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Abstract 

As the problem of spectral congestion is becoming severe, the coexistence between 
two primary spectrum users, radar and communications, has spurred extensive 
research interest. To reduce the mutual interferences between the two functions, 
MIMO radar waveform design needs to consider the compatibility in both spectral and 
spatial domains, where the former is achieved by null forming in the frequency domain 
and the latter is achieved by shaped beampattern synthesis. Additionally, high power 
efficiency and low system overhead are two desirable characteristics for MIMO radar 
system design. To this end, we first introduce a new realistic waveform constraint, peak-
to-valley-power-ratio (PVPR) constraint per antenna to improve the power efficiency. 
Then, combined with PVPR constraint, we propose a switchable individual antenna 
power control scheme to jointly optimize waveforms and antenna locations. We 
adopt a max–min beampattern matching criterion and impose the ℓ2,1-norm penalty 
on the waveform matrix to promote the sparsity of the array. To solve the resultant 
non-smooth and non-convex problem, we develop a modified alternating directions 
method of multipliers, where a surrogate subproblem over primal variables is solved 
instead of the original problem, and its local convergence is analyzed. Finally, numerical 
experiments demonstrate the effectiveness and superiority of the proposed method 
over counterparts, especially obtaining the lowest sidelobe level and deeper spectral 
nulls using much fewer antennas.

Keywords:  Antenna selection, Coexistence of MIMO radar and communications, Peak-
to-valley-power-ratio (PVPR) constraint, Transmit beampattern synthesis, Waveform 
design

1  Introduction
Recently, the spectrum resources have become increasingly scarce [1–3], and thus col-
laborative coexistence between radar and communication systems in the spectrally 
crowed environment has become prominent [4–6]. As a primary bandwidth occu-
pier, the spectral compatibility needs to be considered in the radar waveform design to 
accommodate other spectral users, such as communications. This can be achieved by 
forming multiple spectral nulls in the frequency domain of the designed waveforms. 
As shown in Fig. 1, there are K base stations working in the proximity of MIMO radar 
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system, and the base stations share a certain frequency band with radar. In addition 
to spectral compatibility, the spatial radiation energy produced by MIMO radar in the 
communication direction should be suppressed to decrease the mutual interferences to 
communication devices locating within the radar mainlobe. To this end, MIMO radar 
waveform design should consider both the spectral and spatial compliance for synthesiz-
ing a desired energy distribution in the spatial–spectral domain.

In general, the waveform optimization problems for colocated MIMO radar can be 
classified into the following three categories. The first one considers the joint design of 
transmit waveforms and receive filters to maximize the output signal-to-interference-
plus-noise ratio (SINR) [7–10] in order to mitigate the signal-dependent interference 
and enhance the target detection probability. The second one studies the transmit beam-
pattern synthesis by concentrating the transmit power on the region of interest while 
minimizing the power in the other regions [11–18]. The third one is to maximize the 
mutual information between the target reflections and the target responses [19–21] to 
improve the detection performance. In our work, we focus on the second one, i.e., trans-
mit beampattern synthesis. Additionally, to overcome the spectral congestion with mul-
tiple communication systems, we intend to synthesize spectrally-compatible waveforms 
with a desired beampattern shape.

Fig. 1  MIMO array radar with designed waveforms and switchable antennas in coexistence with 
communications
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There are generally two ways of synthesizing a desired transmit beampattern, indi-
rect way and direct way. The former adopts a two-step process which first optimizes a 
waveform covariance matrix (WCM) to form a desired beampattern and then performs 
the probing waveform optimization to approximate the obtained WCM. For example, 
the authors in [13] proposed to design a desired transmit beampattern by matching an 
ideal transmit beampattern in square error (SE) sense via using a semidefinite quadratic 
programming (SDQP) technique to optimize the WCM. Afterward, the literature [14] 
proposed a cyclic algorithm (CA) to design constant modulus (CM) or low peak-to-aver-
age-power ratio (PAR) waveforms to approximate the optimized WCM for obtaining 
a shaped-good beampattern. In addition, the work in [15] utilized the obtained WCM 
to synthesize binary-shift keying coded waveforms. Other optimal WCM design meth-
ods are also investigated in [16–18]. The latter emphasizes directly optimizing transmit 
probing waveforms without designing the WCM for a desired transmit beampattern. 
For instance, the authors in [22] applied the alternating direction method of multipliers 
(ADMM) [23] to directly synthesize CM waveforms based on the SE-minimization in 
the beampattern matching criterion. Employing the same matching criterion, [24] solved 
a quartic optimization problem under the majorization-minimization (MM) framework 
[25] to design waveforms subject to multiple constraints. Moreover, the work in [26] 
suppressed the peak sidelobe level (PSL) of the synthesized beampattern with restricted 
mainlobe ripples. Nevertheless, it is worth stressing that none of the aforementioned 
works pays attention to the radio frequency (RF) spectrum congestion in the waveform 
design.

Furthermore, high power efficiency and low system overhead are two desirable char-
acteristics for MIMO radar system design from the viewpoint of practical applications, 
which are also the cores of this work. To achieve high power efficiency, CM or low PAR 
constraints are usually imposed on the directly-designed waveform since the radar trans-
mitters only operate in saturation to deliver maximum power efficiency. However, the 
CM requirement is too strict to improve the performance and it usually is imposed on 
both temporal and spatial dimension, which may cause an unnecessary loss of degrees 
of freedom (DoFs). Besides, the PAR constraint has a key shortcoming as explained in 
[27] that it is insufficient to control the transmit power uniformity across the transmit 
antennas, which may result in a large power dynamic range and thus reduces the power 
efficiency. To overcome this issue of PAR constraint, we introduce a more realistic wave-
form power constraint, referred to as peak-to-valley-power-ratio (PVPR) constraint. The 
power dynamic range on the transmit waveforms of the lth antenna, {xl(n)}Nn=1 in Fig. 1, 
is maintained within an allowable degree of power fluctuation by controlling the value of 
PVPR. In particular, when PVPR = 1 , it implies that the waveforms transmitted by the 
lth antenna satisfy the uniform elemental power requirement, i.e., |xl(n)|2 = µl , ∀n . Dif-
ferent from CM, various uniform power {µl}Ll=1 can be assigned to the L antennas, which 
apparently increases more DoFs than the common CM.

