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Abstract 

In this paper, we consider multi-sensor with partly overlapping field of view (FoV) in 
the labeled random finite set (L-RFS) framework. This is different from most existing 
multi-sensor tracking algorithms, where the sensors are assumed to have the same 
FoV. We describe the partly overlapping FoV by modeling probability field of detection 
for individual sensors in whole observation area and can be seen as the same range of 
FoV. We consider all these using generalized labeled multi-Bernoulli filter in labeled RFS 
framework. Besides, we also propose a measurement-driven target birth model. Finally, 
the effectiveness of the proposed algorithm is verified by experiments.

Keywords:  Target tracking, Multi-sensor, Partly overlapping FoV, Labeled random finite 
sets, The GLMB filter

1  Introduction
The aim of target tracking of far distance using radar sensor is to infer the states of tar-
gets from a set of measurements, which are received by the sensor. It is widely used in 
the military field or civilian areas, where the single sensor has been studied a lots in cur-
rent literatures, whether in association-based approaches such as joint probability data 
association [1, 2] and multiple hypothesis tracker [3], or in random finite sets-based 
approach. The RFS approach provides an elegant Bayesian formulation for multi-target 
tracking problem. The typical RFS multi-target tracking (RFS-MTT) filters include the 
probability hypothesis density (PHD) filter [4], Gaussian mixture (GM-PHD) filter [5], 
the cardinalized PHD (CPHD) filter [6, 7], and the (cardinality balanced) multi-Bernoulli 
(CBMeMBer) filter [8, 9]. In multitarget tracking, a recent break-through is a closed 
form solution to the Bayes multitarget filter which can also output target tracks [10, 11]. 
The most important work is the generalized labeled multi-Bernoulli (GLMB) filter. It is 
with the first multitarget conjugate prior [10, 11] the multitarget conjugate prior with 
respect to the standard multitarget likelihood function, or Vo-Vo prior. Additionally, 
this multi-target prior is also closed under the Chapman-Kolmogorov equation for the 
standard multi-target transition density [10, 11].
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The multi-sensor multi-target tracking has been studied a lots in traditional associ-
ation-based algorithms. For example, the classic S-dimension assignment algorithm 
[12]. The multi-sensor with a distributed structure shows more robust performance 
than the centering one. Li et al. proposed the best linear unbias estimator for the dis-
tributed sensors in reference[13]. This result can be used in the MSMT tracking. In 
the RFS framework, Mahler proposed multi-sensor PHD filter [4, 14, 15], all belong-
ing to centralized structure and have the same measurement field. For the large range 
of target movement in the radar tracking network, it is difficult for a single radar to 
complete the tracking task. Reference [16] developed a collaborative detection and 
power allocation (CDPA) scheme, which can evidently expand the detection range 
and improve the target tracking accuracy. Further, the Bayesian Cramér-Rao lower 
bound (BCRLB) is used in [17, 18] to quantify the target tracking performance, and 
good results are obtained.

In fact, when a target flies thousands of kilometers, it is difficult for a sensor to track 
the target. Obviously, the assumption of multi-sensor having the same field is unreal-
istic. Usually, certain working pattern like relay race is adopt and thus the sensors are 
with partly overlapping field of view (FoV). At present, the basic idea to deal with this 
problem is to fuse the information in the overlapping FoV of each radar to improve 
the tracking performance, and to combine the information in the non-overlapping 
FoV to expand the sensing range. The main methods to solve this problem are divid-
ing, clustering and other methods.

•	 Dividing method: References [19–21] used the known radar FoV to divide the 
multi-target density and then fused the divided terms to represent the multi-tar-
get density of overlapping FoV. However, the target information of non-overlap-
ping FoV was ignored in [19].

•	 Clustering method: Using a clustering method, i.e., finding estimated matches from 
different sensors for the same target according to different measures, and performing 
fusion only on the selected matches. Reference [22] calculated the Mahalanobis dis-
tance between PHD Gaussian components of different sensors, and fused the Gauss-
ian components with shorter Mahalanobis distance through the GA method, real-
izing the distributed GA fusion of PHD filters in partly overlapping FoV. Reference 
[23] achieved the fusion of CPHD filters in partly overlapping fields of view by using 
a method similar to that in [22]. Reference [24] matched the Bernoulli components 
between multi-Bernoulli filters through Mahalanobis distance and realized distrib-
uted AA fusion of multi-Bernoulli filters in limited FoV. For details about GA and 
AA fusion, see [25, 26]. Reference [27] used Optimal Subpattern Assignment (OSPA) 
distance as a measure to implement a method similar to that in [22]. Reference [28] 
used the method based on the highest a posteriori density distance measure to real-
ize the PHD filter fusion of the limited FoV.

