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Abstract 

The blind signal separation (BSS) algorithm obtains each original/source signal from 
the observed signal collected by the receiving antenna or sensor. Objective/loss/cost 
function and optimization method are two key parts of BSS algorithm. Modifying the 
objective function and optimization from the perspective of neural network (NN) is 
a novel concept in BSS domain. L2 regularization is adopted as a term of maximum 
likelihood estimation (MLE)-based objective function like in Liu et al. (Sensors 21(3):973, 
2021); however, we modified the probability density function (PDF) term of the objec-
tive function and used the kernel density estimation method for time–frequency 
overlapped digital communication signal. Multiple optimizers are studied in this paper, 
and we figure out the right optimizer for our application scenario. A varies of compari-
son experiments—whose separation results will be provided in forms of correlation 
coefficient and performance index—are carried out, which indicate our method can 
converge quickly and achieve satisfactory separation results with performance index 
(PI) lower than 0.02 when signal-to-noise ratio (SNR) no less than 10dB. Additionally, it 
demonstrates performance of our method is better than that of typical separation—
FastICA, especially for the lower SNR environment, and it shows that our method is not 
sensitive to the frequency overlap level (FOL) of the source signal, even FOL as high as 
100% ; it still can get high-precision separation results with PI < 0.02.

Keywords:  Blind signal separation, Time–frequency overlapped signal, Neural 
networks, Maximum likelihood estimation, Kernel density estimation

1  Introduction
In nowadays information era, the types of communication or radar electronic equip-
ment for both military and civilian applications are increasing significantly, which leads 
to various communication and radar signals overcrowded in time domain, overlapped in 
frequency domain and intertwined in space domain shaping a more complicated elec-
tromagnetic environment [1]. As a result, the interception probability of time–frequency 
overlapped signals has been improved for communication reconnaissance equipment. In 
order to accurately capture the interested signal or discover the interference signal, sepa-
rating these time–frequency overlapped signals and extracting the information implied in 
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the useful signal have become a research task with significant for electromagnetic surveil-
lance domain. Since the middle of the 1990s, the blind signal separation (BSS) [2] prob-
lem—with aim of separating the source signals from mixed observation signal without 
knowing information of the original signal and transmission system—has been addressed 
by many researchers, with expertise in various domains: electromagnetic surveillance and 
reconnaissance, biomedical signal processing, array signal processing, speech signal pro-
cessing, image processing [3], wireless communication, neural networks, etc. Many clas-
sic BSS algorithm theories have been proposed, such as independent component analysis 
(ICA), sparse component analysis (SCA) and nonnegative matrix factorization (NMF).

Independent component analysis (ICA) is the most popular and widely used BSS algo-
rithm, and it is mainly used for over-determined and determined BSS—the number of 
mixed observation signals is more than or equal to the number of original signals to 
be separated and requires the source signal to have independent characteristics. Jutten 
et  al.  [4] firstly made a rigorous mathematical description for the blind signal separa-
tion problem and proposed independent component analysis (ICA). Comon [5] gave a 
detailed explanation of ICA and proposed the mathematical model, basic assumptions 
and separability conditions of ICA. Bell et al. [6] used the information theory criteria to 
construct the cost function combining the neural network learning algorithm success-
fully completed the separation task of ten speech signals. Since then, ICA has attracted 
the interest of many researchers and proposed many ICA-based BSS methods, such as 
second-order blind identification algorithm (SOBI) [7], fourth-order blind identification 
algorithm (FOBI) [8], joint approximate diagonalization of eigenmatrices (JADE) [9] and 
Fix-point ICA [10]. Among them the fix-point ICA algorithm proposed by Hyvarinen 
[10] with fast convergence speed and good robustness was the most popular one, well 
known as fast ICA (FastICA). FastICA algorithm was expanded and improved, Ollila 
et al. [11] provide a rigorous statistical analysis of the deflation-based FastICA estimator, 
Dermoune et al. [12] gave a rigorous analysis of the asymptotic errors of FastICA estima-
tors, Wei [13] derived the general and rigorous expression of the limiting distribution 
and the asymptotic statistics of the FastICA algorithm, and so on. Oja et al.  [14] pro-
vided a rigorous convergence analysis for FastICA. Novey et al. [15] proposed a complex 
fast independent component analysis (c-FastICA) algorithm to solve the ICA problems 
with complex-valued data. FastICA algorithm has been successfully applied in different 
fields, such as electroencephalography (EEG) processing [16, 17], single-channel digi-
tal communication signal separation [18], modern power systems [19] and joint radar 
and communication signal separation [20]. Additionally, some researchers finished the 
implication of FastICA algorithm, like Shyu et al.  [21] implemented the FastICA algo-
rithm in a field-programmable gate array (FPGA), with the ability of real-time sequential 
mixed signals processing by the proposed pipelined FastICA architecture.

Sparse component analysis (SCA) is a simple yet powerful framework for blind signal 
separation, especially for the under-determined signal separation—the number of mixed 
observation signals is less than that of original signal number, and SCA has been success-
fully applied in BSS for the original signal which can be represent sparsely in a given basis, 
even for the independence assumption is dropped [22]. SCA has been applied in image 
mixture separation [23–25], speech signal separation [26, 27], biological signal separa-
tion [28, 29] and so on. Reference [23, 24] separated a mixture of images using wavelet 
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sparsification technology. Bofill et al.  [26] proposed a cluster algorithm-based—with the 
assumption signal has sparsity character in the frequency domain—under-determined sig-
nal separation methods for speech and music signals. Yang et al. [30] proposed a new two-
stage scheme combining density-based clustering and sparse reconstruction to estimate 
mixing matrix and sources for speech signal separation. Li et al. [28] proposed a separation 
method based on SCA, which focused on the applications of sparse representation in brain 
signal processing, including components extraction, BSS and EEG inverse imaging, feature 
selection and classification. Tsouri et al. [29] proposed and evaluated a method of 12-lead 
electrocardiogram (ECG) reconstruction from a three-lead set. Rahbar et al. [31] discussed 
a frequency-domain method based on SCA for blind identification of multiple-input mul-
tiple-output (MIMO) convolutive channels driven by white quasistationary sources.

Except SCA, some under-determined BSS methods utilize nonnegative matrix factori-
zation (NMF) to exploit the nonnegativeness signal, such as speech/audio signal [32–34], 
image [35] and biological signal [36]. Gao et al. [32] proposed a new unsupervised sin-
gle-channel source separation method for mixed audio signal, which employed gamma-
tone filterbank to replace time–frequency representation. Nikunen et al. [33] addressed 
the problem of sound source separation from a multi-channel microphone array capture 
via estimation of source spatial covariance matrix (SCM) of a short-time Fourier-trans-
form mixture signal. Pezzoli et al. [34] proposed a ray-space-based multi-channel NMF 
method for audio source separation. Yang et al. [35] proposed an adaptive non-smooth 
NMF separation method for image signal. Gurve et al. [36] proposed a method for sep-
aration of fetal electrocardiogram (ECG) from abdominal ECG using activation scaled 
NMF. Gao et al. [37] proposed a graph-based blind hyperspectral unmixing via NMF.

BSS problem has three mainstream methods, such as ICA, SCA and NMF, but not 
limited to those three methods, taking source signal characteristics-based BSS method 
proposed in reference [38–40], for example. Szu et al. [38] proposed an effective single-
channel BSS method based on the limited character set feature of digital communication 
signal. Warner et al. [39] presented a single-channel separation approach based on the 
differences between shaping filters. Pang et al. [40] proposed a novel BSS method for sin-
gle-input multi-output (SIMO) system based on the periodicity of original signal, which 
can separate time–frequency overlapped multi-component signal effectively. Recently, a 
BSS method, combining the maximum likelihood estimation (MLE) criterion and a neu-
ral network (NN) with a bias term, is proposed in reference [41]. Based on this archi-
tecture, we employ neural network to implicate time–frequency signal communication 
signal separation based on MLE, the main difference to reference [41] is the application 
field, and the main innovation is that—for our application area time–frequency over-
lapped digital communication signal separation—we use the kernel density estimation 
method to estimate the probability density of the digital communication signal instead 
that in paper [41] using fixed function expression based on the type of the source signals.