To achieve low system overhead, a sparse array (SA) synthesized with MIMO trans-
ceiver is further designed via antenna selection, as full MIMO arrays are expensive 
attributed to the front-end channel associated with each antenna and complicated 
digital signal processing [28–30]. In addition, SA with an enlarged inter-element 
spacing can reduce the mutual coupling between antenna elements, specifically at 
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millimeter wave frequencies with a very small wavelenth [31]. Also, a nonuniform 
SA with the same number of antennas owns more spatial DoFs brought by configu-
ration flexibility to improve the system performance, such as enhancement of the 
aperture efficiencies and high resolution in the angular domain [32, 33].

In the recent studies [34–37], the authors investigated the joint optimization on 
the WCM and antenna position, which is formulated a NP-hard quartic boolean 
combinational optimization. The convex relaxation methods adopted there usu-
ally cannot be guaranteed to be globally optimal. In this paper, different from the 
existing works, we directly design the probing waveforms circumventing the WCM 
and the binary selection vector to achieve the array sparsity. Specifically, a ℓ2,1-
norm is imposed on the transmit waveform matrix to promote the group sparsity 
of the designed waveforms, whose sparse structure indicates the selected antenna 
positions. Moreover, in light of the fact that each antenna is fed by an individual RF 
power amplifier (PA), as shown in Fig. 1, it would be pragmatic to control the power 
uniformity separately on each antenna. Hence, we consider to add a switch to con-
trol the connection status of the front end of individual antenna, which is referred 
to as switchable individual antenna power control (SIAPC). Intuitively, our SIAPC 
scheme combined with unit-PVPR constraint possess more DoFs than the common 
CM. Thus, it is expected that the transmit beampattern synthesized by the proposed 
SIAPC strategy incorporated with PVPR constraint can obtain a lower sidelobe level 
(SLL) than the existing schemes.

The main contributions of this paper are highlighted as follows: 

1	 A switchable individual antenna power control (SIAPC) strategy combined with a 
waveform temporal constraint, peak-to-valley-power-ratio (PVPR), is proposed in 
this paper to flexibly control the power uniformity per antenna and power distribu-
tion across the array. The SIAPC scheme is able to obtain more designate DoFs while 
using the smallest number of antennas, which thus allows a high power efficiency 
and low system overhead.

2	 To achieve the coexistence of the radar and communications, we propose a max–
min criteria to design spectrally-compatible waveforms for shaping desired transmit 
beampatterns, where the spectral energy nulls are formed in the specified spatial–
spectral domain. Meanwhile, a ℓ2,1-norm penalty term is directly imposed on wave-
form matrix to promote the group sparsity of the designed waveform. By doing so, 
we achieve a joint optimization on the antenna positions and transmit waveform.

3	 To solve the proposed problem, we develop an efficient method based on a modi-
fied alternating directions method of multipliers since the conventional ADMM is 
hard to tackle such non-convex and non-smooth problem. Specifically, we approxi-
mately solve a surrogate subproblem over primal variables such that the non-convex 
PVPR constraint is solved by a projection operation. We prove that such an approx-
imate solution keeps the original interior monotonicity of the augmented Lagran-
gian. Numerical experiments verify the effectiveness of the proposed method and 
improved performance over counterparts.
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1.1 � Notation

Vectors and matrices are denoted by boldface lowercase and uppercase letters, respectively. 
The � · � denotes the Frobenius norm while (·)T , (·)H , (·)∗ and ∠(·) are the transpose, conju-
gate transpose, complex conjugate and phase operators, respectively. ℜ{} and ℑ{} mean the 
real and imaginary parts of a complex number. In denote the identity matrix of size n× n . 
The symbols R and C stand for the complex and real space, respectively. The expression 
�max(A) means taking the maximum eigenvalue of the matrix A.

2 � System and signal model
Consider a colocated MIMO radar consisting of a uniform linear array (ULA) of L anten-
nas, as shown in Fig.  1, where two adjacent transmit antennas are equally spaced by d̃ . 
There is one front-end for each antenna, and the connection status of the front-end is 
controlled by a switch to determine whether it is on or off. Note that the scenario in Fig. 1 
enables the detection of targets in the focused main-lobe and simultaneously spectrally 
coexists with multiple communication users which share certain overlapped frequency 
bands. Assuming that the discrete-time waveform emitted by the lth antenna is denoted 
by xl(n), n = 1, . . . ,N  , where N denotes the sample number of each radar pulse. Then, we 
define the waveform vectors along the spatial dimension and the temporal dimension as,

and the corresponding concatenated waveform vectors and paralleled matrices are given 
by,

Note that there is a relationship between x̃ and x , i.e, x̃ = Ex , where 

E =
L

l=1

(eTl ⊗ IN ⊗ el) with el ∈ R
L×1 being a unit-basic vector whose elements are 0 

except the lth one is 1. Under the case that the propagation is nondispersive and the 
transmitted signal is narrow-band, the base-band signal received at the angular direction 
θp is given by [13, 26],

where f0 is the carrier frequency, τl(θp) =
(l−1)d̃ sin(θp)

c  with c being the speed of propaga-
tion, and a(θp) is the transmit array steering vector defined by,

(1)x̃n = [x1(n), x2(n), . . . , xL(n)]T ∈ C
L×1,

(2)xl = [xl(1), xl(2), . . . , xl(N )]T ∈ C
N×1,

(3)x̃ = [x̃T1 , . . . , x̃TN ]T ∈ C
LN×1, X̃ = [x̃1, . . . , x̃N ] ∈ C

L×N ,

(4)x = [xT1 , · · · , xTL ]T ∈ C
LN×1

,X = [xT1 ; . . . ; xTL ] ∈ C
L×N

.

(5)
y =

L
∑

l=1

ej2π f0τl(θp)xl(n)

= aH (θp)x̃n,

(6)a(θp) = [ej2π f0τ1(θp), . . . , ej2π f0τL(θp)]T ∈ C
L×1.
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The transmit beampattern, which describes the cumulated spatial power of the transmit-
ted signal at the direction θp , is then given by [13],

where Ăθp = ETAθp with Aθp = IN ⊗ a(θp) ∈ C
LN×N .