•	 Other methods: Reference [29] proposed a track-to-track fusion method in 
which the information contents of posteriors are combined. It is proved that 
using Cauchy Schwarz divergence can better realize LMB filter fusion with lim-
ited FoV.  A distributed network of sensors with limited field of views is proposed 
under labeled RFS frameworks [27].  Reference [30] proposed a dual-term node-
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wise separable likelihood. It can be used for cases in which the sensors have partly 
overlapping FoVs.

The target birth intensity (TBI) is widely assumed to have a constant amplitude that 
must be determined in advance, implying that the intensity of emerging targets will be 
the same in all FoV. However, this is not always desirable. In actual tracking scenarios, 
the size of TBI is usually unknown and changes over time [31–33]. In [34], the target 
birth probability is adaptively performed in the pre-processing step, combined with the 
current measurements to correct the preset of the target birth probability, the proposed 
filter can really adapt to the target birth situation and achieve better tracking accuracy. 
In [35], a magnitude-adaptive TBI approach has been developed for RFS-based Bayesian 
filters , which adapts the TBI magnitude online with respect to the newest observations 
in exchange for very little additional computation. Reference [36] modelled the time-
varying spatial distribution of target births as a dynamic density map with adaptive grid 
points, which is capable of estimating the unknown, dynamically changing birth process.

In this paper, we model the partly overlapping detection field of probability and 
provide multi-sensor measurement driven birth model. Based on these, we adopt the 
labeled random finite set to describe the target states and estimate their states by using 
the generalized labeled multi-Bernoulli (GLMB) filter. The preliminary results of this 
paper are published in a conference version [37], and this article is a complete one.

The structure of this paper is organized as follows. The Sect. 2 shows some theoretical 
basis for the labeled random finite set, including the GLMB filter. The Sect. 3 proposes 
the models of the detection of probability for the sensors. Section 3 considers the multi-
sensor GLMB filter with partly overlapping field. The simulation is given in Sect. 4, and 
Sect. 5 concludes this paper.

2 � Background
2.1 � The state and measurement RFSs

In category of RFS, the states and measurements of multi-target can be seen as a set, in 
which each element belongs to a random vector and the cardinality of the set is finite 
and random. More specifically, the multi-target state RFS can be modeled by [8]:

where Sk|k−1(x) , Bk|k−1(x) , and Ŵk are the target surviving, spawned, and birth RFSs. Let 
these RFSs are mutually independent. Then, the probability density of the multi-target 
state RFS can be gotten by [8]:

where Tk|k−1(x) � Sk|k−1(x) ∪ Bk|k−1(x) , πŴ,k(·) is the probability densities of spontane-
ous birth RFS Ŵk . The equation describes all actions of target motion, birth and death. It 
should be noted that the spawning case is ignored in the paper.

The multi-target is observed by various sensors and multiple measurements may be 
received. Assume at time k, a target may be detected and produces a measurement zk 
with probability PD(xk) or missed and gives empty set {∅} with probability 1− PD(xk) . 

(1)Xk = [∪x∈Xk−1
Sk|k−1(x)] ∪ [∪x∈Xk−1

Bk|k−1(x)] ∪ Ŵk

(2)fk|k−1(Xk |Xk−1) =

W⊆Xk

πT ,k|k−1(W |Xk−1)πŴ,k(Xk −W )
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In a word, the received measurements zk , with probability of detection PD(xk) and likeli-
hood function g(zk |xk) , involve all the information of the target state RFS Xk . The target 
measurement RFS plus clutter or false alarms RFS Kk are expressed in the following:

where �k(Xk) = ∪xk∈Xk
�k(xk) , we may model �(xk) as a binary RFS

The Kk is Poisson RFS with intensity vK (·) . Its probability distribution is derived by:

Under the assumption of mutual independence between �k(Xk) and Kk , the probability 
density ϕk(Zk |Xk) is given by [8]:

where π�k ,k(W |Xk) is the probability density of target-generated measurement RFS and 
π(Zk −W ) for clutter.

2.2 � The labeled random finite set

Based on traditional RFS, a variable of label is added to the above state element x [10], 
generated a labeled RFS. It is defined on a product space X× L , where L is a label space. 
In practical applications, a labeled random vector is represented by an unique vector in 
a discrete countable space. For example, the label is defined on space (k , i)T , where k is 
time stamp and i is the count of this stamp. Some densities of the labeled RFS version are 
shown in the following.

