conditioned estimate x̂(j)k ,

the estimation MSE P(j)
k  , the hypothesis probability P{Hj|zk} , the expected estimation 

cost ξij(zk) , the posterior cost Ci(zk) , the finally JTI tracking result x̌(i)k , and identification 
result Di

k are all obtained by point estimation. In other words, the proposed UKF-EMA 
strategy does not involve any density estimation.

In summary, the proposed JTI algorithm has low implementation complexity due to its 
point estimation basis. Note that this paper considers tracking and identification with 
high maneuverability and high nonlinearity, while the traditional methods for such 
problems usually adopt density estimation-based method, e.g., particle filter, random 
finite set methods. From this point of view, this paper has superiority in calculation 
complexity.

3.5 � Joint performance evaluation metric

The traditional performance evaluation of JDE problems is that the decision performance 
and the estimation performance are evaluated separately using their own metrics, where 
the correct-decision rate is usually used for decision performance evaluation, while mean 
square error is used to evaluate the estimation performance [33, 34]. For JDE problems, 
however, they are comprehensive and may even fail to compare different algorithms. Con-
sidering this, reference [8, 35] points out that decision and estimation performance should 
be evaluated jointly rather than separately.

To evaluate the joint performance of JTI in complex traffic scene, we adopt the following 
joint performance measure (JPM), as proposed in [17]:

in which dik(H
i, D̂k) and dtk(xk , x̂k) are the cost for identification and tracking, respec-

tively. Specifically, if decision is correct ( ci = D̂k ), dik(H
i, D̂k) = 0 ; otherwise, 

dik(H
i, D̂k) = 1 . dtk(xk , x̂k) is the normalized estimation cost, which is defined in detailed 

in [15]. γ is the weight factor, which can adjust the relative weight of tracking and identi-
fication cost.

(15)�k = dik(H
i
, D̂k)+ γdtk(xk , x̂k)
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4 � Simulation and discussion
This section presents two typical JTI problems in complex traffic scene. Performance 
evaluation metrics are root-mean-square error (RMSE), probability of correct clas-
sification (PC), and JPM. The compared methods are the traditional identification-
then-tracking (I-then-T), tracking-then-identification (T-then-I), and our proposed 
JTI method.

Specifically, in I-then-T, the optimal Bayes decision is made first based on the pos-
terior hypothesis probability, and then, estimation is obtained based on this decision. 
In T-then-I, the minimum mean square error (MMSE) optimal estimation is obtained 
first, and then, decision is made based on the ratio of current measurement likeli-
hoods conditioned on x̂k|k−1 and Hj [13].

Suppose a vehicle moves in complex traffic scene, whose class may be c1 or c2 . We 
want to identify the target class and track its state jointly using all available data. 
Here, classes differ in dynamic behaviors, which is reasonable since targets in differ-
ent classes usually have different behaviors in reality. For example, for a car and a 
truck, a car usually has larger maneuverability than a truck. For model-based tracking 
or classification, such dynamic behaviors are described by motion models.

Two examples simulate two different scenarios. Example 1 considers a constant 
turning motion at a corner of a road, while Example 2 considers a complicated mov-
ing at a crossroads. These are very common and representative mobilities in practical 
complex traffic scene.

4.1 � Example 1: Simulation scenario at a corner

In this example, we consider a complex turning motion at the corner of a road. 
Classes differ from each other in turning rates (e.g., a car moving on the inner lane 
has larger turning rate than a bus moving on the outer lane); therefore, identification 
is based on this difference. However, the turn rate is unknown in advance and change-
able over time, and it is not easy to determine it. Our goal is to track the vehicle’s state 
and identify its class jointly.

We propose to use the constant turn (CT) model to describe the target motion [36]. 
Suppose the target state at time k is xk = [pxk , v

x
k , p

y
k , v

y
k ]

′ , in which pxk , v
x
k , p

y
k , v

y
k denotes 

position in x-axis, velocity in x-axis, position is y-axis, and velocity in y-axis, respec-
tively. The system model is given by:

where the transition function FCT (ω) is given by

and the covariance of process noise is

(16)
xk+1 = FCT (ω)xk + wk

zk+1 = hk(xk+1)+ vk

(17)FCT (ω) =




1 sinωT
ω

0 − 1−cosωT
ωT

0 cosωT 0 − sinωT

0 1−cosωT
ωT 1 sinωT

ω
0 sinωT 0 cosωT



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The measurement model is

The initial target state x0 = [500, 10, 500, 10]′;P0 = [104, 1, 104, 1]′ . The measure-
ment noise vk in one dimension follows N (0, 502m2) . The JPM (15) with γ = 1 is used. 
cij = 1, cii = 0,αij = 1,

∑
i βij = 10−4,βii/βij = 1.5 . All results were obtained from 

10000 MC (Monte Carlo) runs. The true target class is randomly generated with equal 
probabilities in each MC run, i.e., P(c1) = P(c2) = 0.5.