For ease of discussion, the spatial angular regions are divided into P uniformly spaced 
samples, which cover the mainlobe region �m = {θm}Mm=1 and the sidelobe region 
�s = {ϑs}Ss=1 . For the MIMO radar transmit beampattern synthesis, a main issue is to 
design waveform x for shaping a good transmit radiation power distribution on the 
mainlobe region �m , and the sidelobe region �s . In addition to that, in light of the limi-
tation of the nonlinear PA in the RF circuitry in practical applications, some practical 
constraints are required to impose on the waveform x . For example, the common CM 
constraint with a fixed amplitude µ0 , i.e.,

is usually imposed on x to maximize the transmit power efficiency. Usually, the relaxed 
PAR constraint [14, 38], i.e.,

where δ ∈ [1,N ] , is employed instead of the rigorous CM constraint. Unfortunately, as 
revealed in [27, 39], Eq (9) accompanied with the per-antenna energy constraint (EC), 
i.e., �xl�2 = κ

2
e
L  is equivalent to,

where κ̃e = δκ
2
e

NL  with κ2e  being the total energy budget. From (10), we see that PAR con-
straint has a major drawback that there may exist a large dynamic power fluctuation for 
the lth transmit antenna in the N samples since no lower bound is imposed on (10). Note 
that this drawback is not beneficial to the maximization of the transmission power effi-
ciency. To fill this gap, we introduce a realistic power constraint into waveform design, 
referred to as peak-to-valley-power ratio (PVPR) constraint, which can control the 
power uniformity of each transmit antenna for improving the power efficiency.

2.1 � Per‑antenna PVPR constraint

We define the waveform PVPR constraint on the lth antenna as,

(7)

P(θp) =
N
∑

n=1

|aH (θp)x̃n|2,

= �AH
θp
x̃�22,

= �ĂH

θp
x�22,

(8)|xl(n)| = µ0, l = 1, . . . , L, n = 1, . . . ,N ,

(9)
PAR(xl) =

maxn |xl(n)|2

1
N

N
∑

n=1

|xl(n)|2
≤ δ,

(10)|xl(n)|2 ≤ κ̃e, l = 1, . . . , L, n = 1, . . . ,N ,

(11)PVPR(xl) =
maxn=1,...,N |xl(n)|2
minn=1,...,N |xl(n)|2

≤ σl ,
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which restricts the ratio of the maximum power to the minimum one over N samples 
emitted by the lth antenna less than a preset threshold σl , so as to control the difference 
of transmit power among the N samples per antenna. Here, σl plays a role of control-
ling the power uniformity among N samples for the lth transmit antenna and different σl 
for l = 1, . . . , L can be assigned to control the varying power uniformity on L antennas. 
Regarding the PVPR constraint (11), we discuss some points as follows:

1 � Remark 1

Since the RF amplifier for each front antenna feed is individual per Fig. 1, it is feasible and 
beneficial to incorporate the PVPR constraint into switchable individual antenna power 
control (SIAPC). Intuitively, the combination of PVPR and SIAPC can decrease the sys-
tem cost while creating more designate DoFs to improve the performance of radar systems, 
such as lowering the beampattern sidelobe level.

1 � Remark 2
The PVPR constraint is actually a general power control constraint. As when we set σl = 1 
in (11), it degenerates to unit-PVPR constraint, i.e.,

Note that µl is a scaling factor to be optimized. This is different from the conventional 
CM constraint (8), which constrains the uniformity in both temporal and spatial dimen-
sions, while the unit-PVPR relaxes the spatial dimension and focuses on elemental uni-
formity, thus earning more designate DoFs. On the other hand, when the PVPR con-
straint is imposed on both spatial dimension and temporal dimension, i.e.,

the unit-PVPR constraint in (13) with σ0 = 1 under the total energy constraint, i.e., 
�x�2 = κ

2
e  coincides with the CM constraint, i.e.,

This manifests the generality of the proposed PVPR constraint.

2.2 � Spectral coexistence with communications

In a spectrally crowed scenario, the radar system is required to coexist with com-
munication devices while simultaneously detecting the targets of interest [39–43]. 
In this respect, we desire that the synthesized radar waveforms are not only able to 
focus energy in the spatial direction of targets but also to suppress mutual interfer-
ences on overlaid communication services, especially those in the mainlobe. To this 
end, we assume that there are K communication devices and each of them oper-
ates on a frequency band �k = [fk ,1, fk ,2] for k = 1, . . . ,K  , where fk ,1 and fk ,2 are the 

(12)|xl(n)| =
√
µl , n = 1, . . . ,N , ∀l.

(13)PVPR(x) = maxl,n=1,...,L,N |xl(n)|2
minl,n=1,...,L,N |xl(n)|2

≤ σ0,

(14)|xl(n)| =
κe√
NL

,∀n, l.



Page 8 of 27Zhang et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:127 

lower and upper normalized frequencies for the kth device, respectively. Besides, 
we suppose that the kth communication device is located on the spatial angle range 
�̃k = [ϑc

k ,1,ϑ
c
k ,2] . Then, the integrated energy on the kth communication in the spe-

cific space-frequency region is given by [42],

where D̄(θ , f ) denotes the Energy Spectral Density (ESD), �k = ET
(F k ⊗Uk)E with 

F k ∈ C
N×N and Uk ∈ C

L×L being the frequency matrix and angle matrix of the kth 
space-frequency region, respectively, which are defined by [40–42],

and

Accordingly, the total energy produced on the all K communication devices is given by,

where � =
K
∑

k=1

�k.

To facilitate the MIMO radar in spectral coexistence with communications, it is desir-
able to minimize the total energy Es in order to reduce mutual interferences to other 
communication devices. In the ensuing section, we will incorporate the PVPR constraint 
(11) into the waveform optimization which involves the transmit beampattern synthesis 
and spectral coexistence with communications.