2.2.1 � The labeled Poisson RFS

A Poisson distribution is defined on the positive integer space N � {0, 1, · · · , n, · · · } and 
given by

where � is Poisson intensity. For a RFS X = {x1, · · · , xn} , the elements xi ∈ X are i.i.d 
with density v(x)/N̄  , where N̄ =

∫

v(x)dx . Its Poisson distribution is given by

where � is Poisson intensity. For a RFS X = {x1, · · · , xn} , the elements xi ∈ X are i.i.d 
with density v(x)/N̄  , where N̄ =

∫

v(x)dx . Its Poisson distribution is given by

(3)Zk = �k(Xk) ∪ Kk

�(xk) =

{

∅, with pobability 1− PD(xk)
{zk}, with pobability PD(xk)

(4)ck(zk) = vK ,k(zk)/

∫

vK ,k(zk)dzk

(5)ϕk(Zk |Xk) =
∑

W⊆Zk

π�,k(W |Xk)π(Zk −W )

(6)π(x = n) =
�
ne−�

n!

(7)π(x = n) =
�
ne−�

n!
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A labeled Poisson RFS X is expressed by X = {(x1, ℓ1), · · · , (xn, ℓn)} with the following 
density function:

where δL(n)({l1, . . . ln}) is a generalization of the Kronecker delta

〈v, 1〉 is defined to be 
∫

v(x)dx , Pois〈v,1〉(n) is the Poisson distribution, i.e., 
e−�

�
n/n!, � = �v, 1�.

2.2.2 � Labeled multi‑Bernoulli RFS

For a fixed number of independent Bernoulli RFS X (i) with parameters of existing prob-
ability r(i) and density p(i)(·) , their union

belongs to a multi-Bernoulli RFS and with the following probability density

For a labeled multi-Bernoulli RFS X with non-empty parameter set {r(ζ ), p(ζ ), ζ ∈ �} , its 
probability distribution is given by [38]

where function α(·) is a 1-1 map shown as: α : � → L . It should be noted that the dis-
tribution is not a multi-Bernoulli distribution. For simplicity, an alternative form of the 
labeled multi-Bernoulli distribution is given by [10]:

where �(X) is an indictor function to guarantee the distinct of individual labels. �(X; ·) 
is defined by

(8)π({x1, · · · , xn}) = eN̄
n
∏

i=1

v(xi)

(9)π
({

(x1, l1), . . . , (xn, ln)
})

= δL(n)({l1, . . . ln}) Pois�v,1�(n)

n
∏

i=1

v(xi)

�v, 1�

δY (X) =

{

1, if X = Y
0, otherwise

(10)X = ∪n
i=1X

(i)

(11)π({x1, · · · , xn}) =

N
∏

j=1

(1− r(j))
∑

1≤i1 �=···�=in≤N

n
∏

l=1

r(il)p(il)

1− r(il)

(12)

π({(x1, ℓ1), · · · , (xn, ℓn)}) = δn(|{ℓ1, · · · , ℓn}|)

×
∏

ζ∈�

(1− r(ζ ))

n
∏

j=1

1α(�)(ℓj)r
(α−1(ℓj))p(α

−1(ℓj))(xj)

1− r(α
−1(ℓj))

(13)π(X) = �(X)1α(�)(L (X))[�(X; ·)]�

�(X; ·) =

{

1− r(ζ ), if α(ζ ) /∈ L (X)

r(ζ )p(ζ )(x), if (x,α(x)) ∈ X
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2.2.3 � Generalized labeled multi‑Bernoulli density

The generalized labeled multi-Bernoulli density is defined by [10]

where c is a discrete index set, ω(c) is a weighted coefficient and dependent on the state 
label L (X) . p(c) � p(c)(x, ℓ) is a distribution function for track with label ℓ . Thus, the 
exponential function [p(c)]X is the factorial of all tracks. Moreover, it has been shown 
that the labeled Poisson RFS and labeled multi-Bernoulli are two special cases of GLMB 
RFSs [10].

3 � Methods
3.1 � The measurement models

Let Fs,k be the observation area for the sensor s. That is, only the targets in the field Fs,k may 
be observed. Assume that the state of sensor s is ys,k ∈ Rny , where Rny is the ny-dimensional 
Euclidean space. The measurement model can be modeled by:

The measurement model for sensor s is given by:

where P (·) is a projection from certain state space Rnx to position space R2 , i.e., 
P : Rnx → R2 for target state.