The parameters in EMA estimation are as follows. For class 1, the fixed model set is 
{3π/180, 4π/180} ; for class 2, the fixed model set is {6π/180, 10π/180, 12π/180, 8π/180} . 
For each class at each time step, we use one expected model, i.e., EMA{2+ 1} and 
EMA{4 + 1} for classes 1 and 2, respectively. The transition probability matrix (TPM) for 
the total model set (containing the expected one) is as follows:

Simulation results are presented in Fig.  3. They show that for tracking, T-then-I per-
forms best, JTI is in the middle and I-then-T is the worst. Here, T-then-I is best as is 
desired since its tracking is MMSE estimation, which is optimal in the sense of mse. 
I-then-T is worst since it does tracking completely based on the decided class without 
considering possible decision errors. For identification, I-then-T performs best since 
with cii = 0, cij = 1(i �= j) , identification in I-then-T is the minimal-error-rate decision, 
which has the highest correct identification rate. T-then-I has the worst decision perfor-
mance since it does decision based on the one-step predicted estimation.

For the joint performance, JTI outperforms I-then-T and T-then-I. This verifies that 
JTI can make a good trade-off between optimal decision and optimal estimation and 
finally performs best in joint performance, which is cared about most in a joint problem. 
Specifically, within about 18 steps, JTI is significantly superior than I-then-T and is very 
close to T-then-I. After 18 steps, JTI is close to I-then-T but consistently superior than 
T-then-I. Quantitatively, the joint performance of JTI is improved by 30% compared 
with T-then-I at the steady state. In general, the proposed JTI is significantly superior 
than the traditional two-step methods.

cov(wk) =


2(ωT−sinωT )

ω3

1−cosωT
ω2 0 ωT−sinωT

ω2

1−cosωT
ω2 T −ωT−sinωT

ω2 0

0 −ωT−sinωT
ω2

2(ωT−sinωT )

ω3

1−cosωT
ω2

ωT−sinωT
ω2 0 1−cosωT

ω2 T




(18)hk(xk) =




�
(pxk)

2 + (p
y
k)

2

arctan
p
y
k

pxk




TPM1 =



0.9 0.05 0.05

0.15 0.85 0

0.15 0 0.85




TPM2 =




0.9 0.025 0.025 0.025 0.025

0.15 0.85 0 0 0

0.15 0 0.85 0 0

0.15 0 0 0.85 0

0.15 0 0 0 0.85



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1 � Remark 6

To see more clearly, we also provide the lower bound of the joint performance, as shown in 
Fig. 4. In Fig. 4, “ideal” means the ideal case in which the true target class is known, and 
only the joint performance is presented since it is the most desirable performance. Figure 4 
verifies that with the accumulation of data, the proposed JTI approach is robust and is 
near to the lower bound of that in the ideal case.

Fig. 3  JTI at a corner of a road

Fig. 4  JTI at a corner with the ideal case
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4.2 � Example 2: Simulation scenario at a crossroad

In this simulation, we consider a typical moving at a crossroads, as illustrated in 
Fig.  1b. The vehicle passing the crossroads goes strait first, and then turns, and 
then goes strait ahead. This follows the “strait-turn-strait” mode and can be repre-
sented by the linear motion and the turn motion. We propose to use the constant 
acceleration (CA) and CT models to describe this motion [36]. With the target state 
xk = [pxk , v

x
k , p

y
k , v

y
k ]

′ , the system model is given by:

When the target moves in a CA model,

while when the target moves in a CT model, the dynamic model is the same as in Exam-
ple 1.

and

Here, wx
k and wy

k , which are modeled as process noises, are actually the accelerations 
along the x- and y-axes, respectively.

