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Abstract 

AES has been used in many applications to provide the data confidentiality. A new 
32-bit reconfigurable and compact architecture for AES encryption and decryption is 
presented and implemented in non-BRAM FPG in this paper. It can be reconfigured 
for the options of different key sizes which is very flexible for the users to apply AES 
for various application environments. The proposed design employs a single-round 
architecture and subpipeling to minimize the hardware cost. The fully composite field 
GF((24)2)-based encryption/decryption and keyschedule lead to the lower hardware 
complexity and efficient subpipelining for 32-bit data path. In addition, a new subpipe-
lined on-the-fly keyschedule over composite field GF((24)2) is proposed for all standard 
key sizes (128-, 192-, 256-bit) which generates the roundkeys simultaneously and effi-
ciently. This feature is very useful and efficient when the main key has been changed 
since AES is a symmetric-key cryptography and the session key usually changes 
frequently. The proposed reconfigurable and compact design has higher throughput 
and lower hardware cost. It achieves throughputs of 375Mbits/s with 128-bit key, 
318Mbits/s with 192-bit key and 275Mbits/s with 256-bit key on VIRTEX XC4VSX25-12, 
and the total number of slices is 1766. The proposed reconfigurable and compact AES 
architecture can be efficiently applied in computing-restricted environments such as 
wireless and embedded devices.

Keywords:  AES, FPGA, Pipelining, Fully composite field, Reconfigurable architecture, 
Computing-restricted environments

1  Introduction
Advanced Encryption Standard (AES) based on Rijndael encryption algorithm has 
been used to replace DES in security services [1–3]. Hardware AES implementations 
are attractive because it provides better throughput as well as higher physical security. 
Compared with Application-Specific Integrated Circuit (ASIC), field programmable gate 
array (FPGA) becomes more and more popular because of its scalability, re-programma-
bility, and fast development.

Numerous FPGA [4–10] and ASIC [7, 11, 12] implementations of the AES have been 
presented and evaluated. Other AES implementations have also been proposed such 
as GPU-based [13], Multicore Processor-based [14], and Rapid Single-Flux-Quantum 
Circuits-based [15] implementations. Fully unrolled schemes [6, 8] can achieve high 
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throughput, but there are much more area and energy cost which only suitable for 
high-end applications. Another approach is only implementing a single-round unit and 
applies the same unit in different rounds.

In this paper, a compact and reconfigurable design of AES with low hardware cost and 
adequate throughput is proposed and implemented in a non-BRAM FPGA. This design 
applies a 32-bit single-round unit, which costs much less hardware area than the 128-bit 
fully unrolled schemes. In order to reduce the hardware complexity further, we convert 
the arithmetic operations of AES from field GF(28) to field GF((24)2). Unlike the previ-
ous designs in [6, 8, 12, 16] where partial-composite field AES is applied, we conduct 
the entire AES operations in GF((24)2) to minimize the overhead of isomorphic mapping 
functions. In our design, only two forward mapping functions and one backward map-
ping function are used. In addition, subpipelining is applied to improve the throughput/
area ratio.

The standard announced by NIST [2] indicates that AES is a block cipher with 128-
bit block size and 128-, 192-, 256- bit key sizes. These three key sizes are specified for 
various security levels. The capability to deal with all key sizes makes reconfigurability 
an important feature of AES implementations. The previous work of [6, 8, 12, 17–20] 
applied the on-the-fly key generator to support instant key changing. The design in [8] 
made a subpipelined keyschedule, but it only supported 128-bit key size. When sub-
pipelining on-the-fly keyschedule is employed in an AES implementation, the stages in 
keyschedule must be synchronized with the stages in the cipher, because they share the 
same clock. In this design, we propose a subpipelined on-the-fly keyschedule over field 
GF((24)2), which supports all three key sizes.

The issue of secure communication in computing-restricted environments, such as 
personal digital assistants (PDAs), wireless devices, and many other embedded devices, 
has become more important recently. In order to apply AES in these devices, the AES 
implementations must be cost efficient. The objective of this research work is to design 
a reconfigurable and compact AES architecture which can be applied to the computing-
restricted devices. The proposed architecture can be reconfigured to three different AES 
key sizes which is very useful when the users change the main key and also change the 
key sizes for different security levels because AES is a symmetric-key cryptography and 
the session key usually changes frequently. We also propose a subpipelined on-the-fly 
keyschedule for three options of key sizes that make the proposed architecture be easily 
implemented on non-BRAM FPGA.

The remainder of the paper is organized as the following. In Sect. 2, AES algorithm is 
introduced. The proposed compact and reconfigurable AES architecture is presented in 
Sect. 3. Implementation and performance are included in Sect. 4. Sections 5 and 6 are 
the conclusion and future work.