1.1 � Our contributions

The main contributions and results are summarized as follows.



Page 4 of 25Pang et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:121 

•	 To the best of our knowledge, we are the first to explicitly explore the applicability of 
using neural network to accomplish time–frequency overlapped digital signals sepa-
ration based on maximum likelihood estimation. In contrast, the prior work [41] 
employed a fixed function to express the original signals’ probability density based on 
signal type—super-Gaussian distribution or sub-Gaussian distribution or Gaussian dis-
tribution; however, we use kernel density estimation method to estimate the probabil-
ity density of the original digital communication signal, and then, the estimation results 
will be regarded as a term of cost function.

•	 We provide the cost function based on MLE—the detail will be introduced in Sect. 3.1, 
and we further examine the convergence and the separation performance of different 
optimizers, such as Adam and RMSprop, which will be provided in Sect. 4.

•	 We formulate critical performance metrics to evaluate the separation results, i.e., cor-
relation coefficient ( ζ ) and performance index ( PI ), and perform an extensive evaluation 
of the separation methodology to validate the efficacy of the formulations. Addition-
ally, we compare the separation performance of our method with most widely used BSS 
algorithms—FastICA and JADE.

1.2 � Paper organization

In Sect. 2, we provide signal mix model, separation model and separation results evaluation 
index. In Sect. 3, we present our theoretical framework and provide each parts in detail, 
as signal preprocessing, cost function, probability density function estimation, optimizer 
and the used NN structure. We further provide a discussion together with future work in 
Sect. 5. In Sect. 4, by using two BPSK and one QPSK time–frequency overlapped signal as 
a case study, we examine and compare our separation method’s performance—including 
comparison between different optimizers—with FastICA and JADE in terms of correlation 
coefficient ( ζ ) and performance index ( PI ). We conclude this work in Sect. 6.

2 � Signal model
The aim of the blind signal separation is to obtain each original signal from mixed observa-
tion signal. Generally, according to whether the mixed observation signal contains reflec-
tion component or time-delay component of original signal, the signal mixed model can be 
divided into three types, linear instantaneous mixing model, linear delay mixing model and 
linear convolutional mixing model. In this paper, we are focusing on deal with the separa-
tion problem of linear instantaneous mixing model. The instantaneous linear mixture of 
several independent original signals can be expressed as Eq. (1).

where

(1)x = As+ v,

(2)s = [s1, s2, . . . , sD]
T ,

(3)x = [x1, x2, . . . , xM]T ,
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where D and M represent source signal number and observation signal number, respec-
tively. T means transpose operation. A ∈ R

M×D is mixed matrix, which is a full rank 
matrix. v is the additive white Gaussian noise with variance σ 2.

The signal separation system is shown in Fig. 1, W ∈ R
D×M , stands for the unmixing 

or separation matrix, and our goal is to find a unmixing matrix W which is approxi-
mately equal to the inverse matrix A , as shown in Eq. (5).

where Wv is the noise component; in the theoretical derivation process, we ignored this 
noise component, and then, Eq. (5) can be simplified as:

However, the noise component will be given full consideration in the simulation, and 
we will add a bias term b into the our cost function. The bias term b is the just compo-
nent that represents the noise part and participates in the optimization process of the 

(4)A =

a11 a12 . . . a1D
a21 a22 . . . a2D
...

...
. . .

...
aM1 aM2 . . . aMD

,

(5)Wx = W(As+ v) ≈ Is+Wv = ŝ+Wv,

(6)Wx = W(As) ≈ Is → ŝ.

Fig. 1  Overview of signal separation model
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proposed separation algorithm. The bias term b is not only beneficial for reducing the 
static error of the separation system, but also improved the flexibility of the separation 
system.

In this work, the correlation coefficient ζsi ŝi—between si and its corresponding esti-
mated signal ŝi(i = 1, 2, . . . ,D ), and the performance index PI [42–44] are employed to 
measure the separation performance. The definition of ζsi ŝi and PI is shown in Eqs. (7) 
and (8), respectively.

where cov(·) , E(·) and V (·) represent covariance, mean value and variance, respectively. 
0 ≤ ζsiŝi ≤ 1 and the lager ζsi ŝi is, the better separation performance will be. pij is the ith 
row and jth column of matrix P:

PI ≥ 0 , and the lower PI is, the higher the separation accuracy will be, and PI < 0.1 typi-
cally indicating the algorithm is performing adequately [44].

3 � Separation model
The theoretical framework of blind signal separation can be divided into two parts: 
objective function and optimization algorithm. The objective function is usually called 
the cost function. Figure 2 provides the separation methodology’s topological structure 
diagram—expanded around that two core parts objective/cost function and optimiza-
tion algorithm—of this paper.

As shown in Fig. 2, the topological structure of our separation methodology includes 
observation signal model, signal separation model and estimated signal. The observation 
signal model has been introduced in detail in Sect. 2. The signal separation model—the 
core of this paper—contains cost function and its optimization—detail introduction will 

(7)ζsi ŝi =
cov(si, ŝi)
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]

√
V (si)

√

V
(

ŝi
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(9)P = WA,P ∈ R
D×D.

Fig. 2  The topological structure diagram of the separation methodology of this paper
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be given in Sects. 3.2 and 3.4, respectively, and we employed the neural network(NN)—
detail introduction as shown in Sect.  3.5—to complete this task. The inputs of NN 
contains preprocessed—as it is introduced in Sect.  3.1—original mixed signal and its 
corresponding probability destiny function (PDF) estimation—one term of the cost 
function—as it is given in Sect. 3.3. The estimated signal obtained will be evaluated by ς 
and PI , defined by Eqs. (7) and (8), respectively.

3.1 � Preprocessing

Preprocessing on received mixed observation signal includes de-averaging and whiten, 
and the corresponding mathematical explanation is shown in Eqs. (10) and (11).

where E(·) represents taking the mean value. The zero-mean signal form can simplify the 
separation process.

where V is the whiten matrix:

where G is a diagonal matrix and its diagonal element gi is eigenvalue of the covariance 
matrix of x , and ei is their corresponding eigenvectors, i = 1, 2, . . . ,D . H means conju-
gate transpose operation.

It is worth to mention that the mixed matrix A has changed into A′ = VA after whiten. 
Therefore, we should take the whitening matrix into consideration when calculate PI.

3.2 � Cost function

The cost function of our separation method is built based on maximum likelihood esti-
mation (MLE). First, the maximum likelihood (ML) estimation derivative process for 
blind signal separation will be illustrated. Then, the cost function of our separation 
method will be provided based on ML criterion. Additionally, the probability density 
function of original signal will be estimated through kernel density function estimation 
method.

3.2.1 � Maximum likelihood criterion

After preprocessing the observation signal can be expressed as x = VAs , and its joint 
probability density function is shown in Eq. (15).