When the vehicle moves in a CA model, α1
CA = 1g ,α2

CA = 2g ,where g = 9.8m/s;

when the vehicle moves in a CT model, ω1 = 3π/180(rad/s),ω2 = −18π/180(rad/s) . 
The initialization parameters are the same as in Example 1. The total time step is 
30s, and the target motion is as follows: 0–10s, CA model; 10–20s, CT model; and 
20–30s, CA model. In this example, since the target motion pattern changes over 
time, single model is adopted to eliminate the interference caused by the model 
switching and only to verify the proposed JTI algorithm.

The simulation results are presented in Fig.  5. It can be seen that for tracking, 
T-then-I performs best, JTI is in the middle, and I-then-T performs worst. This is 
consistent with our expectations, and the reason is the same as in Example 1. For 
identification, I-then-T performs best since it is the minimal-error-rate decision. 
For joint performance, JTI is the best, which verifies that JTI is robust to compli-
cated mobility and continuously better than the traditional methods. Generally, this 
fully demonstrates the superiority of the proposed JTI approach in complex motion 
scenario.

(19)
xk+1 = fk(xk)+ wk

zk+1 = hk(xk+1)+ vk

(20)xk+1 =



1 T 0 0

0 1 0 0

0 0 1 T
0 0 0 1


xk + G[αCA,αCA]

′ + Gwk ,

(21)G =



T 2/2 0

T 0

0 T 2/2

0 T


,wk =

�
wx
k

w
y
k

�

(22)Sw = cov(wx
k) = cov(w

y
k)
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Fig. 5  JTI at a crossroads of a road



Page 19 of 21Cao et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:119 	

1 � Remark 7

Generally, the JTI problem in complex traffic scene is formulated (by illustration and 
models) in Sect. 2, the JTI solution with theoretical analyses is provided in Sect. 3, and the 
simulation verification is presented in Sect. 4.

For problem formulation, there are all kinds of complex traffic scenes, among which 
complicated mobility and high nonlinearity are common and typical. Therefore, we for-
mulate the JTI problem based on these two scenarios. More importantly, JTI as a joint 
problem has highly coupled tracking and identification, which is critical in this paper.

For solution, we explore a JTI solution accounting for the practical complex traffic scene 
and also utilizing the coupling between tracking and identification. Specifically, JTI solu-
tion with incorporated UKF-EMA estimation strategy is proposed, which has superior 
joint performance by utilizing the coupling information and also considers the practical 
complicated mobilities.

For simulation, two typical examples representing different complex scenes fully dem-
onstrate the superiority of the proposed JTI approach. Simulation results show that the 
proposed JTI approach with incorporated UKF-EMA estimation can beat the traditional 
two-step strategies and finally performs best in joint performance.

5 � Conclusions
This paper proposes a new joint tracking and identification (JTI) approach for practi-
cal JTI problem in complex traffic scene. JTI is essentially a joint decision and estima-
tion (JDE) problem, and better solution requires solving the tracking and identification 
jointly. The recently proposed JDE framework provides a good framework for solving 
such problems involving coupled decision and estimation.

First, we formulate the JTI problem in complex traffic scene using a hybrid system model. 
Then, an applicable JTI approach which considers the complexities of practical traffic scene 
and also the interdependence between tracking and identification is proposed. Specifically, 
we propose a CJDE-based JTI risk and then derive a JTI solution by minimizing this risk. 
A new UKF-EMA-based estimation strategy is proposed. On the one hand, it guarantees 
the superiority of estimation performance due to UKF in handling nonlinear estimation 
and EMA in handling complicated motions. On the other hand, it facilitates the decision by 
providing quantities required in JTI decider. Also presented is a joint performance evalua-
tion metric which can evaluate tracking and identification performance comprehensively.

Simulation results demonstrate the superiority of the proposed JTI approach in com-
plex traffic scene. By considering the characteristics of JTI in practical complex traffic 
scene and also the highly coupling between tracking and identification, the proposed 
JTI approach beats the traditional T-then-I and I-then-T methods in joint performance. 
Note that this paper focuses on the complexity and nonlinearity of the target motion for 
one single target, multiple targets scenarios will be investigated in the future.



Page 20 of 21Cao et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:119 

Abbreviations
JTI	� Joint tracking and identification
JDE	� Joint decision and estimation
CJDE	� Conditional joint decision and estimation
VSMM	� Variable-structure multiple model
EMA	� Expected-mode augmentation
UKF	� Unscented Kalman filter
MMSE	� Minimum mean square error
CT	� Constant turn
CA	� constant acceleration
JPM	� Joint performance metric
I-then-T	� Identification-then-tracking
T-then-I	� Tracking-then-identification

Acknowledgements
The authors would like to express their sincere thanks to the editors and anonymous reviewers.