2.3 � Problem formulation

For the radar operation, it usually desires to concentrate the radiation power in the 
mainlobe region while lowering the power level in the sidelobes [13, 17, 44] for sake 
of target detection and radar clutter/jamming suppression. To this end, we propose a 
min-max design under PVPR constraint to fully explore the DoFs for suppressing the 
sidelobes and shaping the mainlobe while introducing a ℓ2,1-norm regularizer to pro-
mote the waveform group sparsity so as to achieve antenna selection. More precisely, 

(15)

Ek =
∫

ϑ
c
k ,2

ϑ
c
k ,1

∫ fk ,2

fk ,1

D̄(θ , f )df dϑ

= x̃H (F k ⊗U k)x̃

= xH�kx

(16)F k(n1, n2) =
{

fk ,2 − fk ,1, n1 = n2
e
j2π fk ,2(n1−n2)−e

j2π fk ,1(n1−n2)

j2π(n1−n2)
, n1 �= n2

Uk(l1, l2) =
∫

ϑ
c
k ,2

ϑ
c
k ,1

e−j(l1−l2)
2π f0 d̃ sin ϑ

c dϑ

=
{

sin ϑc
k ,2 − sin ϑc

k ,1, l1 = l2

e
jπ sin ϑc

k ,2
(l1−l2)−e

jπ sin ϑc
k ,1

(l1−l2)

jπ(l1−l2)
, l1 �= l2

(17)
Es(x) =

K
∑

k=1

xH �̃kx,

= xH�x,
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our goal is to minimize the maximum matching error between the synthesized beampat-
tern P(θp) and the desired one Dp subject to PVPR constraint, which is formulated as the 
following optimization problem,

where wp for p = 1, . . . ,P are the weight coefficients that emphasize different certain 
angular region over others, τ > 0 is the regularization parameter that compromises 
between the beampattern shape and the sparsity on antennas, β represents the penalty 
parameter on the spectral energy suppression, and S denotes the support set containing 
the indices of nonzero waveform vectors in the set {xl}Ll=1.

1 � Remark 3

In the proposed design, we do not consider the waveform total energy constraint, i.e., 
�x�2 = κ

2
e  . The reason is that once we obtain the solution, e.g., x⋆ , we can normalize x⋆ 

as xo = κex
⋆

�x⋆�2 to meet the constraint �x�2 = κ
2
e  . Notice that such a scaled xo does not 

affect the PVPR constraint, neither the beampattern shape, as well as the relative spectral 
energy distribution under the normalization processing.

1 � Remark 4
Note that problem (17) is very challenging to solve. The difficulties are that the objective 
functions are non-smooth attributed to the discontinuous function max{·} and particu-
larly contain the inseparable quadratic terms �ĂH

θp
x�22 in xl , which makes the per-antenna 

PVPR constraint on xl hard to tackle. To deal with this issue, we resort to a splitting 
method to solve the resultant problem as in the next section.

3 � Proposed method
In this section, we derive an efficient algorithm via modifying the standard ADMM 
framework to solve the formulated problem in (17). Specifically, since solving (17) 
directly is very difficult due to the existence of the discontinuous function max{·} , we 
first introduce an auxiliary variable η to rephrase (17) as,

where Ap = Ăθp for notional brevity.

(18)
min
x

max
p

{

wp

∣

∣�ĂH

θp
x�22 − Dp

∣

∣

}P

p=1
+ τ�X�2,1 + βEs(x)

s.t. PVPR(xl) ≤ σl , l ∈ S,

(19)

min
xl

η + τ

L
∑

l=1

�xl�2 + βxH�x

s.t.
∣

∣�AH
p x�22 − Dp

∣

∣ ≤ η

wp
, p = 1, . . . ,P,

PVPR(xl) ≤ σl , l ∈ S,
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Furthermore, (18) is equivalent to,

By defining Âp = √
wpAp , we continue to simplify (19) as,

Note that (20) is still difficult to handle as η is coupled in the lower and upper bounds, 
which makes (20) intractable. To solve (20), we again introduce an auxiliary variable vp 
and impose the equality constraints, i.e., Â

H

p x = vp for p = 1, . . . ,P on (20), yielding the 
following equivalent problem, 

 where dp = Dpwp . From (21), we can see that the constraints dp − η ≤ �vp�2 ≤ dp + η 
and PVPR(xl) ≤ σl will act their roles in respective subproblems with respect to (w.r.t) 
variables vp and xl , respectively. However, vp and x are coupled together in the additional 
constraint (21a). This variable splitting characteristic enables us to utilize the ADMM 
strategy for solving (21). Specifically, we first construct the augmented Lagrangian func-
tion of (21) in terms of (21a) as,

where ρ > 0 is the penalty parameter and {ũp}Pp=1 are dual variables. By introducing the 
scaled dual variable up = ũp

ρ
 , we can recast (22) as,

(20)

min
x,η

η + τ

L
∑

l=1

�xl�2 + βxH�x

s.t. Dp −
η

wp
≤ �AH

p x�22 ≤ Dp +
η

wp
, p = 1, . . . ,P,

PVPR(xl) ≤ σl , l ∈ S,

(21a)

min
x,η

η + τ

L
∑

l=1

�xl�2 + βxH�x

s.t. Dpwp − η ≤ �ÂH

p x�22 ≤ Dpwp + η, p = 1, . . . ,P,

PVPR(xl) ≤ σl , l ∈ S.

(21b)
min
x,vp ,η

η + τ

L
∑

l=1

�xl�2 + βxH�x

s.t. Â
H

p x = vp, p = 1, . . . ,P,

(21c)dp − η ≤ �vp�22 ≤ dp + η, p = 1, . . . ,P,

(22)PVPR(xl) ≤ σl , l ∈ S,

(23)

Lρ(x, η, vp, ũp) = η + τ

L
∑

l=1

�xl�2 + βxH�x

+
P
∑

p=1

ℜ
{

ũH
p (Â

H

p x − vp)
}

+ ρ

2

P
∑

p=1

�ÂH

p x − vp�2,
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It follows the ADMM alternates minimizing the augmented Lagrangian function Lρ w.r.t 
x and vp along with the dual ascent update on up to produce the following iteration steps:

where t denotes the count of iterations.
In what follows, we discuss the solutions to the subproblems (24) and (25), 

respectively.
1) The solution to (24): The x-subproblem in (24) by omitting the irrelative items, is 

given by,

where zp = vtp − ut
p . To clearly solve (27), we further simplify (27) as,

where B =
P
∑

p=1

ÂpÂ
H

p + 2β
ρ
� and b =

P
∑

p=1

Âpzp.

However, we find that the quadratic term xHBx in (28) is inseparable for 
xl , l = 1, . . . , L , which makes the update of xt+1

l  subject to PVPR constraint compli-
cated. To this end, we propose to update xt+1

l  in an approximated manner. More spe-
cifically, we first introduce the following Lemma 1 to help us seek a simpler surrogate 
problem for (28).

Lemma 1  [45]: Let L be N × N  Hermitian matrix and M be another N × N  Hermitian 
matrix such that M � L . Then, for any point xt ∈ C

N×1 , the quadratic function xHLx is 
majorized by:

(24)

Lρ(x, η, vp,up) = η + τ

L
∑

l=1

�xl�2 + βxH�x

+ ρ

2

P
∑

p=1

(�ÂH

p x − vp + up�2 − �up�2).