3.2 � The models of multi‑sensor probability of detection

In general, radar is a feasible sensor for tracking targets over long distances. Its field of view 
can be regarded as a fan-shaped area in polar coordinates, as shown in Fig. 1. It is defined 
by:

where As,k is the FoV of the sensor s, R+ is the space of positive real numbers. Accordingly, 
the corresponding Euclidean space position can be gotten by a projection q : As,k → R2 . 
Thus, the FoV area in Euclidean space is defined by Fs,k = {q(as,k)| for all as,k ∈ As,k} . 
The model of probability of detection for sensor s is given by

(14)π(X) = �(X)
∑

c∈C

ω(c)(L (X))[p(c)]X

(15)Zs,k = ∪xk∈Xk
�s,k(xk , ys,k) ∪ Ks,k(ys,k)

�s
k(ys,k , xk) =

{

{zs,k} with Pd(ys,k , xk), if P (xk) ∈ Fs,k
∅ with 1− Pd(ys,k , xk) otherwise

(16)As,k : [θs,min(ys,k), θs,max(ys,k)] × [0, rs(ys,k)] ⊆ [−π ,π ] × R
+

Ɵ
 

Fig. 1  Multi-sensor observations
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where PD is a constant, || · ||2 is 2-norm. This model implies that a target may be detected 
with a certain probability if it locates in area Fs,k of sensor s, and with probability of 
detection zero otherwise.

3.3 � Target birth models of multi‑sensor measurement driven

In most existing algorithms, the FoV of a sensor is assumed to cover all the track region 
and there is no any dead zone. Hence, the target birth model is assumed to be prior and 
known. But for sensors with partly overlapping FoV, a sensor scans only part of the sur-
veillance region. Hence, it is impossible to detect a target when the target is born outside 
the FoV. In order to build the target birth model, we refer the measurement-driven birth 
model given in [38–40] and extend it to the multi-sensor case.

A multi-Bernoulli RFS X is a union of a fixed number of independent Bernoulli RFSs 
X (i) with existence probability r(i)B ∈ (0, 1) and probability density p(i)B (i = 1, . . . ,M)[41]. 
So, the probability density of a multi-Bernoulli RFS can be abbreviated as:

Assume that the form of the birth model with generalized labeled multi-Bernoulli 
(GLMB) is as follows:

where

The existence probability can be initialized by the following equation:

where

where �(I , S) is the space of multi-sensor association map. ϑ is a multi-sensor associa-
tion map (defined next subsection).

3.4 � Multi‑sensor association map

In the GLMB filter, the association map plays a crucial role in the RFS multi-objective 
likelihood function.

Ps,d(xk) =

{

PD exp {−
||P (xk )−P (ys,k )||2

2 }, if P (xk) ∈ Fs,k
0, otherwise

(17)π =
{

(rB
(i), pB

(i))

}M

i=1

(18)πB(X+) = �(X+)wB(L(X+))[pB]
X+

(19)wB(I) =
∏

i∈B

(1− r
(i)
B )

∏

l∈I

1B(l)r
(l)
B

1− r
(l)
B

(20)rB(z
1
k , · · · , z

S
k ) = min

(

rBmax,
∏

s

�
s
BrU (z

1
k , · · · , z

S
k )

∑

(ς1
k ,··· ,ς

S
k )∈Z

1
k×···×ZS

k
rU (ς

1
k , · · · , ς

S
k )

)

(21)rU (z
1
k , · · · , z

S
k ) = 1−

∑

(I ,ξ)∈F(L)×�

∑

ϑ∈�(I ,S)

1zθ (z)w
(I ,ξ ,ϑ)
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Definition 1  [10]: The association map is a mapping: θ : L → {0, 1, · · · , |Z|} . If 
θ(i) = θ

(

i′
)

> 0 , it means i = i′ , the set � represents the associated map space, and its 
subset I can be represented by �(I) . The association diagram describes the correspond-
ence between the trajectory and the measurement, the trajectory l produces a measure 
of zθ(l) ∈ Z , and the undetected trajectory is denoted by 0.

Definition 2  [42]: The multi-sensor association map is a mapping: ϑ : 
L → S1 × S2 × · · · × Sm , Ss = {0, 1 · · · , |Zs|} , where ϑ(i) = ϑ

(

i′
)

, θ(i, l) �= 0 means 
i = i′ , θ(i, l) is the rth element in vector θ(i) . The set �(I , S) represents the space of 
multi-sensor associated map, and its subset I can be represented by �(I , S).

Under the independence of all sensors, the multi-sensor association map ϑ can be 
expressed as

where ϑT
s  can be seen as components of ϑ . Assume that multi-sensor measurements can 

be represented by Zk � Z1,k ∪ · · · ∪ ZS,k , multi-sensor posterior probability:

where the integral is defined as:

Assume that the multi-sensor are independent, then multi-sensor likelihood function is 
given by:

where

3.5 � GLMB estimation algorithm for multi‑sensor with partly overlapping FoV

The basic principle of the multi-sensor tracking algorithm is to distribute the multi-sen-
sor reasonably. At different times, the detection results of the individual sensors may be 
different. At each moment, we need to judge the target, to determine the target in which 
the sensor within the scope of observation. The specific multi-sensor GLMB estimation 
algorithm is as follows:

(22)ϑ � (ϑT
1 , · · · ,ϑ

T
S )

(23)f (Xk |Zk) =
g(Zk |Xk)f (Xk)

∫

g(Zk |Xk)f (Xk)δXk

(24)

∫

f (Xk)δXk =

∞
∑

i=0

1

i!