2 � AES algorithm
AES is a symmetric block cipher with block size of 128-bit and three key sizes of (128-, 
192-, or 256-bit) [1–3]. The AES parameters depend on the key size (Table 1, the size of 
word is 32 bits): AES runs iteratively on four transformations (inv-/Subbytes, inv-/Shift-
Rows, inv-/MixColumns and addroundkey) with different sequences in encryption and 
decryption. Figure 1 illustrates the basic architecture of AES. In the initial round (r = 0), 
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only addroundkey is performed; in the final round (r = Nr), it skips inv-/MixColumns. 
The keyschedule module expands cipherkey to (Nr + 1) × 4 words of roundkeys. Each 
round applies a unique 128-bit roundkey in the addroundkey operation [1, 2].

2.1 � Subbytes

Subbytes are the only non-linear transformation in AES which is also called S-Box. 
S-Box is a 16 × 16 matrix containing all possible 256 8-bit values, which is used to per-
form a non-linear byte-by-byte substitution of the state.

Considering a byte {x7x6x5x4x3x2x1x0}, Subbytes transformation has two steps [1]:
	(i)	 {x’7 x’6 x’5 x’4 x’3 x’2 x’1 x’0} is its multiplicative inverse in GF(28) field, modulo the 

irreducible polynomial m(x) = x8 + x4 + x3 + x + 1; {00000000}’s multiplicative 
inverse in GF(28) field is itself;

	(ii)	 An affine transformation over GF(2) is conducted on the inverse of 
{x7x6x5x4x3x2x1x0} (Eq. 1 [1]).

Table 1  AES parameters [2]

Key length
(Nk words)

Block size
(Nb words)

Number 
of rounds
(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Fig. 1  AES architecture [1, 2]
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2.2 � ShiftRows

This transformation circularly shifts each row of the state to the left on encryption. As 
in Fig. 2 [1], the top row of the state is noted as row(0), and the bottom row is noted as 
row(3). The ShiftRows perform i − byte circular left shift to row(i) (i = 0, 1, 2, 3).

2.3 � MixColumns

This transformation treats each column of the state as a four-term polynomial over 
GF(28) and transforms each column to a new one by multiplying it with a constant poly-
nomial a(x) = {03}x3 + {01}x2 + {01}x + {02} modulo x4 + 1. Equation  2 [1] is the matrix 
form of MixColumns.

2.4 � Addroundkey

The addroundkey is a simple logical XOR of the current state with a roundkey which is 
generated by the keyschedule.

2.5 � Keyschedule

Keyschedule derives roundkeys from the cipherkey. It consists of key expansion and 
roundkey selections. Figure  3 [2] shows the keyschedule algorithm which generates 
roundkeys for AES-128, AES-192 and AES-256. The functions used in keyschedule are 
the following [1, 2]:
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Fig. 2  AES ShiftRows [1]
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•	 Rotword: One-byte circular left shift on a word.
•	 Subword: Using S-Box to perform a byte substitution on each byte.
•	 XOR with Rcon: XORing with a round constant Rcon[j], Rcon[j] = (RC[j], 0, 0, 0) 

with RC[1] = 1, RC[j] = 2 · RC[j − 1].

3 � 32‑bit subpipelined reconfigurable and compact architecture for AES
In this section, the 32-bit reconfigurable and compact AES architecture is proposed. 
In our design, the data path is 32-bit. That is one operation, for example, s-box, will be 
applied four times to process the 128 bits of one block in plaintext. The subpipelined 
on-the-fly keyschedule for different key sizes is also presented to provide the roundkey 
simultaneously and efficiently. In addition, the equivalent cipher [1] is adopted to make 
the same data flow for encryption and decryption and to share the reusable units.

3.1 � 32‑bit single‑round unit

Roll unfolded architecture is widely used to achieve high throughput. It conducts mul-
tiple rounds on one block by implementing more than one round units on the hard-
ware. The more round units the architecture includes, the higher the hardware cost. The 
alternative scheme, which is called the single-round unit architecture, can be applied to 
simplify the hardware complexity. Instead of unfolding all the round units in devices, 
it implements a single-round unit which costs approximately 1/Nr area of the unfolded 
scheme.

We propose a 32-bit single-round unit for a compact AES architecture. It needs iterat-
ing four times to perform a round on a block (128-bit), once every 32 bits.