(25)
Step1 : xt+1 = argmin

x
Lρ(x, η

t , vtp,u
t
p),

s.t. PVPR(xl) ≤ σl , l ∈ S;

(26)
Step2 : {vt+1

p , ηt+1} = argmin
vp

Lρ(x
t+1, η, vp,u

t
p)

s.t. dp − η ≤ �vp�22 ≤ dp + η, p = 1, . . . ,P;

(27)Step3 : ut+1
p = ut

p + Â
H

p x
t+1 − vt+1

p ,

(28)
min
x

P
∑

p=1

�ÂH

p x − zp�2 +
2τ

ρ

L
∑

l=1

�xl�2 +
2β

ρ
xH�x

s.t. PVPR(xl) ≤ σl , l ∈ S,

(29)
min
x

xHBx − 2ℜ{xHb} + 2τ

ρ

L
∑

l=1

�xl�2

s.t. PVPR(xl) ≤ σl , l ∈ S,
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According to Lemma 1, we define L = B and M = δI with δ = �max(B) and linearize 
the quadratic term xHBx as its a local upper bound function g(x, xt) at xt , i.e.,

where R = B − δINL.
It is worth stressing that differing from the original ADMM strategy that directly 

solves the problem (28), our scheme is to update xt+1 by replacing xHBx with g(x, xt) in 
(28) and ignoring the constant terms, which results in the following surrogate problem,

where yl is the lth subvector of y = [yT1 , . . . , yTL ]T defined by,

It is obvious that such a transformation in (31) makes the objective function become 
separable in xl for l = 1, . . . , L and much easier to solve xl constrained in the PVPR con-
straint. Specifically, the lth subproblem of (31) is given by,

Note that the PVPR constraint in (33) depends on the support set S , which is explicitly 

related to the sparsity-inducing term τ
L
∑

l=1

�xl�2 . Hence, we have to first determine the 

support set S . To this end, regardless of the PVPR constraint, we find that the uncon-
strained optimization (33) admits a closed-form solution as given by the block soft 
thresholding formula:

where ql = (1− τ̂

�yl�2 )yl with τ̂ = τ

ρδ
 . From (34), we can naturally obtain the support set 

S as,

(30)
xHLx ≤ xHMx + 2ℜ{xH (L−M)xt}

+ x(t)H (M − L)xt .

(31)
xHBx ≤ g(x, xt)

= δ�x�22 + 2ℜ{xHRxt} − x(t)HRxt ,

(32)

min
x

δ�x�22 − 2ℜ{xH (b − Rxt)} + τ

L
∑

l=1

�xl�2

⇒ min
x

δ

L
∑

l=1

�xl − yl�2 +
2τ

ρ

L
∑

l=1

�xl�2

s.t. PVPR(xl) ≤ σl , l ∈ S,

(33)y = 1

δ
(b − Rxt) = xt − 1

δ
(Bxt − b).

(34)
min
xl

2τ

ρ
�xl�2 + δ�xl − yl�2

s.t. PVPR(xl) ≤ σl , l ∈ S.

(35)xl =
{

ql , if �yl�2 ≥ τ̂

0N , if �yl�2 < τ̂

(36)S = {l|�yl�2 ≥ τ̂ },
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and under its complementary set NS = {l|�yl�2 < τ̂ } , we accordingly set xl , l ∈NS as zero 
vector, i.e., 0N . For xl , l ∈ S , we turn to solve the following projection problem as,

It can be seen that (36) is intractable due to the non-convex PVPR constraint. To facili-
tate solving (36), we tactfully introduce a scalar µ to equivalently rewrite (36) as,

By defining ζ = √
µ and νl =

√
σl  , we find that (37) is equivalent to,

Fortunately, the solution to (38) admits a closed-form solution ζo , which can be deter-
mined by the technique in [46]. After obtaining ζo , we then have the optimal µ⋆ = ζ

2
o  and 

each element of xt+1
l , l ∈ S can be updated by the following projection:

for n = 1, . . . ,N  . Once obtaining the solution xt+1
l  for both cases of l ∈ S or not, then 

the concatenated vector xt+1 is constructed by xt+1 = [x(t+1)T
1 , . . . , x

(t+1)T
L ]T .

Note that when the common CM constraint (8) is considered in x-subprob-
lem with τ = 0 , the optimal xt+1 is readily updated by an element-wise manner as 
xt+1 = [µ0e

∠y(1), . . . ,µ0e
∠y(NL)]T .

2) The solution to (25): The vp-subproblem in (25) by omitting the irrelative items, is 
given by,

where ṽp = Â
H

p x
t+1 + ut

p . Clearly, once given η , vt+1
p  can be updated by solving the fol-

lowing problem,

which admits a closed-form solution as,

(37)
min
xl

�xl − ql�2

s.t. PVPR(xl) ≤ σl .

(38)
min
xl ,µ

�xl − ql�22

s.t. µ ≤ |xl(n)|2 ≤ µσl , n = 1, . . . ,N .

(39)
min
xl ,ζ

�xl − ql�22

s.t. ζ ≤ |xl(n)| ≤ ζνl , n = 1, . . . ,N .

(40)xt+1
l (n) =







µ
⋆
σle

j∠ql(n), |ql(n)|2 ≥ µ
⋆
σl

µ
⋆ej∠ql(n), |ql(n)|2 ≤ µ

⋆

ql(n), otherwise

(41)
min
vp ,η>0

η + ρ

2

P
∑

p=1

�vp − ṽp�2

s.t. dp − η ≤ �vp�2 ≤ dp + η, p = 1, . . . ,P,

(42)
min
vp

P
∑

p=1

�vp − ṽp�2

s.t. dp − η ≤ �vp�2 ≤ dp + η, p = 1, . . . ,P,
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Then, plugging (42) into the cost function in (40) yields an optimization problem only in 
terms of η:

where η̆ = maxp{dp}Pp=1 and G(·)|C denote the condition function that equals 1 if the 
argument satisfies C and equals 0 otherwise. It can be seen that the objective function in 
(43) is a piecewise nonlinear one that relies on the value of the condition function G(·)|C . 
To this end, we select J reasonable and non-overlapped turning points that are less than η̆ 
from the set 