∑

(l1,···li)∈Li

∫

Xi

f ({(x1, l1), · · · (xi, li)})d(x1, · · · xi)

(25)g(Zk |Xk) =

S
∏

s=1

e−�Ks ,1�K
Zs,k
s

∑

ϑs∈�(L(X),S)

[

ψZs,k
(·;ϑs)

]X

(26)ψZs,k
(x, l;ϑs) =

{

Ps,d(x,l)g(zϑs(l)|x,l)
k(zϑs(l))

, if ϑs(l) > 0

1− Ps,d(x, l), if ϑs(l) = 0
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3.5.1 � Update step

If the multi-sensor multi-target a priori density function is the form of generalized 
labeled multi-Bernoulli, then the multi-sensor multi-target posterior probability density 
is also the form of generalized labeled multi-Bernoulli:

where ϑ represents the current multi-sensor association map. The association param-
eters are defined as follows:

where �Zk
(x, l;ϑ) is the likelihood function in the case of multi-sensor; assume that the 

sensors are independent of each other, it can be simplified as:
∏

ψZ1,k
· · ·ψZS,k

( : ;ϑs) , 
suppose that the likelihood function is a Gaussian distribution,Ps,d(xk , l) = Ps,d , 
g(zs,k |xk , l) = N

(

zs,k;Hs,k ,Rs,k

)

 . Hs,d and Rs,d are the observation matrix and measure-
ment noise covariance for sensor s. Assume that probability density p(ξ)(·, ℓ) of target ℓ 
follows a Gaussian mixture distribution:

Then we can get the following multi-sensor cost matrix:

where zsk ,j represents the jth measurement of the sth sensor, the update history (ξ ,ϑ) and 
η
(ξ ,ϑ)
Z,k  of the multi-sensor association map are as follows:

(27)

π(Xk |Zk) = �(Xk)
∑

(I ,ξ)∈F(L)×�

∑

ϑ∈�(I ,S)

w(I ,ξ ,ϑ)(Zk)× δI (L(Xk))

[

p(ξ ,ϑ)(·|Zk)

]Xk

(28)

w(I ,ξ ,ϑ)(Zk) =
δ
ϑ−1

({

∏S
s=1(0:|Zs,k |)

})(I)w(I ,ξ)
[

η
(ξ ,ϑ)
Zk

]I

∑

(I ,ξ)∈F(L)×�

∑

ϑ∈�(I ,S)

δ
ϑ−1({0:|Zk |})

(I)w(I ,ξ)
[

η
(ξ ,ϑ)
Zk

]I

p(ξ ,ϑ)(x, l|Zk) =
p(ξ)(x,l)ψZk

(x,l;ϑ)

η
(ξ ,ϑ)
Z (l)

η
(ζ ,ϑ)
Zk

(l) =
〈

p(ξ)(·, l),ψZk
(·, l;ϑ)

〉

ψZk
(x, l;ϑ) = δ0(ϑ(l))qD(x, l)+ (1− δ0(ϑs(l)))

∏S
s=1 Ps,d(x,l)g(zϑs(l)|x,l)

∏S
s=1 K(zϑs(l))

(29)p(ξ)(·, ℓ) =

J (ξ)(ℓ)
∑

i=1

w
(ξ)
i (ℓ, 0)N (x;µ

(ξ)
i (ℓ, 0),P

(ξ)
i (ℓ, 0))

(30)Ci,S = −Ln













�S
s=1 Ps,d

J (ξ)(li)
�

j=1

qk
(ξ)(zsk ,j; li)

�S
s=1 (1− Ps,d)K (zsk)













(31)η
(ξ ,ϑ)
Zk

=

S
∏

s=1

J (ξ ,s)(ℓ)
∑

i=1

w
(ξ ,ϑs)
zsk ,i

(ℓ)

(32)p(ξ ,ϑ)(xk , ℓ|Zk) =

S
∏

s=1

J (ξ ,s)(ℓ)
∑

i=1

w
(ξ ,ϑs)
zsk ,j

(ℓ)

η
(ξ ,ϑs)
Zs
k

N (x;µ
(ξ ,ϑs)
zsk ,j

(ℓ),P
(ξ ,ϑs)
i (ℓ))
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Although the multi-sensor labeled multi-Bernoulli filter has the same representation as 
the single-sensor, there are many differences between the multi-sensor and the single-
sensor for the specific parameters:

The above formula gives the recursive process of the measurement Z1 to Zm of the multi-
sensor association map.