(10)x ← x − E(x),

(11)x
′ = Vx,

(12)V = G
− 1
2E

H ,

(13)G = diag
(

g1, g2, . . . , gD
)

,

(14)E = [e1, e2, . . . , eD],

(15)px(x;W) =
∣

∣det(W)
∣

∣ps(Wx),
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where W is the unmixed/separation matrix, and ps is the joint probability density func-
tion of the source components. We can assume that the source signal is statistically inde-
pendent. Using wi to represent the ith column vector of W , then:

Using ŝi[n] (n = 1, 2, . . . ,N ) to express the sample points of estimated signal ŝi , N is the 
total sampling points number. Then, we can implement the likelihood function opera-
tion by Eq. (16) [44, 45]:

Performing logarithmic operation and dividing the number of samples on both sides of 
Eq. (17):

According to the maximum likelihood estimation criterion, we can obtain the optimal 
solution by maximizing L(W) . Therefore, −L(W) function is employed as part compo-
nents of our cost function.

3.2.2 � MLE‑based cost function

The MLE-based cost function of our method is composed by log-likelihood function and a 
bias term ( b ) [41]. However, the bias term ( b ) in our method is much different from that of 
reference [41]. We modified the second part of log-likelihood function and use the kernel 
density estimation method to obtain the joint probability density function of the original 
signal. Additionally, we add a constant in the cost function in case there appear illegal val-
ues. Then, the cost function used in this paper is shown in Eq. (19).

where ‘argmin’ means taking the minimum value. The first two parts are derived from 
MLE; we add a constant ‘ c ’ in the second part, which is used to avoid illegal values in 
the original signal joint probability density function estimation. The third part of cost 
function is L2 regularization, which plays a key role in preventing over-fitting during 
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optimization, and a comparison between L2 and L1 regularization—together with the 
regularization parameter (�)—will be given in Sect. 4.2. By minimizing the cost function 
as Eq. (19), the optimal unmixing matrix W and bias term b can be obtained.

3.3 � Probability density function estimation

The probability density function (PDF) of original/source signal is an necessary part of 
MLE-based cost function as shown in Eq.  (19). Liu et  al.  [41] employed the simple PDF 
estimation method, which adopted three approximate functions to represent the prob-
ability density function of super-Gaussian signal, sub-Gaussian signal and Gaussian sig-
nal, respectively, and then selected one approximate function as the PDF estimation of the 
source signal based on the its distribution. In practical application, super-Gaussian signal or 
sub-Gaussian signal has a relatively wide range; therefore, using an approximate function to 
describe a class of signals (super-Gaussian signal/sub-Gaussian signal) will inevitably intro-
duce absolute error.

Histogram method is a traditional PDF estimation algorithm. Comparing with histogram 
method, kernel density estimation can provide a smoother PDF curve [46, 47]. Therefore, 
in order to minimize the influence introduced by PDF estimation on separation accuracy, 
we employ the kernel density estimation (KDE) [46–48] to estimate the probability density 
function of the source signal.

Let the series {x1, x2, . . . , xN } be an independent and identically distributed sample of 
observation signal with an unknown probability distribution function p(x). KDE p̂(x) of 
original p(x) assigns each nth sample data point xn a function K (xn, t) called a kernel func-
tion in the following way [46, 47]:

where 0 < K (x, t) < ∞ , and

Equation (21) ensures the required normalization of KDE p̂(x):

That is to say, KDE transforms the location of xn into a self-centered interval, symmet-
rically or asymmetrical. Many kernel functions both symmetric and asymmetric have 
been published as shown in “Appendix.” However, in practical applications, the symmet-
ric kernel function is more widely used than asymmetry. Symmetry property allows to 
write the kernel function in a form used most frequently [46]:

(20)p̂(x) = 1

N

N
∑

n=1

K (xn, t),

(21)

∞
∫

−∞

K (x, t)dt = 1.
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∞
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N
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where h is the smoothing parameter who governs the amount of smoothing applied to 
the sample. Too small value of h may result the estimator to show insignificant details, 
while too large value of h causes over smoothing of the information contained in the 
sample, which, in consequence, may mask some of important characteristics, e.g., multi-
modality [46], of p(x). Therefore, a certain compromise is necessary in actual application.

Multivariate extensions of the kernel approach generally rely on the product kernel 
[49]; taking bivariate data 

(

xn, yn
)

, n = 1, 2, . . . ,N , for example, the bivariate kernel 
estimator can be expressed as:

where 
(

xn, yn
)

, n = 1, 2, . . . ,N  is a sample, and hx and hy are smoothing parameters. 
Based on the Euclidean distance between an arbitrary point 

(

x, y
)

 and sample point 
(

xn, yn
)

, n = 1, 2, . . . ,N  , the bivariate kernel estimator shown in Eq. (24) can be changed 
into:

where K (·) is the kernel function and “Appendix” gives several kernel function including 
symmetric kernel functions and asymmetry ones. The effective of KDE will be exhibited 
in Sect. 4 through signal separation results.

3.4 � Optimization algorithm

The optimization of traditional blind signal separation method includes negative 
gradient descent algorithm [50], Newton algorithm [51], fixed point algorithm [2] 
and so on. Recently, some research has been done on adaptive gradient optimiza-
tion algorithms and its variant for training deep neural networks, such as stochastic 
gradient descent (SGD) [52–54], Adagrad [55, 56], RMSprop [41, 56–58] and Adam 
[59]. The optimization process of those algorithms can be considered as the problem 
of minimum the cost function (or objective function) in the form of summation:

where w is the estimated parameter by minimizing J (w) . Each sum and function Jn(w) 
are typically associated with the n-th observation in the data set. One thing worth men-
tioning is that the parameter b to be estimated in Eq.  (19) is omitted by Eq.  (26), but 
it will participate in the actual optimization. In the following, we will briefly introduce 
each optimization algorithm.
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3.4.1 � Stochastic gradient descent

SGD is an iterative method for optimizing an objective function with smoothness 
properties (e.g., differentiable or sub-differentiable). It can be regarded as a stochastic 
approximation of gradient descent optimization, since it replaces the actual gradient 
(calculated from the entire data set) by an estimate thereof (calculated from a randomly 
selected subset of the data). In SGD algorithm, the true gradient of objective function is 
approximated by a gradient at a single example:

where η is a step size or called learning rate in machine learning. Sutskever et al.  [54] 
proposed that a SGD method with momentum remembers the update � at each itera-
tion and determines the next update as a linear combination of the gradient and the pre-
vious update:

where ρ is an exponential decay factor between 0 and 1, which determines the relative 
contribution of the current gradient and earlier gradients to the weight change. Combin-
ing Eqs. (28) and (29), we can get the final update formula of SGD with momentum:

SGD with momentum (named SGDM) tends to keep convergence in the same direction, 
preventing oscillations.

3.4.2 � Adagrad

Duch et  al.  [55] proposed a modified stochastic gradient descent algorithm with per-
parameter learning rate, named adaptive gradient algorithm (Adagrad), which improved 
convergence performance of SGD in settings where data are sparse and sparse param-
eters are more informative. The update formula of Adagrad [55] is:

or written in the form of per-parameter updates:

where ⊙ means the element-wise product. {Gj,j} is a vector which is the diagonal of the 
outer product matrix G:

where gτ is the gradient at iteration τ , and the diagonal of G is given by

(27)wt+1 = wt − η∇Jn(w),

(28)�wt+1 = ρ�wt − η∇Jn(w),

(29)wt+1 = wt +�wt+1,

(30)�wt+1 = wt − η∇Jn(w)+ ρ�wt .

(31)wt+1 = wt − ηdiag(G)−
1
2 ⊙ g,

(32)wj = wj −
η

√

Gj,j
gj ,

(33)G =
t

∑

τ=1

gτ g
T
τ , gτ = ∇Jn(w),
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As in reference [55, 56], Adagrad was designed for convex problems; however, it has 
been successfully applied to non-convex optimization [60].