Author contributions
WC conceived the idea and proposed the JTI approach. QL and YH provided guidance on the analysis and simulations. 
WC wrote the majority of the manuscript. SM revised the manuscript and provided constructive suggestions. All authors 
read and approved the final manuscript.

Funding
Research was supported in part by the Fundamental Research Funds for the Central Universities, CHD (300102322103); 
the National Natural Science Foundation of China (61803042); Shaanxi Provincial Natural Science Foundation of China 
(2021JM-186)

Availability of data and materials
Data sharing is not applicable to this article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Approved.

Competing interests
The authors declare that they have no competing interests.

Received: 21 July 2022   Accepted: 2 December 2022

References
	1.	 Y. Bar-Shalom, X.R. Li, T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and 

Software (Wiley, New York, 2001)
	2.	 R.O. Chavez-Garcia, O. Aycard, Multiple sensor fusion and classification for moving object detection and tracking. 

IEEE Trans. Intell. Transp. Syst. 17(2), 525–534 (2016)
	3.	 W. Yi, Z. Fang, W. Li, R. Hoseinnezhad, L. Kong, Multi-frame track-before-detect algorithm for maneuvering target 

tracking. IEEE Trans. Veh. Technol. 69(4), 4104–4118 (2020)
	4.	 T. Li, M. Mallick, Q. Pan, A parallel filtering-communication-based cardinality consensus approach for real-time 

distributed PHD filtering. IEEE Sens. J. 20(22), 13824–13832 (2020)
	5.	 M. Mallick, V. Krishnamurthy, B.-N. Vo, Integrated Tracking, Classification, and Sensor Management: Theory and Applica-

tions (Wiley IEEE Press, New York, 2012)
	6.	 K.C. Chang, R. Fung, Target identification with Bayesian networks in multiple hypothesis tracking system. Opt. Eng. 

36, 684–691 (1997)
	7.	 B. Ristic, N. Gordon, A. Bessell, On target classification using kinematic data. Inf. Fusion 5, 15–21 (2004)
	8.	 W. Cao, J. Lan, X.R. Li, Conditional joint decision and estimation with applications to joint tracking and classification. 

IEEE Trans. Syst. Man Cybern. Syst. 46(4), 459–471 (2016)
	9.	 T. Kurien, Framework for integrated tracking and identification of multiple targets, in Proceedings of Digital Avionics 

System Conference (Burlington, 1991), pp. 362–366
	10.	 Y. Bar-Shalom, T. Kirubarajan, C. Gokberk, Tracking with classification-aided multiframe data association. IEEE Trans. 

Aerosp. Electron. Syst. 41(3), 868–878 (2005)
	11.	 H. Lang, C. Shan, M.T. Pronobis, S. Scott, Wavelets feature aided tracking (WFAT) using GMTI/HRR data. Signal Process. 

83(12), 2683–2690 (2003)
	12.	 X. R. Li, Optimal Bayes joint decision and estimation, in  International Conference on Information Fusion (Quebec City, 

2007), pp. 1316–1323



Page 21 of 21Cao et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:119 	

	13.	 Y. Liu, X. R. Li, Recursive joint decision and estimation based on generalized Bayes risk, in 14th Internatinal Conference 
on Information Fusion (Chicago, 2011), pp. 2066–2073

	14.	 W. Cao, J. Lan, X. R. Li, Extended object tracking and classification based on recursive joint decision and estimation, 
in 16th International Conference on Information Fusion (Istanbul, 2013), pp. 1670–1677

	15.	 W. Cao, J. Lan, X. R. Li, Joint tracking and classification based on recursive joint decision and estimation using multi-
sensor data, in  17th International Conference on Information Fusion (Salamanca, 2014)

	16.	 W. Cao, J. Lan, X.R. Li, Extended object tracking and classification using radar and ESM sensor data. IEEE Signal 
Process. Lett. 25(1), 90–94 (2018)

	17.	 W. Cao, J. Lan, Q.S. Wu, Joint tracking and identification based on constrained joint decision and estimation. IEEE 
Trans. Intell. Transp. Syst. 22(10), 6489–6502 (2021)