3.5.2 � Predict step

The predict step is the same as the case of single sensor. That is, if the multi-sensor 
multi-target a priori density function is the form of the generalized labeled multi-
Bernoulli, then the multi-objective prediction is:

where

In this step, the multi-sensor has the same form as the single-sensor.Let wB(I+ ∩ B) be 
the weight of new label I+ ∩ B,ws

(ξ)(I+ ∩ L) is the weight of the survival label (I+ ∩ L) , 
pB(x, l) is the probability density of the new target. p(ξ)s (x, l) is the density of the survival 
target obtained from the prior density p(ξ)(·, l). f (x|·, l) represents the probability density 
of the survival target.

(33)w
(ξ ,ϑs)
Zs
k ,i

(ℓ) =w
(ξ ,ϑ)
Zs
k ,i

(ℓ, j − 1)×

{

PD,sq
ξ
i (zϑs(ℓ,j);ℓ)

κ(zϑs(ℓ,j))
, if ϑs(ℓ, j) > 0

1− PD,s, if ϑs(ℓ, j) = 0

(34)

q
ξ
i (zϑs(ℓ,j); ℓ) =N(zsk ,j;Hk ,sµ

(ξ ,ϑs)
Zs
k ,i

(ℓ,m− 1),Hk ,sP
(ξ ,ϑs)
i (ℓ, j − 1)HT

k ,s + Rk ,s)

µ
(ξ ,ϑs)
Zs
k ,i

(ℓ) =














µ
(ξ ,ϑ)
Z,i (ℓ, j − 1)+ K

(ξ ,ϑs)
i

×(zϑ(ℓ,j) −Hk ,sµ
(ξ ,ϑs)
zsk ,j

(ℓ, j − 1))HT
k ,s, if ϑs((ℓ, j) > 0

µ
(ξ ,ϑs)
Zs
k ,i

(ℓ, j − 1), if ϑ(ℓ, j) = 0

K
(ξ ,ϑs)
i (ℓ) =

�

P
ξ ,ϑs
i (ℓ, j − 1)HT

k ,s(Hk ,sP
(ξ ,ϑs)
i (ℓ, j − 1)HT

k ,s)
−1

, if ϑs(ℓ, j) > 0

0, if ϑs(ℓ, j) = 0

(35)π+(X+)=�(X+)
∑

(I+,ξ)∈F(L)×�

w+
(I+,ξ)δI+(L(X+))

[

p+
(ξ)

]X+

(36)

w+
(I+,ξ) = wB(I+ ∩ B)ws

(ξ)(I+ ∩ L)

p+
(ξ)(x, l) = 1L(l)p

(ξ)
s (x, l)+ (1− 1L(l))pB(x, l)

p
(ξ)
s (x, l) =

〈

ps(·,l)f (x|·,l),p
(ξ)(·,l)

〉

η
(ξ)
s (l)

η
(ξ)
s (l) =

∫ 〈

ps(·, l)f (x|·, l), p
(ξ)(·, l)

〉

dx

ws
(ξ)(L) =

[

η
(ξ)
s

]L
∑

I∈L

1I (L)
[

qs
(ξ)

]I−L
w(I ,ξ)

qs
(ξ)(l) =

〈

qs(·, l), p
(ξ)
s (·, l)

〉
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Algorithm  1 provides pseudocode for a multi-sensor multi-target tracking algo-
rithm with partly overlapping fields of view.

4 � Experiments and discussions
To verify the effectiveness and robustness of the proposed algorithm, we set up two sce-
narios. Experiment 1: high detection probability and small number of targets; Experi-
ment 2: low detection probability and a larger number of targets. As the number of targets 
increases, more targets are born or die out outside the radar field of view, which poses a 
challenge to the trajectory tracking capability of the proposed algorithm. The reduction in 
detection probability also has a direct impact on tracking accuracy.

4.1 � Experiment 1: high detection rate scenario and tracking a small number of targets

Given three sensors located in positions y1k = [200 km, 0 km]
′
, y2k = [500 km, 0 km]

′
,

y3k = [800 km, 0 km]
′ , respectively. The surveillance sectors are all 

[π/6, 5π/6] × [0, 100] rad · km for the sensors. This means that the range of angle is 120◦ , 
detection probability PD = 0.98 , survival probability Ps = 0.99 , clutter intensity �c = 3 . 
Assume the running steps is 200. Consider three targets move in x − y coordinate. The tar-
gets move in a constant velocity (CV) model, i.e.,

where the transfer matrix A is:

where sampling time T = 1 , let state xik = [pk ,x; ṗk ,x; pk ,y; ṗk ,y] represent the positions 
and velocities in x and y directions, respectively. The observation function is angle and 
range.