3.4.3 � RMSprop

Root mean square propagation (RMSprop) is also a method in which the learning rate is 
adapted for each of the parameters. The idea is to divide the learning rate for a weight by 
a running average of the magnitudes of recent gradients for that weight [58]. So, first the 
running average is calculated in terms of means square:

where ρ is the forgetting factor, and r(w, t) is the gradient accelerating variable. Then, the 
parameters are updated as:

RMSprop has shown good adaptation of learning rate in different applications. RMSprop 
can be seen as a generalization of resilient back-propagation (BP) and is capable to work 
with mini-batches as well opposed to only full-batches [58]. Reference [41] improved 
RMSprop by introducing in the estimation of the first-order moment of the gradi-
ent ( g(w, t) ), and the original r(w, t) is modified to the central second-order moment 
through the operation ( r(w, t)−

(

g(w, t)
)2):

where ρ is the decay rate of the exponential moving average between 0 and 1, β is the 
momentum term, and ǫ is a small scalar (e.g., 10−8 ), which avoids divide-by-zero errors 
in the update process.

The introduction of first-order and second-order moment in RMSprop 
(named RMSpropM) stabilized the exponentially weighted root mean square, and this 
operation flattens the steep gradient in the parameter space [41]. In practice, the algo-
rithm finds a smoother descent direction in the parameter space, increasing the training 
speed.

3.4.4 � Adam

Adaptive moment estimation (Adam) is an update method of RMSprop optimizer. In 
this optimization algorithm, running averages of both the gradients and the second 

(34)Gj,j =
t

∑

τ=1

g2τ ,j .

(35)r(w, t) = ρr(w, t − 1)+ (1− ρ)∇(Jn(w))
2,

(36)wt+1 = wt −
η√

r(w, t)
∇Jn(w).

(37)g(w, t) = ρg(w, t − 1)+ (1− ρ)∇Jn(w),

(38)v(w, t) = βv(w, t − 1)+ η
√

r(w, t)−
(

g(w, t)
)2 + ǫ

∇Jn(w),

(39)wt+1 = wt − v(w, t),
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moments of the gradients are used. Given parameters w(t) and a loss function J (t) , where 
t indexes the current training iteration, Adam’s parameter update is given by [59]:

where ǫ is a small scalar (e.g., 10−8 ). m(w, t) and v(w, t) are the first moments of gradients 
and second moments of gradients, respectively, and β1 and β2 are their corresponding 
forgetting factor between 0 and 1 (e.g., β1 = 0.9 , β2 = 0.999).

The optimization algorithm of neural network includes SGD, Adagrad, RMSprop and 
Adam, but not limited to them, e.g., Adadelta [?], the detailed introduction is omitted here. 
We will show their performance in optimizing the signal separation cost function Eq. (19) 
in Sect. 4.

3.5 � Neural network

A neural network (NN), in the case of artificial neurons called artificial neural network 
(ANN) or simulated neural network (SNN), is an interconnected group of natural or arti-
ficial neurons that uses a mathematical or computational model for information process-
ing based on a connectionist approach to computation. In the artificial intelligence field, 
artificial neural networks have been applied successfully to speech recognition [61], image 
analysis [62], pattern recognition [63], data classification [64], through a learning process. 
The input of the NN is the feature vector corresponding to observation signal.

As shown in Fig. 3, the NN architecture has four layers, input layer, dense layer, lambda 
layer and output layer, and the relation between the neural network and separation process 
is shown in Table. 1. The input layer corresponds to the observed signal x and bias term 
b of the separation system. The neuron number of input layer is (M + 1) , where M is the 
observation signal number, and the other neuron is used to input the initialization of bias 
term b—as analyzed in Sect. 2. The dense layer is used to optimize the separation matrix 
W and the bias term b, and the dense layer has D neurons, where D is number of origi-
nal signal. Lambda layer is the self-definition layer with two neurons, one neuron is for the 
regularization of W and b, and the other neurons stand for the second term of cost function 
as shown in Eq. (19). The output layer with one neuron is used to provide the sum value of 
cost function.

(40)m(w, t + 1) = β1m(w, t)+ (1− β1)∇Jn(w),

(41)v(w, t + 1) = β2v(w, t)+ (1− β2)∇(Jn(w))
2,

(42)m̂w = m(w, t + 1)

1− βt+1
1

,

(43)v̂w = v(w, t + 1)

1− βt+1
2

,

(44)wt+1 = wt − η
m̂w

√

v̂w + ǫ
,
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4 � Numerical simulation and analysis
This section presents numerical simulation results of our separation method for time–
frequency overlapped—the definition of frequency overlapped level (FOL) as shown in 
Eq.  (45)—digital communication signal together with the corresponding analysis and 
comparison.

where si , i = 1, 2, . . . ,D are the original signal and D is the original signal number. 
Without loss of generality, here we employ two binary phase-shift keying (BPSK) sig-
nal—regarded as s1 and s2—and one quadrature phase-shift keying (QPSK) signal—
regarded as s3—as the original signal, and their corresponding carrier frequency fc is set 
to 12 MHz, 14 MHz and 16 MHz, respectively, and their corresponding bit transmis-
sion rate rb is 2 MHz, 2 MHz and 4 MHz, respectively, and the bits number of original 
signal is equal to 1000. Then, we can obtain the FOL of each original signal by Eq. (45), 
as ψs1 = 50% , ψs2 = 100% , ψs3 = 50% and ψ = 100% , and we regard this experiment as 
case 1, as shown in Table 2. The mixed matrix set to A = [1, 0.5, 0.5; 0.5, 1, 0.5; 0.5, 0.5, 1] 
and the sample frequency fs takes 100 Mhz. Signal-to-noise (SNR) ratio is defined by the 

(45)

{

ψsi =
Overlapped bandwidth of Si

Bandwidth of Si
ψ = max

(

ψsi

)

,

Fig. 3  Neural network structure

Table 1  The relation between the neural network and separation process

NN layer Dimension Information

Input layer M+ 1 Observation x and initial bias term b

Dense layer D Optimization Parameters: W and b

Lambda layer 2 Cost function as Eq. (19)

Output layer 1 Loss value
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logarithmic form of the ratio of the observed signal power to the noise power and multi-
plied by 100 Mhz. In the following, we will exhibit the separation performance of the our 
method from different aspects.

4.1 � Comparison between different optimizers

In this experiment, we will inspect the convergence speed of different optimizers and 
the corresponding separation efficacy in the form of correlation coefficient (ζ ) and per-
formance index (PI) , and the simulation condition as the case 1 is shown in Table 2 with 
SNR = 10dB and � = 0.015 using L2 regularization.

Table  3 shows the optimizer candidates participating in the comparison and their 
empirical parameter setting in the first two rows. Figure 4 gives the convergence speed 
of each optimizer, and we can see all the optimizers can reach convergence state with 

Table 2  The original/source signal setting

Signal type Case 1 Case 2 Case 3

rb (MHz) fc (MHz) ψ rb (MHz) fc (MHz) ψ rb (MHz) fc (MHz) ψ

BPSK 2 12 50 2 12 100 1 12 100

BPSK 2 14 100 4 14 100 2 13 100

QPSK 4 16 50 4 16 100 2 14 100

Table 3  The separation results of different optimizers in the form of ζ and PI with SNR=10dB

Optimizer SGD SGDM Adagrad Adam Adadelta RMSprop RMSpropM

Parameter setting η = 2.0 η = 0.8

ρ = 0.89

η = 5.0

ǫ = 10−8

η = 1.9

β1 = 0.845

β2 = 0.89

ǫ = 10−8

η = 152

ρ = 0.1

ǫ = 10−6

η = 0.24

ρ = 0.24

ǫ = 10−8

η = 0.2

ρ = 0.2

β = 0.3

ǫ = 10−8

Correlation coefficient ( ζ) 0.7112

0.7119

0.7264

0.7522

0.7270

0.7696

0.7398

0.7335

0.7564

0.8865

0.8868

0.8852

0.8865

0.8868

0.8853

0.8850

0.8854

0.8853

0.8864

0.8868

0.8852

Performance index ( PI) 0.9680 0.8029 0.7667 0.0239 0.0239 0.0302 0.0249
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Fig. 4  The convergence speed of different optimizers with SNR = 10 dB
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epoch less than 50. To be precise, the convergence of RMSprop, RMSpropM, Adam and 
Adadelta optimizer can be completed with epoch less than 40, and their convergence 
value—smaller than − 2.2—is smaller than the other three optimizers—SGD, SGDM and 
Adagrad.