Fig. 3  Pseudo-code for AES keyschedule [2]
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3.2 � Full composite field architecture with keyschedule

Many high-end FPGA devices possess Block-RAMs (BRAMs) which is efficient for the 
implementation of S-Box. S-Box, also referred as Subbytes, is the important and compli-
cated operation in both encryptor/decryptor and keyschedule modules. However, these 
BRAM-based designs cannot be implemented in the low-cost devices which do not have 
BRAMs. An alternative approach for S-Box implementation is using combinational 
logic. But this method may lead to high hardware complexity because of the mathemati-
cal operations in AES over finite field GF(28).

The key step of S-Box is calculating multiplicative inverse of each byte. Since the 
introduction of composite field GF((24)2), the calculation of multiplicative inverse over 
GF((24)2) has been investigated [6, 8, 12, 16]. The architectures in [5, 18, 21] applied 
the field GF((24)2) to affine transformation in S-Box. By decomposing these operations 
from GF(28) to its subfield GF(24), the hardware complexity of S-Box can be decreased 
dramatically.

In Fig.  4a, in each round before S-Box, it needs an isomorphic mapping function 
(MAP) from GF(28) to GF((24)2); and the inverse mapping (MAP−1) afterwards. If key 
size is 128 bits, it applies 10 times S-Box to the plaintext and the cipherkey, which means 
that it needs 20MAPs and 20 MAP−1 s for the encryption of 128-bit data. In order to 
save the cost of MAP and MAP−1, we propose a new 32-bit complete composite field 
approach (Fig. 4b). The GF((24)2) field applies in all transformations in encryptor/decryp-
tor and keyschedule. As illustrated in Fig. 4b, one MAP and one MAP−1 are applied in 
encryption, and one MAP is applied in keyschedule. This is a constant overhead which is 
not affected by the number of rounds.

We use the composite field defined by Wolkerstorfer et al. [21]. There are two irreduc-
ible polynomials (Eqs. 3 and  4) involved in multiplication and inversion in GF((24)2).

Fig. 4  a Partial in composite field b Complete in composite field
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The irreducible polynomial for the field GF(28) in AES is:

The isomorphic mapping functions between field GF(28) and field GF((24)2) are deter-
mined by the irreducible polynomials of field GF(28) (Eq. 5) and field GF((24)2) (Eqs. 3 
and 4). We use the following mapping formulas in [21] to convert the representations 
between GF(28) and GF((24)2).

In Eq. 6, a is an element in field GF(28). MAP(a) converts a to its isomorphic element 
in GF((24)2), which is represented as ahx + al.

In Eq. 7, ahx + al is an element in field GF((24)2). MAP−1(ahx + al) converts ahx + al to 
its isomorphic element in GF(28), which is represented as a.

3.3 � Subpipelined encryptor/decryptor and keyschedule

Pipelining is applied in the designs to optimize speed/area ratio of AES. By inserting reg-
isters in combinational logic circuits, multiple blocks of hardware are running simul-
taneously. The frequency of the design is determined by the maximum delay between 
registers. We reduce the maximum delay and increase the frequency by optimizing the 
balance between stages. A 32-bit single-round subpipelined architecture in full compos-
ite field is proposed where one round unit is implemented and subpipelined into eight 
substages. To generate the roundkeys synchronously, we present an on-the-fly keysched-
ule. The encryption/decryption unit and the key expansion unit share the same clock 
which leads to the fact that the clock frequency is determined by the maximum delay in 
both units. This makes the balance of substage in keyschedule as important as in encryp-
tor/decryptor. We propose a new subpipelined keyschedule on composite field for all 
standard key sizes. The most costly part of keyschedule is still S-Box. We divide it into 
the same substages as in encryptor/decryptor.

(3)n(x) = x2 + {1}x + {e}, {e} denotes {1110}

(4)m(x) = x4 + x + 1

(5)m(x) = x8 + x4 + x3 + x + 1

(6)

ahx + al = MAP(a), ah, al ∈ GF
(

24
)

, a ∈ GF
(

28
)

aA = a1 ⊕ a7, aB = a5 ⊕ a7, aC = a4 ⊕ a6

al0 = aC ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2, al2 = aA, al3 = a2 ⊕ a4

ah0 = aC ⊕ a5, ah1 = aA ⊕ aC , ah2 = aB ⊕ a2 ⊕ a3, ah3 = aB

(7)

a = MAP−1
(ahx + al), a ∈ GF

(

28
)

, ah, al ∈ GF
(

24
)

aA = al1 ⊕ ah3, aB = ah0 ⊕ ah1

a0 = al0 ⊕ ah0, a1 = aB ⊕ ah3, a2 = aA ⊕ aB

a3 = aB ⊕ al1 ⊕ ah2, a4 = aA ⊕ aB ⊕ al3, a5 = aB ⊕ al2

a6 = aA ⊕ al2 ⊕ al3 ⊕ ah0, a7 = aB ⊕ al2 ⊕ ah3
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3.4 � Double‑block subpipelined architecture

The proposed architecture for encryptor is illustrated in Fig. 5. The decryption can be 
easily implemented by the equivalent cipher [1]. The eight 32-bit registers (four in Shift-
Rows, three in Subbytes and one between Subbytes and MixColumns) are used to cut 
one round unit into eight substages, which leads to an eight clock cycles initial delay to 
generate the first 32-bit ciphertext. clk counter   is a clock register counter generated in 
keyschedule. It is used to synchronize encryptor/decryptor and keyschedule. We use a 
double-block (block A and B) data flow in our subpipelined architecture.