(37)xk+1,i = Axk ,i + vk ,i

(38)A =







1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1







(39)zsk ,i = [
√

(pik ,x − usk ,x)
2 + (pik ,y − usk ,y)

2, arctan
pik ,y − usk ,y

pik ,x − usk ,x
]
′
+ ws

k
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where ysk � [usk ,x,u
s
k ,y]

′ is the position of sensor s. The surviving time interval for target 1 
is [1,150]s, for target 2 is [30,170]s, and for target 3 and target 4 is [50, 200]s. The initial 
states of the four targets are listed in the following:

Only when a target enters into the surveillance region of a sensor. It can be observed. 
The fields of the four sensors are shown in Fig. 2.

From the figure, the fan-shaped areas are shown by two dashed lines and three fixed 
sensors with partly overlapping fields. Only a target entering into a sensor’s field can be 
observed.

The target tracks are given in Fig. 3. It can be seen that the initial flying heights in y 
coordinate are 80 km, 30 km, 60 km and 10 km, respectively. The target 1 enters the 

x10 = [0 km, 5 km/s, 80 km,−0.15 km/s]T, x20 = [0 km, 5 km/s, 30 km, 0.15 km/s]T

x30 = [0 km, 7 km/s, 60 km, 0.15 km/s]T, x40 = [0 km, 5 km/s, 10 km, 0.2 km/s]T
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Fig. 2  The fields for the four sensors
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Fig. 3  Ground truths vs. estimated tracks
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observation range of the first sensor 1 around k = 20 . After moving about 250 km dis-
tance, the target 1 moves out of the field of sensor 1 and the measurement cannot be 
derived simultaneously. About 400 km on the horizontal axis, the first target enters into 
the observation range of sensor 2 and is observed. Also after around 600 km, target 1 
moves out of the field of sensor 2. At about 700 km on the horizontal axis, it enters the 
observation range of sensor 3 and is observed until it dies within the field of sensor 3. 
Targets 2 and 3 have the same fields. It can be seen from the figure the proposed algo-
rithm can detect and track the three targets correctly in each sensor field.

Figure 4 shows the trajectories of the targets in the x, y directions and the total flight 
times are 200s. The time intervals of all target births and deaths are [1,150]s, [30, 170]
s, [50, 200]s, [50, 200]s for targets 1 to 4, respectively. Considering the partly overlap-
ping FoV, it can be seen from the figure the whole tracking process well. Each target is 
detected in various time intervals. For example, in time interval around [10, 65]s, tar-
get 1 lies in the FoV of sensor 1. And in time interval [75, 110]s target 1 lies in the FoV 
of sensor 2 and in time interval [130, 150]s of sensor 3. It can be seen from this figure 
that the proposed algorithm can successfully detect the targets by using the multi-sensor 
measurement driven birth model.

The estimation of the number of targets is shown in the upper sub-figure of Fig. 5, 
where the true number of targets and its estimated value are plotted. It can be seen 
from Fig. 5 the three targets do not enter into the observation region of all three sen-
sors at the first 20th time steps, so the estimated number of targets is 0. Once target 
1 enters into the region, the estimated number of targets becomes 1. In practice, in 
certain time interval if a target is not detected, it means that the target locates in the 
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Fig. 4  The true tracks vs. estimated tracks in x, y directions
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blind region or has been died. Therefore, the estimated number of targets and the 
true value are not coincident in this time interval. Only in the observation region, the 
target can be detected. Outside the field, nothing can be found. Therefore, it is mean-
ingful to get the true number of detected targets in the observation region, which is 
plotted in the bottom sub-figure of Fig. 5. It can be seen from the sub-figure that the 
number of targets can be estimated efficiently.

Here we use the optimal subpattern assignment (OSPA) metric to evaluate the 
tracking performance [43]:

The parameters c = 50, p = 1 and the OSPA error is shown in Fig. 6. It shows that the 
OSPA error, OSPA location error and cardinality error, respectively. It seems there is 
a large error. In fact, if considering the detected region (outside blind area), the corre-
sponding OSPA error given in Fig. 7 is much better. This shows that in the observation 

(40)OSPA(p, c,X , X̂) =

[

1

n
(min
π∈

∏

n

∑n

i=1
d(c, xi, x̂π(i))

p + cp(m− n))

]1/p

, n ≤ m

(41)OSPA(p, c,X , X̂) = OSPA(p, c, X̂ ,X), n > m

(42)OSPA
(

∞, c,X , X̂
)

=

{

min
π∈

∏

n

max
1≤i≤n

d
(

c, xi, x̂π(i)
)

m = n

c m �= n
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Fig. 5  The estimation of the number of targets
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Fig. 6  The OSPA error (50MCs) with considering the blind area
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Fig. 7  The OSPA error (50MCs). Only considering the detected area
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area of all sensors, the targets are detected and tracked well and the number of targets is 
accurately estimated.