The separation results of different optimizers in the form of ζ and PI, while SNR=10dB 
with 200 times Monte Carlo test as shown in Table 3. We can see the separation accuracy 
of RMSprop, RMSpropM, Adam and Adadelta optimizer—with PI < 0.08 and ζ > 0.85

—is much better than that of SGD, SGDM and Adagrad—with PI > 0.8 and ζ < 0.75 . As 
PI < 0.1 typically indicating that the algorithm is performing adequately [44], we can say 
RMSprop, RMSpropM, Adam and Adadelta optimizer are more suitable for our appli-
cation scenarios—time–frequency overlapped digital communication signal separa-
tion—than the other three optimizers—SGD, SGDM and Adagrad. Therefore, those four 
optimization algorithms will be employed in the following simulation test.

4.2 � Comparative test for regularization term of cost function

A comparative test for regularization term of cost function will be presented in this sub-
section with regularization term parameter � . The simulation conditions and optimiz-
ers—RMSprop, RMSpropM, Adam and Adadelta—parameters keep the same as that of 
the experiment in Sect. 4.1, except for the regularization term—varying from L1 to L2—
and its parameter �—changing from 0 to 0.1, the simulation results—average value of 200 
times Monte Carlo test—as shown in Fig. 5. There has one thing worth mentioning that 
the correlation coefficient (ζ ) is the average value of each original signal: ζ = 1

D

∑D
i=1ζsi ŝi , 

where D is the number of original signal, and si and ŝi are the ith (i =, 1, 2, . . . ,D) original 
signal and its corresponding estimation, respectively.

From Fig. 5, we can see when L2 regularization is employed in the cost function, the 
separation accuracy gradually improves with � increasing from 0 to 0.01, and then, it 
will reach a stable level ( ζ ≈ 0.85 and PI ≈ 0.025 ), while � ∈ [0.01, 0.1] , expect for the 
Adadelta whose separation accuracy gradually decreased for � changing from 0.01 
to 0.1. On the contrary, when L1 regularization is selected, the separation accuracy of 
our method will decrease rapidly—with slight fluctuations for RMSprop optimizer—
while � increases from 0.01 to 0.1, and it will reach a stable level when � ∈ [0.01, 0.1] 
for RMSpropM and Adam optimizer, and � ∈ [0.06, 0.1] for RMSprop and Adadelta 
optimizer. Additionally, the best separation that can be achieved using L1 regularization 
is ζ ≈ 0.78 and PI ≈ 0.5 , which is much lower than that of L2 regularization method. 
Therefore, L2 regularization is the best choice for our cost function, and according to the 
above analysis, we set � to 0.015.

4.3 � Separation performance against noise and comparison with typical methods

The purpose of this experiment is to figure out the performance of our separation 
method against noise and analysis its computational complexity. In addition, a com-
parison with the typical separation methods—FastICA and JADE—will be carried out. 
The simulation conditions still keep the same as the first two experiments—as case 1 
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described in Table 2, except for SNR. Based on the experimental analysis in Sect. 4.2, 
L2 regularization term is set to 0.015. Figure 6 shows the separation performance of our 
methods (including RMSprop, RMSpropM, Adam and Adadelta four optimizers) chang-
ing trend with SNR—varying from 5dB to 25dB—and compared with FastICA and JADE 
in the form of ζ and PI.

As shown in Fig. 6, the separation accuracy gradually improves with SNR increasing 
for both of our method and FastICA/JADE. When SNR ≥ 14 dB , the improvement speed 
of the separation results becomes slower compared with that of SNR ≤ 14 dB , especially 
for the performance index PI . To be precise, when SNR ≥ 14 dB , the average value of 
the each source signals’ correlation coefficient ζ will be higher than 0.95 and PI will be 
lower than 0.01, no matter RMSprop, RMSpropM, Adam or Adadelta optimizer is used. 

Fig. 5  The separation results in the form of ζ and PI for L1 and L2 regularization with SNR = 10 dB and 
regularization parameter � changing from 0 to 0.1
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What’s more, the performance of our method outperforms classical algorithms—Fas-
tICA, especially for SNR ≤ 14 dB . To be exactly, as shown in Fig. 6a, the ζ obtained by 
our method is bigger than that of FastICA and keeps the same level with JADE method. 
For SNR ≥ 14 dB , the separation performance of all methods reaches a similar stable 
high accuracy level with ζ > 0.97 . Meanwhile, the elevation in the form of performance 
index PI is lower than 0.1 for SNR no less than 8 dB for all method—as shown in Fig. 6b, 
we can see the PI achieved by our method is much lower than that of FastICA and keeps 
the same level with JADE method, while SNR ≤ 14 dB , and they will converge to similar 
stable low level, while SNR ≥ 15 dB , to be precise, PI on more than 0.01. In other words, 
in the low SNR environment ( SNR ≤ 14 dB ), the separation performance of our method 
is much better than that of the classical FastICA method. As the SNR increases, our sep-
aration method can converge to the same level as the classical method.

Fig. 6  The separation performance changing trend with SNR and compared with FastICA and JADE in the 
form of ζ and PI
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Additionally, the computational complexity comparison between our proposed 
method and typical ones is shown in Table  4 in the form of running time, and the 
simulation conditions keep the same as the performance comparison test except for 
SNR=10dB. We can see the separation results of the proposed method are similar to 
that of JADE, but it is much better than that of FastICA—the PI value is about twice of 
the proposed method and JADE algorithm. The running time of the proposed method 
is 0.3–0.5  s; however, the typical separation methods only need about 10  ms. Our 
method improves the signal separation result, but it costs longer time. To be specify, 
2× (M + 1)× D × N  flops—one multiplication and one addition named one flop—
computation is needed for FastICA in one iteration loop [65], and (M + 15)× D × N  
flops for the proposed method; therefore, optimization methods with low computational 
complexity will be studied in future work.

4.4 � Comparative test for frequency overlapped level

This experiment is used to evaluate the effect of original signal’s FOL on the separation 
results through three of experiments as three cases shown in Table 2 with mixing matrix 
A = [1, 0.5, 0.5; 0.5, 1, 0.5; 0.5, 0.5, 1] and fs = 100MHz . The other simulation condi-
tions setting as: adopted L2 regularization term with � = 0.015 , employed four effec-
tive optimizers (including RMSprop, RMSpropM, Adam and Adadelta), implement 200 
times Monte Carlo tests and set 400 epochs. Figure 7 shows the separation performance 
changing trend with SNR in varied FOL environment evaluated in the form of ζ and PI.