{∣

∣�ṽp�2 − dp
∣

∣

}P

p=1
 and sort them as {r̆j}Jj=1 in ascending order, which natu-

rally divides the feasible domain of η into J + 1 subintervals. Evidently, the optimal solu-
tion η⋆ to (43) corresponds to the smallest one among the objective values in the J + 1 
subintervals. Therefore, we first study the local minimum in each subinterval. Specifi-
cally, at the jth subinterval, i.e., η ∈ [r̆j−1, r̆j] , the subproblem of (43) is given by,

where

Denote the cost function in (44) as fj(η) and its first-order derivative and the second-
order derivative are given by, respectively,

(43)vt+1
p =











�

dp + η
ṽp

�ṽp�2 , �ṽp�2 ≥
�

dp + η

�

dp − η
ṽp

�ṽp�2 , �ṽp�2 ≤
�

dp − η

ṽp, otherwise

(44)

min
η

η + ρ

2

P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp

(
√

dp + η − �ṽp�2
)2

+ ρ

2

P
∑

p=1

G(ṽp)
∣

∣

η≤dp−�ṽp�2
(
√

dp − η − �ṽp�2
)2

,

s.t. η ∈ [0, η̆],

(45)

min
η

ājη − ρ

P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp

(

�ṽp�2
√

dp + η

)

− ρ

P
∑

p=1

G(ṽp)|η≤dp−�ṽp�2
(

�ṽp�2
√

dp − η

)

+ c̄j

s.t. η ∈ [r̆j−1, r̆j],

(46)

āj = 1+ ρ

2

P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp
− ρ

2

P
∑

p=1

G(ṽp)|η≤dp−�ṽp�2 ,

c̄j =
ρ

2

P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp

(

dp + �ṽp�22
)

+ ρ

2

P
∑

p=1

G(ṽp)|η≤dp−�ṽp�2
(

dp + �ṽp�22
)

.
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Clearly, f ′(η) is increasing over η and f ′′(η) > 0 , which implies that the subfunction 
fj(η) is convex. Thus, the local optimal solution to the jth subproblem in η ∈ [r̆j−1, r̆j] can 
be determined from one of the following three cases: 

(1)	 When f ′(r̆j−1) > 0 , the subfunction fj(η) is increasing in the interval [r̆j−1, r̆j] and 
the local minimizer η̂j = r̆j−1.

(2)	 When f ′(r̆j) < 0 , the subfunction fj(η) is decreasing in the interval [r̆j−1, r̆j] and 
the local minimizer η̂j = r̆j.

(3)	 When f ′(r̆j−1) < 0 and f ′(r̆j) > 0 , there exists a unique solution to fj(η) in the 
interval [r̆j−1, r̆j] and the local minimizer η̂j can be obtained by applying a bisection 
search to the equation f ′(η) = 0 in the interval [r̆j−1, r̆j].

After obtaining η̂j and its objective value fj(η̂j) for j = 1, . . . , J  , we then choose the small-
est one from {fj(η̂j)}Jj=1 and set the corresponding η̂j as the optimal η⋆ , that is the update 
of ηt+1 . Once getting ηt+1 , vt+1

p  can be updated by inserting ηt+1 into (42).
Finally, we summarize the above steps in Algorithm 1 and repeat it until the maximum 

iteration number Tm is reached or the maximum residual, i.e., maxp �Â
H

p x
t − vtp�2 is less 

than the stop tolerance value ε.

4 � Performance analysis
4.1 � Computational complexity analysis

As for the computational complexity of the proposed Algorithm 1, we mainly consider 
the count of multiplications in each iteration. In Step1, the maximum eigenvalue of B 

(47)

f ′j (η) = āj −
P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp

ρ�ṽp�2
2
√

dp + η

+
P
∑

p=1

G(ṽp)|η≤dp−�ṽp�2
ρ�ṽp�2

2
√

dp − η
,

f ′′j (η) =
P
∑

p=1

G(ṽp)
∣

∣

η≤�ṽp�2−dp

ρ�ṽp�2
4(dp + η)

3
2

+
P
∑

p=1

G(ṽp)|η≤dp−�ṽp�2
ρ�ṽp�2

4(dp − η)
3
2

.
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can be pre-computed before the iteration to save the computational burden. Hence, the 
main computation in Step1 is involved in the matrix–vector multiplication Bxt which 
takes O(N 2L2) complexity, since the PVPR projection only needs scalar multiplica-
tions with the complexity of O(NL) . Step2 is dominated by the matrix–vector multipli-
cations similar to the Step3 with a complexity of O(N 2PL) , as updating ηt+1 also only 
needs scalar multiplications. In summary, the overall complexity of Algorithm  1 is 
O(2N 2PL+ N 2L2).

4.2 � Convergence analysis

In the proposed ADMM-based Algorithm 1, we approximately update xt+1 by solving 
surrogate primal variable subproblems, which actually follows the majorization-minimi-
zation algorithm at one step [25]. Note that such a solution by this way can be guar-
anteed to make the original objective function value decent at each successive update 
and the proof can be found in [25, 45]. Thus, the interior monotonicity of the original 
augmented Lagrangian function Lρ(x, η

t+1, vt+1
p ,ut

p) is also guaranteed. Then, we apply 
some convergence results of the standard ADMM in [23, 47, 48] to study the local 
convergence of Algorithm  1 and show that �xt+1 − xt�2 → 0 as the iteration number 
t → ∞ . The following theorem is provided to explain the convergence behavior of Algo-
rithm 1 under some mild conditions.

Theorem 1  Let {xt , ηt , vtp,ut
p} be the sequence generated by the proposed Algorithm 1. 

Assume that limt→∞ ut+1
p − ut

p = 0 for ∀p . Then there exists an accumulation point 
{x⋆, η⋆, v⋆p,u⋆

p} , which is an optimal solution to (21).

1 � Proof
see Appendix A.