	18.	 X.R. Li, V.P. Jilkov, Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Elec-
tron. Syst. 41(4), 1255–1321 (2005)

	19.	 X.R. Li, Y. Bar-Shalom, Multiple-model estimation with variable structure. IEEE Trans. Autom. Control 41(4), 478–493 
(1996)

	20.	 X.R. Li, V.P. Jilkov, J. Ru, Multiple-model estimation with variable structure. Part VI: expected-mode augmentation. 
IEEE Trans. Aerosp. Electron. Syst. 41(3), 853–867 (2005)

	21.	 T. Kirubarajan, Y. Bar-Shalom, Tracking evasive move-stop-move targets with a GMTI radar using a VS-IMM estimator. 
IEEE Trans. Aerosp. Electron. Syst. 39(3), 1098–1103 (2003)

	22.	 M. Ekman, E. Sviestins, Multiple model algorithm based on particle filters for ground target tracking, in Proceedings 
of International Conference on Information Fusion (Quebec City, 2007)

	23.	 Y. Cheng, T. Singh, Efficient particle filtering for road-constrained target tracking. IEEE Trans. Aerosp. Electron. Syst. 
43(4), 1454–14693 (2007)

	24.	 S.J. Julier, J.J. LaViola, On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process. 55(6), 
2774–2784 (2007)

	25.	 L. Xu, X.R. Li, Z. Duan, J. Lan, Modeling and state estimation for dynamic systems with linear equality constraints. IEEE 
Trans. Signal Process. 61(11), 2927–2939 (2013)

	26.	 A. Jazwinski, Stochastic Processing and Filtering Theory (Academic, New York, 1970)
	27.	 S.J. Julier, J.K. Ulhmann, H.F. Durrant-Whyte, A new method for the nonlinear transformation of means and covari-

ances in filters and estimators. IEEE Trans. Autom. Control 45(3), 472–482 (2000)
	28.	 K. Ito, K. Xiong, Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)
	29.	 I. Arasaratnam, S. Haykin, Cubature Kalman filters. IEEE Trans. Autom. Control 54(6), 1254–1269 (2009)
	30.	 V. Gaikwad, S. Lokhande, Lane departure identification for advanced driver assistance. IEEE Trans. Intell. Transp. Syst. 

16(2), 910–918 (2015)
	31.	 L. Martinez, M. Paulik, M. Krishnan, E. Zeino, Map-based lane identification and prediction for autonomous vehicles, 

in 2014 IEEE International Conference on Electro/ Information Technology (EIT) (2014), pp. 448–453
	32.	 Z.J. Liu, Q. Li, X.H. Liu, J. Lan, C.D. Mu, An expected-mode augmentation-based approach for multiple-fault detection 

and diagnosis in flight control systems. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 226(G10), 1202–1213 (2012)
	33.	 X. R. Li, Z. Zhao, Measures of performance for evaluation of estimators and filters, in Proceedings of SPIE Conference on 

Signal and Data Processing of Small Targets, vol. 4473 (San Diego, 2001)
	34.	 X. R. Li, Z. Duan, Comprehensive evaluation of decision performance, in Proceedings of International Conference on 

Information Fusion (2008), pp. 1–8
	35.	 X. R. Li, M. Yang, J. Ru, Joint tracking and classification based on Bayes joint decision and estimation, in International 

Conference on Information Fusion (Quebec City, 2007), pp. 1421–1428
	36.	 X.R. Li, V.P. Jilkov, Survey of maneuvering target tracking. Part I: dynamic models. IEEE Trans. Aerosp. Electron. Syst. 

39(4), 1333–1364 (2003)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Joint target tracking and identification in complex traffic scene
	Abstract 
	1 Introduction
	2 Problem formulation
	2.1 Problem description
	2.2 Modeling

	3 Methods
	3.1 Motivation
	3.2 JTI solution in complex traffic scene
	3.2.1 Estimator
	3.2.2 Decider

	3.3 Determination of JTI tracker and identifier in complex traffic scene
	3.3.1 Determination of 
	3.3.2 Determination of 

	3.4 A JTI algorithm in complex traffic scene
	3.5 Joint performance evaluation metric

	4 Simulation and discussion
	4.1 Example 1: Simulation scenario at a corner
	4.2 Example 2: Simulation scenario at a crossroad

	5 Conclusions
	Acknowledgements
	References