From the simulation conditions shown in Table 2, we can see the difference between 
case 1 and case 2 is the FOL of original signal, to be exactly, and the FOL of each signal 
is ψs1 = 50% , ψs2 = 100% and ψs3 = 50% in case 1, respectively, and in Case 2 ψs1 and 
ψs3 are all increase to 100% by changing their bit transmission rate (rb) . However, the 
separation results of those two case are almost the same as shown in Fig. 7, especially 
for SNR ≥ 8 dB situation. By comparing the simulation conditions of case 3 with that 
of case 2, we can see the center frequency interval between original signal of case 3 is 
half of case 2; in other words, although ψsi(i = 1, 2, 3)—as defined in Eq. (45)—are the 
same in those two case, the signal dense in frequency domain of Case 3 is twice of Case 
2. Therefore, to a certain extent, the frequency-domain overlap complexity of Case 3 is 
higher than that of Case 2. The separation results of those two cases keep a high degree 

Table 4  The comparison between proposed method and typical ones in the form of ζ , PI and 
running time with SNR = 10 dB and bits number equal to 1000

ζ(s1,s2,s3) PI Running time

MLE-Adam 0.8862,0.8865,0.8850 0.0252 0.4032 s

MLE-RMSprop 0.8863,0.8869,0.8852 0.0242 0.5167 s

MLE-RMSpropM 0.8862,0.8868,0.8851 0.0244 0.2923 s

MLE-Adadelta 0.8863,0.8869,0.8853 0.0240 0.4418 s

FastICA 0.8797,0.8824,0.8795 0.0463 11.2785 ms

JADE 0.8864,0.8867,0.8852 0.0226 7.3812 ms
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of consistency, especially while SNR ≥ 8 dB . Through the comparative analysis of case 
1 with case 2 and case 2 with case 3, we can draw a conclusion that our signal separa-
tion method is not sensitive to FOL, no matter the FOL reaches 100% or the frequency-
domain complexity is high, and our method still can obtain high separation accuracy.

4.4.1 � Section summary

Firstly, we studied optimizer (RMSprop, RMSpropM, Adam and Adadelta), regu-
larization term ( L2 ) and its parameter ( � = 0.015 ) that match our application sce-
narios—time–frequency overlapped digital communication signal separation. Then, 
the performance of our method was given by comparing with typical method, and the 
simulation results show our method is much better than that of FastICA, especially for 
SNR ≤ 14 dB . After that, through three groups comparative experiment, we illustrated 
our method not sensitive to the FOL and the frequency-domain complexity degree, even 

Fig. 7  The separation performance changing trend with SNR in varied FOL environment in the form of ζ and 
PI



Page 21 of 25Pang et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:121 	

for ψ = 100% and high-frequency complexity condition, our method still can provide 
satisfied result.

5 � Discussion
5.1 � Separation method

For the over-determined/determined blind signal separation problem, ICA—in par-
ticularly, FastICA [10]—is the most widely used and most popular separation method. 
ICA and its variants only require that the source signals are independent to each other 
and have been successfully applied in all kinds of signal separation, like speech signal 
[66], biomedical signal—e.g., electroencephalographic (EEG) and magnetoencephalo-
graphic (MEG) [67], and so on. What’s more, ICA also can be used to undetermined 
signal separation problem under certain condition that the under-determined obser-
vation matrix can be transformed into an observation matrix whose rank is no less 
than source signal number [18]. For signals with sparsity, sparse component analysis 
(SCA) is another popular method, and it has been successfully separate image mix-
ture separation [23–25], speech signal [26, 27], biological signal [28, 29] and so on. 
Additionally, SCA can handle under-determined signal separation problems apart 
from over-determined and determined situation, in under-determined music and 
speech signal separation in [26]. Except for SCA, NMF is another main under-deter-
mined signal separation method with successful application in various signal separa-
tions [32–37].

One common of those three popular and successful separation methods is that they 
are all use traditional signal separation methods. Liu et al. [41] introduced a separa-
tion method using neural network (NN) and applied machine learning mechanisms 
and optimization methods to signal separation domain. As an important term of 
observation/cost function, the probability density function (PDF) term was expressed 
by a fixed function based on the type of the source signal—super-Gaussian distribu-
tion or sub-Gaussian distribution or Gaussian distribution, which can hardly han-
dle complex time–frequency overlapped digital communication signal separation. 
In this paper, we employed the kernel density estimation method to estimate signal 
PDF instead of one simply fixed expression, and we achieved satisfactory separation 
results, to be exactly; it can provide similar separation accuracy as the most famous 
traditional signal separation methods—FastICA and JADE—for time–frequency over-
lapped digital communication signal separation.

5.2 � Bias term and optimizer

A regularization term was added to observation/cost/loss function, and simulation 
test shows L2 regularization can improve signal separation accuracy; however, the 
participation L1 regularization will bring in negative effect. Additionally, the regulari-
zation term parameter � is set to 0.015 based on simulation tests. Meanwhile, we fig-
ured out four optimizers—RMSprop [58], RMSpropM [41], Adam [59] and Adadelta 
[?]—that are more friendly to our application background.
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5.3 � Future work

Future work can be carried out from the perspective of both objective/loss/cost func-
tion and optimization of BSS and improve its performance from the perspective of 
neural networks (NNs), which is a new concept in BSS domain [41]. We can combine 
conventional separation algorithms’ estimation criterion and the advantages of NN 
or other excellent machine learning framework to modify—even derive novel—objec-
tive/loss/cost function and improve the convergence, computational complexity as 
well as separation accuracy of BSS algorithm.

6 � Conclusion
In this paper, we introduced a maximum likelihood estimation (MLE)-based blind time–
frequency overlapped digital communication signal separation method using neural 
network, in which L2 regularization is employed as one term of observation function, 
and kernel density estimation is selected to estimate the PDF. Through theoretical intro-
duction and experimental analysis, we figured out the optimizer of neural network suit-
able for our application background, to be exactly, RMSprop, RMSpropM, Adam and 
Adadelta, with ζ > 0.82 and PI < 0.01—typically indicating the algorithm is performing 
adequately [44]—while SNR ≤ 8 dB , and ζ will increase to 0.97 and PI decreases to 0.01 
for SNR ≥ 15 dB.

The comparison between our method and typical separation method (FastICA/JADE) 
indicated our method performance better than FastICA in low SNR environment, and it 
can achieve the same stable high precision level as FastICA/JADE, while SNR > 15 dB 
with ζ > 0.96 and PI < 0.004 . Comparison tests for different FOL cases and frequency 
complexity cases demonstrate our method not sensitive to the FOL and the frequency-
domain complexity degree, even for ψ = 100% and high-frequency complexity condi-
tion, our method still can provide satisfied result, to be precise, ζ > 0.90 and PI < 0.02 
for SNR ≈ 10 dB.

Appendix: Kernel functions
See Table 5.

Table 5  Examples of symmetrical and asymmetrical kernel functions [46]

Symmetrical Kernel functions Asymmetrical Kernel functions

Epanechnikov
K(t) =

{

3

4
√
5

(

1− 1
5
t

)2

, |t| <
√
5

0, |t| ≥
√
5.

Gamma 1 K(x , a; t) = tx/ae−t/a

ax/a+1Ŵ(x/a+1)
.

Biweight
K(t) =

{

15
16

(

1− t2
)2
, |t| < 1

0, |t| ≥ 1.

Gamma 2 K(ρa(x), a; t) = tρa(x)−1e−t/a

aρa(x)Ŵ(ρa(x))
,

ρa(x) =
{

x/a, x ≥ 2a
1
4
(x/a)2 + 1, x ∈ [0, 2a).

Gaussian
K(t) = 1√

2π
e
− t2

2
Reciprocal 
inverse Gauss-
ian

K(x , a; t) = 1√
2πat

e
− x−a

2a

(

t

x−a
−2+ x−a

t

)

.

Rectangular
K(t) =

{

1
2
, |t| < 1

0, |t| ≥ 1.