5 � Numerical results
In this section, some numerical examples are provided to demonstrate the superiority 
of the proposed SIAPC scheme over the counterparts. In the first subsection, we exam-
ine Algorithm 1 to jointly design waveforms and SA for approaching desired transmit 
beampatterns {Dp}Pp=1 without considering compatibility, that is, β = 0 . In the second 
subsection, we take the spectral energy regularization into account and investigate the 
coexistence performance of radar and communications. Without loss of generality, we 
set σl = σ , ∀l to control the power uniformity per antenna with the total energy budget 
κ
2
e = NL . Besides, in all simulations, we set Tm = 104, ε = 10−5 in the proposed algo-

rithm and the range of spatial angle is divided into 181 grid points with a uniform inter-
val of 1◦.
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5.1 � Waveform design based on SA without spectral compatibility

1 � Example 1

In the first example, a SA is selected from a full ULA consisting of L = 15 anten-
nas with an inter-element spacing of half-wavelength and N = 10 samples of 
transmit waveform is designed to synthesize multiple narrow beams, where 
three beams pointing toward �m = [−50◦, 0◦, 50◦] and the sidelobe region is 
�s = [−90◦,−60◦] ∪ [−40◦,−10◦] ∪ [10◦, 40◦] ∪ [60◦, 90◦] . We carry out the proposed 
Algorithm 1 with ρ = 0.5, τ = 0.2 and weights wp = 1, ∀p under the random initializa-
tions of x0 and {v0p}Pp=1 . Figure 2 illustrates the convergence performance of Algorithm 1 
under σ = 1, 2 , where the objective η steadily converges to a certain point while the maxi-
mal residual maxp �Â

H

p x
t − vtp�2 decreases to zero, e.g., around -150 dB as the itera-

tion number increases. This indicates the convergence of the proposed method. Also, as 
expected, a larger PVPR value results in a smaller η thanks to more DoFs gained. Fig-
ure  3a depicts the synthesized beampatterns using different methods and their cor-
responding SA configurations are shown in Fig.  3b. The recent WCM-based SA design 
methods, such as dynamic programming (DP) in [35] and the preset array reconfigured 
method in [36] (simplified as DP-WCM and RM-WCM, respectively) are performed with 
10 antennas selected for fair comparison without cross-correlation term. Meanwhile, a 
10-antenna ULA based on optimal WCM design via semi-definite quadratic program-
ming (SQP) method [13] is included for comparison. We can see that the synthesized 
beampatterns from the SA optimized by our scheme with unit-PVPR has a lower SLL 
compared to the other methods and outperforms the uniform ULA, which demonstrates 
the superiority of nonuniform SA over uniform array with the same number of antennas. 
Moreover, the maximal square error (MSE), defined by MSE = maxp |B(θp)− Dp|2 , and 
the PSL are listed in Table 1, which shows that SIAPC scheme exhibits the smallest MSE 
and the lowest PSL.

To clearly visualize the optimized waveforms by our SIAPC scheme, the normalized 
amplitude distributions of the designed waveforms are depicted in Fig. 4a–b. It can be 
observed that the proposed PVPR constraint enables to control the amplitude dynamic 
range on each antenna within an acceptable fluctuation, which is beneficial to the indi-
vidual PA working in a nonlinear region for improving power efficiency. Furthermore, 
in Fig.  5, we compare the obtained beampattern by SA with unit-PVPR to that of the 
15-antenna ULA based on the optimal WCM by SQP and CM waveform. Interestingly, 
the optimized SA by SIAPC scheme with unit-PVPR exhibits slightly lower SLL than 
that of full ULA under CM waveform and their MSEs in order are −20.0 dB, −26.96 dB 

Table 1  Comparisons of performance in Example 1

Metric ULA-SQP RM-WCM DP-WCM SA: unit-PVPR SA: PVPR≤ 2

MSE (dB) − 13.31 − 9.99 − 18.63 − 27.44 − 27.54

PSL (dB) − 10.84 − 9.61 − 10.91 − 13.72 − 13.77
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and −27.44 dB. Clearly, our SIAPC achieves the best beampattern matching design, i.e., 
MSE=−27.44 dB.

Finally, to verify the rationality and credibility of the selected antenna locations, we 
exhaustively search all antenna selection combinations of choosing 10 elements from the 
full 15-element array with the optimized waveform by the proposed SA method under 
unit-PVPR constraint. Figure 6 shows that the PSL of the synthesized beampatterns cor-
responding to all 3003 combinations. We can see that the proposed antenna location 
shown in Fig. 4a is globally optimal with the lowest PSL.

Table 2  Comparisons of performance in Example 2

Metric ULA-SQP RM-WCM DP-WCM SA: unit-PVPR SA: PVPR≤ 2

MSE (dB) − 5.77 − 9.23 − 6.56 − 25.11 − 25.13

PSL (dB) − 8.69 − 9.78 − 8.66 − 12.57 − 12.57
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p�2 versus 
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denote the discarded antennas and green solid circles the selected antennas
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1 � Example 2

In the second example, we consider synthesizing multiple wide beams to track multiple 
potential targets, whereas the directions of the true targets are imprecisely known [49]. To 

Fig. 4  Normalized transmit waveform amplitude distribution
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this end, we intend to design a two-mainlobe beampattern from a full 15-antenna ULA, 
where the mainlobe region is �m = [−47◦,−33◦] ∪ [28◦, 42◦] and the sidelobe region is 
�s = [−90◦,−55◦] ∪ [−25◦, 20◦] ∪ [50◦, 90◦] . Figure 7 displays the synthesized beampat-
terns of different methods and their selected antenna positions. It can be observed that the 
designed beampattern from the optimized SA by our SIAPC scheme exhibits the lowest 
SLL with the same 10 antennas selected. Again, Table 2 shows that the proposed SIAPC 
utilizes more DoFs to synthesize the beampattern with the smallest MSE and the lowest 
PSL. Moreover, we also compare the beampattern synthesized by the optimized SA with 
unit-PVPR to that of the full ULA in Fig. 8. This figure shows that the proposed SIAPC 
scheme is able to achieve almost the same performance with a full ULA but employing a 
smaller number of antennas in the beampattern synthesis.
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Fig. 6  The PSL of the synthesized beampattern under unit-PVPR constraint versus enumeration number in 
example 1

-80 -60 -40 -20 0 20 40 60 80

Angle (°)

-35

-30

-25

-20

-15

-10

-5

0

5

S
yn

th
e

si
ze

d
 b

e
a

m
p

a
tt

e
rn

 

ULA: SQP
RM-WCM
DP-WCM
SA:unit-PVPR
SA:PVPR 2

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Antenna index

ULA array

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Antenna index

SA by RM-WCM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Antenna index

SA by DP-WCM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Antenna index

SA by unit-PVPR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Antenna index

SA by PVPR 2

(b)
Fig. 7  a Synthesized wide-mainlobe beampatterns with different methods; b Antenna locations, where red 
crosses denote the discarded antennas and green solid circles the selected antennas
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5.2 � Waveform design based on SA with spectral compatibility