4.2 � Experiment 2: low detection rate scenario and tracking more targets

In this scenario, we will verify that the proposed algorithm can correctly track a large 
number of targets under more complex low detection probability conditions. The ini-
tial position of the sensor and other parameters remains unchanged; only the detection 
probability of each sensor is modified to 0.80. At the same time, we increase the number 
of targets to 10, whose motion model is still the CV model. The initial state and survival 
time of these targets are given by:

The tracks for 10 targets are given in Fig. 8. As can be seen from the figure, the initial 
flight altitude of the target is 90 km, 70 km, 40 km and 10 km. Throughout the 200 s of 
tracking, the position estimate of target was fairly accurate. It shows that even in the 
case of low detection probability, the algorithm proposed in this paper can still track 
a large number of targets correctly. However, in Figs.  8 and 9, we can find that when 
the target enters the field of view of the sensor, especially when multiple targets over-
lap, there will be a comparatively large error in the position estimation. At low detection 
probability, when multi-target are in close proximity, the measurements obtained by the 
sensors are incomplete and the relative positions of these measurements are very close 

x10 = [0 km, 5 km/s, 90 km,−0.05 km/s]T, Tbirth = 1 s, Tdeath = 150 s

x20 = [0 km, 5 km/s, 10 km, 0.1 km/s]T, Tbirth = 1 s, Tdeath = 200 s

x30 = [0 km, 5 km/s, 90 km,−0.2 km/s]T, Tbirth = 1 s, Tdeath = 150 s

x40 = [0 km, 5 km/s, 10 km, 0.2 km/s]T, Tbirth = 30 s, Tdeath = 200 s

x50 = [0 km, 5 km/s, 40 km,−0.2 km/s]T, Tbirth = 30 s, Tdeath = 200 s

x60 = [0 km, 5 km/s, 40 km, 0.01 km/s]T, Tbirth = 50 s, Tdeath = 200 s

x70 = [0 km, 5 km/s, 40 km, 0.2 km/s]T, Tbirth = 50 s, Tdeath = 200 s

x80 = [0 km, 5 km/s, 70 km, 0.2 km/s]T, Tbirth = 70 s, Tdeath = 200 s

x90 = [0 km, 5 km/s, 70 km,−0.2 km/s]T, Tbirth = 70 s, Tdeath = 200 s

x100 = [0 km, 5 km/s, 70 km, 0.01 km/s]T, Tbirth = 70 s, Tdeath = 200 s
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Fig. 8  Ground truths vs. estimated tracks(10 targets)
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Fig. 9  The true tracks vs. estimated tracks in x, y directions(10 targets)
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Fig. 10  The estimation of the number of targets
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together. This will pose a great challenge to the filter update process. And this is often 
seen in sensor tracking with limited field of view.

Similar to Scenario 1, the estimated number of 10 targets is given in Fig. 10. Targets 
can only be correctly estimated when they appear in the sensor field of view. For exam-
ple, between 1 and 40 s, 3 targets actually survive. But it was not until about the 10th 
second that two targets entered the field of view of Sensor 1. A third target enters the 
field of view of Sensor 1 around the 30th second. By this time, the number of targets 
detected by the sensor is 3.

The OSPA error of target location estimation at low detection probability is given in 
Fig.  11. The parameters c = 50, p = 1 . When the blind area is considered, the OSPA 
error of the position estimation is larger. But when the blind area is not considered, as 
shown in Fig. 12, the OSPA error, OSPA position error and OSPA cardinality error are 
quite small. This illustrates that in scenarios with low detection probability, the target 
can be well tracked when it is within the field of view of the sensor and can be satisfied 
with practical tracking tasks.

5 � Conclusions
In this paper, we consider the target tracking problem of multi-sensor partly overlapping 
FoV. We establish a model to describe partly overlapping FoV using probability field of 
detection (PFoD). Then, a multi-sensor multi-target tracking algorithm based on gener-
alized labeled multi-Bernoulli (GLMB) filter is proposed. Finally, the proposed algorithm 
is verified by using three sensors with partly overlapping fields. Experiments show that 
the effective of the algorithm in detecting and tracking multi-target.
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Fig. 11  The OSPA error (50MCs) with considering the blind area



Page 19 of 21Liu et al. EURASIP Journal on Advances in Signal Processing          (2023) 2023:2 	

Abbreviations
FoV	� Field of view
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