Lognormal
K(x , a; t) = 1√

8π ln(1+a)t
e
− (lnt−lnx)2

8ln(1+a) .
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Abbreviations
BSS	� Blind signal separation
NN	� Neural network
MLE	� Maximum likelihood estimation
PDF	� Probability density function
KDE	� Kernel density estimation
PI	� Performance index
SNR	� Signal-to-noise ratio
FOL	� Frequency overlap level
ICA	� Independent component analysis
SCA	� Sparse component analysis
NMF	� Nonnegative matrix factorization
SOBI	� Second-order blind identification algorithm
FOBI	� Fourth-order blind identification algorithm
JADE	� Joint approximate diagonalization of eigenmatrices
FastICA	� Fast independent component analysis
c-FastICA	� Complex fast independent component analysis
MIMO	� Multiple-input multiple-output
SCM	� Spatial covariance matrix
SIMO	� Single-input multi-output
BPSK	� Binary phase shift keying
QPSK	� Quadrature phase shift keying
SGD	� Stochastic gradient descent
Adagrad	� Adaptive gradient
RMSprop	� Root mean square propagation
Adam	� Adaptive method
SGDM	� Stochastic gradient descent with momentum
BP	� Back-propagation
ANN	� Artificial neural network
SNN	� Simulated neural network
MEG	� Magnetoencephalographic

Acknowledgements
The authors would like to thank the handing Associate Editor and the anonymous reviewers for their valuable comments 
and suggestions for this paper.

Author contributions
LZ designed the work, analyzed and interpreted the data and drafted the manuscript. QH participated in the design 
of the study, performed the experiments and analysis and helped to draft the manuscript. DD and SZ contributed to 
literature investigation. GK and LL contributed to revise the manuscript. All the authors read and approved the final 
manuscript.

Funding
This work was supported in part by the National Natural Science Foundation of China (Nos. 61901209, 61871210 and 
61901149), in part by Natural Science Foundation of Hunan Province (No. 2022JJ40377) and in part by the Scientific 
Research Project of Hunan Provincial Education Department (No. 19C1591).

Availability of data and materials
Please contact the authors for data requests.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 15 September 2022   Accepted: 2 December 2022

References
	1.	 L. Pang, Research on signal separation method for time-frequency overlapped digital communication signal from 

single antenna. Ph.D. Dissertation, University of Electronic Science and Technology of China (2015)
	2.	 P. Comon, C. Jutten, Handbook of Blind Source Separation-Independent Component Analysis and Applications (Elsevier 

Ltd, Amsterdam, 2010)
	3.	 K.-C. Kwak, W. Pedrycz, Face recognition using an enhanced independent component analysis approach. IEEE Trans. 

Neural Netw. 18(2), 530–541 (2007)
	4.	 C. Jutten, J. Hérault, Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. 

Signal Process. 24, 1–10 (1991)
	5.	 P. Comon, Independent component analysis: a new concept? Signal Process. 36(3), 287–314 (1994)



Page 24 of 25Pang et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:121 

	6.	 A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural 
Comput. 7(6), 1129–1159 (1995)

	7.	 A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, E. Moulines, A blind source separation technique using second-order 
statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

	8.	 L. Tong, R.-W. Liu, V. Soon, Y.-F. Huang, Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits 
Syst. 38(5), 499–509 (1991)

	9.	 J. Cardoso, Blind beamforming for non-Gaussian signals. IEE Proc. 140(6), 362–370 (1993)
	10.	 A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 

10(3), 626–634 (1999)
	11.	 E. Ollila, The deflation-based FastICA estimator: statistical analysis revisited. IEEE Trans. Signal Process. 58(3), 

1527–1541 (2010)
	12.	 A. Dermoune, T. Wei, Fastica algorithm: five criteria for the optimal choice of the nonlinearity function. IEEE Trans. 

Signal Process. 61(8), 2078–2087 (2013)
	13.	 T. Wei, A convergence and asymptotic analysis of the generalized symmetric FastICA algorithm. IEEE Trans. Signal 

Process. 63(24), 6445–6458 (2015)
	14.	 E. Oja, Z. Yuan, The FastICA algorithm revisited: convergence analysis. IEEE Trans. Neural Netw. 17(6), 1370–1381 

(2006)
	15.	 M. Novey, T. Adali, On extending the complex FastICA algorithm to noncircular sources. IEEE Trans. Signal Process. 

56(5), 2148–2154 (2008)
	16.	 C. Hesse, C. James, The FastICA algorithm with spatial constraints. IEEE Signal Process. Lett. 12(11), 792–795 (2005)
	17.	 L.-D. Van, D.-Y. Wu, C.-S. Chen, Energy-efficient FastICA implementation for biomedical signal separation. IEEE Trans. 

Neural Netw. 22(11), 1809–1822 (2011)
	18.	 L. Pang, Z. Qi, S. Li, B. Tang, A blind signal separation method for single-channel electromagnetic surveillance sys-

tem. Int. J. Electron. 102(10), 1634–1651 (2015)
	19.	 J. Liu, H. Song, H. Sun, H. Zhao, High-precision identification of power quality disturbances under strong noise 

environment based on FastICA and random forest. IEEE Trans. Ind. Inform. 17(1), 321 (2020)
	20.	 A. Naeem, H. Arslan, Joint radar and communication based blind signal separation using a new non-linear function 

for fast-ica, in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–5 (2021)
	21.	 K.-K. Shyu, M.-H. Lee, Y.-T. Wu, P.-L. Lee, Implementation of pipelined FastICA on FPGA for real-time blind source 

separation. IEEE Trans. Neural Netw. 19(6), 958–970 (2008)
	22.	 R. Gribonval, S. Lesage, A survey of sparse component analysis for blind source separation: principles, perspectives, 

and new challenges, in ESANN’2006 Proceedings—European Symposium on Artificial Neural Network, pp. 323–330 
(2006)

	23.	 P. Georgiev, F. Theis, A. Cichocki, Sparse component analysis and blind source separation of underdetermined mix-
tures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

	24.	 M. Zibulevsky, P. Kisilev, Y.Y. Zeevi, B.A. Pearlmutter, Blind source separation via multinode sparse representation. Adv. 
Neural Inf. Process. Syst. 14, 2353–2362 (2002)

	25.	 F. Georgiev, F. Theis, A. Cichocki, Blind source separation and sparse component analysis of overcomplete mixtures, 
in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, pp. V-493 (2004)

	26.	 B. Pau, Z. Michael, Underdetermined blind source separation using sparse representations. Signal Process. 81(11), 
2353–2362 (2001)

	27.	 J. Yang, Y. Guo, Z. Yang, S. Xie, Under-determined convolutive blind source separation combining density-based 
clustering and sparse reconstruction in time-frequency domain. IEEE Trans. Circuits Syst. I Regul. Pap. 66(8), 
3015–3027 (2019)

	28.	 Y. Li, Z.L. Yu, N. Bi, Y. Xu, Z. Gu, S.-I. Amari, Sparse representation for brain signal processing: a tutorial on methods and 
applications. IEEE Signal Process. Mag. 31(3), 96–106 (2014)

	29.	 G.R. Tsouri, M.H. Ostertag, Patient-specific 12-lead ECG reconstruction from sparse electrodes using independent 
component analysis. IEEE J. Biomed. Health Inform. 18(2), 476–482 (2014)

	30.	 Z. Yang, G. Zhou, S. Xie, S. Ding, J.-M. Yang, J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix 
factorization. IEEE Trans. Image Process. 20(4), 1112–1125 (2011)

	31.	 K. Rahbar, J. Reilly, J. Manton, Blind identification of MIMO fir systems driven by quasistationary sources using 
second-order statistics: a frequency domain approach. IEEE Trans. Signal Process. 52(2), 406–417 (2004)