1 � Example 3

In the second part, we further investigate wide beam synthesis but with spectral compat-
ibility, where a full ULA with L = 15 antennas spaced by half-wavelength is constructed 
and N = 32 waveform samples is jointly designed. Assume that there are two commu-
nication devices spectrally coexisting with the MIMO radar on the normalized working 
frequency bands �1 = [0.41, 0.51] and �2 = [0.75, 0.85] . The two devices are approxi-
mately located at the angular positions of [−15◦,−10◦] and [10◦, 15◦] , respectively. The 
desired transmit beampattern for MIMO radar detects targets from the mainlobe region 
of �m = [−15◦, 15◦] and the sidelobe region is �s = [−90◦,−25◦] ∪ [25◦, 90◦] . Evidently, 
the radar detection beam produces large energy leakage in the spatial-spectral direc-
tions of communications, which interferes the coexistence between radar and communi-
cations. To achieve the spectral coexistence between radar and communications, we set 
ρ = 0.7, τ = 0.1 and β = 100 in Algorithm 1 to synthesize spectrally-compliant beampat-
terns under different array configurations as shown in Fig. 9a, b, where the performances 
of the 10-antenna ULA and the 15-antenna full ULA are compared with the proposed SA 
design. From the figures, we can see the synthesized beampattern under the proposed SA 
configuration with PVPR=1 exhibits lower PSL than that of the 10-antenna ULA with 
CM constraint, i.e., −18.03 dB < −16.13 dB. Furthermore, the obtained PSL from the pro-
posed SA scheme is slightly larger than that of the full ULA, i.e., −18.03 dB > −18.4 dB 
but requires 5 fewer antennas. In addition, we find that the resulting beampattern of the 
SA by the proposed SIAPC scheme with PVPR≤ 2 exhibits a lower PSL than that of the 
full ULA, i.e., −19.32 dB < −18.4 dB, which again demonstrates the superiority of the 
proposed strategy.

The energy distributions of the designed waveforms in the spatial-spectral domain 
are depicted in Fig.  10, where the yellow rectangular box denotes the spatial-spectral 
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stop-bands to be formed. As expected, all the optimized waveforms form deep spec-
tral nulls in the stop-bands, which locally approaches −  50 dB. In particular, it can 
be observed from Fig.  10c that the optimized waveform by our SIAPC scheme under 
PVPR=1 forms a more pronounced spectral stop-band stripe than those ULAs in the 
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Fig. 10  The energy distributions in the spatial–spectral domain with β = 100 under different array 
configurations. a 10-antenna ULA with CM. b full ULA with CM. c SA with PVPR=1. d SA with PVPR ≤ 2
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CM case in Fig. 10a, b, which is attributed to the more DoFs provided by the PVPR con-
straint than the CM constraint.

1 � Example 4

Finally, we examine the ability of the designed waveform to achieve the spectral com-
patibility with communications when the communication devices locate quite close to 
the radar target directions. Assume that there are two targets of interest at the angu-
lar locations of −20◦ and 10◦ , respectively. Thereby, two focused beams need to be syn-
thesized to probe them with the mainlobe region being �m = [−21◦, 19◦] ∪ [9◦, 11◦] 
and the sidelobe region being �s = [−90◦,−29◦] ∪ [−11◦, 1◦] ∪ [19◦, 90◦] . Two com-
munication devices locate very close to the target directions at the angular ranges of 
[−15◦,−10◦] and [10◦, 15◦] , respectively, and their normalized working frequency bands 
are �1 = [0.30, 0.35] and �2 = [0.80, 0.87] . We select 10 antennas from a full 15-antenna 
array by carrying out the proposed Algorithm 1 with ρ = 0.7, τ = 0.5 and β = 50 . Fig-
ure  11a shows that the synthesized beampatterns under different array configurations. 
We can see that the beampattern from the proposed SA with unit-PVPR has the smallest 
PSL of − 17.23 dB, especially lower than that of the full array. Figure 11b shows that the 
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synthesized spatial-spectral energy distribution of the proposed SA. It can be clearly seen 
that two deep spectral notches close to − 50 dB are formed in the specific stopband regions 
where the two communication devices exist, which shows that the interferences caused by 
the transmit energy from radar can still be effectively and sufficiently suppressed, in turn 
manifesting the spectral compatibility of the proposed scheme. Figure 11c plots the uni-
form waveform amplitudes per antenna and there are 5 antennas with zero amplitudes, 
which implies that these five antennas are unselected.

6 � Conclusion
In this paper, we proposed a switchable individual antenna power control scheme, 
namely SIAPC together with the novel PVPR constraint, to control the transmit power 
uniformity per antenna and jointly design the sparse MIMO array transceiver by antenna 
selection. The proposed scheme possessed more waveform designate DoFs to achieve a 
lower SLL than that of the common CM in the case of uniform elemental power and 
form multiple deeper nulls in the spatial-spectral domain in order to spectrally coexist 
with communications and reduce the mutual interferences between radar and commu-
nications. Numerical experiments verified the effectiveness and superiority of the pro-
posed method compared with other methods in terms of obtaining the lower sidelobe 
level and deeper spectral nulls using a smallest number of antennas.

Appendix A: Proof of theorem 1
Since limt→∞ ut+1

p − ut
p = 0 , along with the dual ascent step in Step3, we then have 

that,

Moreover, since PVPR constraint is a closed and bounded set, the sequence {xt} is also 
bounded. Meanwhile, observing that,

and vtp is constrained in the double-sided constraint in (40), thus it implies that {vtp, ηt} is 
also bounded. Hence, there exists a stationary point {x⋆, v⋆p, η⋆} such that

Recalling the boundedness of the augmented Lagrangian function Lρ(x, η, vp,up) , we 
then have,

which implies that

(48)lim
t→∞

Â
H

p x
t+1 − vt+1

p = 0, p = 1, . . . ,P.

(49)�vtp�2 ≤ �ÂH

p x
t − vtp�2 + �vtp�2,

(50)lim
t→∞

xt = x⋆, lim
t→∞

vtp = v⋆p, lim
t→∞

ηt = η⋆.

(51)lim
t→∞

Lρ(x
t , ηt , vtp,u

t
p) = Lρ(x

⋆, η⋆, v⋆p,u
⋆

p),
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for p = 1, . . . ,P , and the limit point {x⋆, v⋆p, η⋆} is an optimal solution. The proof is 
complete.
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