	32.	 B. Gao, W.L. Woo, S.S. Dlay, Unsupervised single-channel separation of nonstationary signals using gammatone 
filterbank and itakura-saito nonnegative matrix two-dimensional factorizations. IEEE Trans. Circuits Syst. I Regul. Pap. 
60(3), 662–675 (2013)

	33.	 J. Nikunen, T. Virtanen, Direction of arrival based spatial covariance model for blind sound source separation. IEEE/
ACM Trans. Audio Speech Lang. Process. 22(3), 727–739 (2014)

	34.	 M. Pezzoli, J.J. Carabias-Orti, M. Cobos, F. Antonacci, A. Sarti, Ray-space-based multichannel nonnegative matrix 
factorization for audio source separation. IEEE Signal Process. Lett. 28, 369–373 (2021)

	35.	 Z. Yang, Y. Xiang, K. Xie, Y. Lai, Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural 
Netw. Learn. Syst. 28(4), 94 (2016)

	36.	 D. Gurve, S. Krishnan, Separation of fetal-ECG from single-channel abdominal ECG using activation scaled non-
negative matrix factorization. IEEE J. Biomed. Health Inform. 24(3), 669–680 (2020)

	37.	 B. Gao, W.L. Woo, B.W.-K. Ling, Machine learning source separation using maximum a posteriori nonnegative matrix 
factorization. IEEE Trans. Cybern. 44(7), 1169–1179 (2014)

	38.	 H. Szu, P. Chanyagorn, I. Kopriva, Sparse coding blind source separation through powerline. Neurocomputing 48(1), 
1015–1020 (2002)

	39.	 E. Warner, I. Proudler, Single-channel blind signal separation of filtered MPSK signals. IEE Proc. Radar Sonar Navig. 
150(6), 396–402 (2003)

	40.	 L. Pang, B. Tang, A novel method for blind signal separation of single-channel and time-frequency overlapped 
multi-component signal. Int. J. Inf. Commun. Technol. 8(2–3), 123–139 (2016)



Page 25 of 25Pang et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:121 	

	41.	 S. Liu, B. Wang, L. Zhang, Blind source separation method based on neural network with bias term and maximum 
likelihood estimation criterion. Sensors 21(3), 973 (2021)

	42.	 S. Amari, A. Cichocki, H.H. Yang, A new learning algorithm for blind signal separation, in Advances in Neural Informa-
tion Processing Systems, pp. 757–163 (1996)

	43.	 A.S. Cichocki, Blind source separation: new tools for extraction of source signals and denoising, in Independent 
Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks III, vol. 5818, pp. 11–25 (2005)

	44.	 H.L. Li, T.T. Adali, Algorithms for complex ml ICA and their stability analysis using Wirtinger calculus. IEEE Trans. Signal 
Process. 58(12), 6156–6167 (2010)

	45.	 M. Novey, T.T. Adali, Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)
	46.	 S. Weglarczyk, Kernel density estimation and its application, in XLVIII Seminar of Applied Mathematics, ITM Web of 

Conferencess, vol. 23, p. 00037 (2018)
	47.	 B.W. Silverman, Density Estimation for Statistics and Data Analysis (T &F eBook, New York, 1998)
	48.	 G.R. Terrell, D.W. Scott, Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992)
	49.	 D.W. Scott, Multivariate density estimation: theory, practice, and visualization. Springer Handbooks of Computa-

tional Statistics (2011)
	50.	 A. Van Den Bos, Complex gradient and hessian. IEE Proc. Vis. Image Signal Process. 141(6), 380–382 (1994)
	51.	 O. Guler, Foundations of Optimization (Springer, Berlin, 2010)
	52.	 T. Schaul, S. Zhang, Y. LeCun, No more pesky learning rates, in Proceedings of the 30th International Conference on 

Machine Learning, vol. 28, no. 3, PMLR, pp. 343–351 (2013)
	53.	 L. Bottou, Stochastic gradient descent tricks, in Neural Networks: Tricks of the Trade (2012)
	54.	 I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in deep learning,” in 

Proceedings of the 30th International Conference on Machine Learning, vol. 28, no. 3, PMLR, pp. 1139–1147 (2013)
	55.	 J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. 

Learn. Res. 12, 2121–2159 (2011)
	56.	 M. Mukkamala, M. Hein, Variants of RMSPROP and ADAGRAD with logarithmic regret bounds, in Proceedings of the 

34th International Conference on Machine Learning, vol. 70. PMLR (2017)
	57.	 T. Tieleman, G. Hinton, Lecture 6.5-RMSPROP: divide the gradient by a running average of its recent magnitude, in 

COURSERA: Neural Networks for Machine Learning (2012)
	58.	 G. Hinton, Lecture 6e RMSPROP: divide the gradient by a running average of its recent magnitude, in COURSERA: 

Neural Networks for Machine Learning (2020)
	59.	 D.P. Kingma, J. Ba, Adam: a method for stochastic optimization. arXiv preprint arXiv:​1412.​6980 (2014)
	60.	 M.R. Gupta, S. Bengio, J. Weston, Training highly multiclass classifiers. J. Mach. Learn. Res. 15, 1461–1492 (2014)
	61.	 L. Deng, G. Hinton, B. Kingsbury, New types of deep neural network learning for speech recognition and related 

applications: an overview, in 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 
8599–8603 (2013)

	62.	 J. Bernal, K. Kushibar, D.S. Asfaw, S. Valverde, A. Oliver, R. Marí, X. Lladó, Deep convolutional neural networks for brain 
image analysis on magnetic resonance imaging: a review. Artif. Intell. Med. 95, 64–91 (2018)

	63.	 H.K. Kwan, Y. Cai, A fuzzy neural network and its application to pattern recognition. IEEE Trans. Fuzzy Syst. 2(3), 
185–193 (1994)

	64.	 M.J. El-Khatib, B.S. Abu-Nasser, S.S. Abu-Naser, Glass classification using artificial neural network. Int. J. Acad. Peda-
gog. Res. 3(2), 25–31 (2019)

	65.	 V. Zarzoso P. Comon, Comparative speed analysis of FastICA, in International Conference on Independent Component 
Analysis and Signal Separation, Springer, pp. 293–300 (2007)

	66.	 S.C. Douglas, M. Gupta, H. Sawada, S. Makino, Spatio-temporal FastICA algorithms for the blind separation of convo-
lutive mixtures. IEEE Trans. Audio Speech Lang. Process. 15(5), 1511–1520 (2007)

	67.	 R. Vigáirio, J. Sarela, V. Jousmiki, M. Hamalainen, E. Oja, Independent component approach to the analysis of EEG and 
meg recordings. IEEE Trans. Biomed. Eng. 47(5), 58 (2000)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.6980

	A MLE-based blind signal separation method for time–frequency overlapped signal using neural network
	Abstract 
	1 Introduction
	1.1 Our contributions
	1.2 Paper organization

	2 Signal model
	3 Separation model
	3.1 Preprocessing
	3.2 Cost function
	3.2.1 Maximum likelihood criterion
	3.2.2 MLE-based cost function

	3.3 Probability density function estimation
	3.4 Optimization algorithm
	3.4.1 Stochastic gradient descent
	3.4.2 Adagrad
	3.4.3 RMSprop
	3.4.4 Adam

	3.5 Neural network

	4 Numerical simulation and analysis
	4.1 Comparison between different optimizers
	4.2 Comparative test for regularization term of cost function
	4.3 Separation performance against noise and comparison with typical methods
	4.4 Comparative test for frequency overlapped level
	4.4.1 Section summary


	5 Discussion
	5.1 Separation method
	5.2 Bias term and optimizer
	5.3 Future work

	6 Conclusion
	Acknowledgements
	References