Figure 5a illustrates the subpipelining in ShiftRows operation, and Fig. 5b shows the 
subpipelining in Subbytes operation. We can see that the mappings from GF(28) to 
GF((24)2) are only required once after the inputs of plaintext and cipherkey. The inverse 
mapping ( GF((24)2) to GF(28)) is applied to the final output in order to get the cipher 
text.

The 3-to-1 multiplexer (“mul”) is controlled by the clk counter:

•	 Case a In initial round, where 0 ≤ clk counter < 8, 128-bit plaintext is MAPed into 
GF((24)2) and XORed with the according roundkey in four clock cycles, 32 bits at 

Fig. 5  AES encryption architecture
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each clock. The result is the outcome of the initial round (Nr = 0) which is the input 
of the second round;

•	 Case b In normal rounds, where 8 ≤ clk counter < Nr × 8, the output of MixColumns 
XORs with the corresponding roundkey.

•	 Case c In the last round, where Nr × 8 ≤ clk counter < (Nr + 1) × 8. The output of Sub-
bytes XORs with the corresponding roundkey. The ciphertext is obtained.

The detail operations of the ShiftRows, Subbytes and MixColumns are presented in 
the following.

3.4.1 � ShiftRows

We use our proposed ShiftRows operation [22] in the design. It includes sixteen 8-bit 
registers and three 2-to-1 multiplexers. The block of data is shifted column by column. 
Two blocks of data are processed in the pipeline.

Our ShiftRows operation is designed in a column fashion (Fig. 6). In the architecture, 
the data (32-bits) in the columns are shifted in the order of column instead of rows. Each 
column is composed of four shift registers, and each register has 8 bits. By transforming 
the ShiftRows operation to a column fashion operation, we can make the design of Mix-
columns operation easier, since all the data in one column are required in the MixCol-
umn operation.

The following are the ShiftRows procedure for encryption.

(1)	 First row No shift. We just let the data flow through.
(2)	 Second row Circular left shift operation. In this case, we connect the output of reg-

ister R1C2 and the output of R1C3 to a multiplexer in order to select the output.
(3)	 Third row Switch data. Switch the data between first element and third element, 

second element and fourth element in the row. The outputs of R2C1 and R2C3 are 
connected to a Multiplexer.

(4)	 Fourth row Circular right shift operation. Similar to the case of second row, we con-
nect the output of register R3C0 and the output of R3C3 to a Multiplexer.

Fig. 6  ShiftRows operations in encryption and decryption
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Similarly, we can derive the procedures for Inverse ShiftRows (Inv-ShiftRows) 
operations:

(1)	 First row No shift.
(2)	 Second row Circular right shift operation. We connect the output of register R1C0 

and the output of R1C3 to a Multiplexer.
(3)	 Third row Switch Data. Same as the operation in ShiftRows of encryption.
(4)	 Fourth row Circular left shift operation. We connect the output of register R3C2 

and the output of R3C3 to a multiplexer in order to select the output.

The multiplexers are controlled by some clock counters and the encryption/decryp-
tion signals.

3.4.2 � Subpipelined Subbytes

The key step of Subbytes is the calculation of the multiplicative inverse. Figure 7 illus-
trates the architecture of Subbytes proposed in [8]. It uses multiplication in GF(24)2 
three times.   It also needs one inversion (x−1), one constant multiplier with {e} (× e, 
{e} is in hexadecimal notation, which is ‘1110’ in binary notation), one squarer and 
two 4-bit XORs ( ⊕).  

We proposed a 32-bit subpipelined compact s-box architecture in compos-
ite field of GF(24)2 with balanced substages and efficient performance [23]. Con-
sidering x, y, z ∈ GF(24), x, y and z are represented in binary notation where 
x = {x3x2x1x0}, y =

{

y3y2y1y0
}

, z = {z3z2z1z0} . Let a, b, c, d, e and f be 1-bit values, 
which equal to 0 or 1. ⊕ stands for XOR-operation. x0y1 means x0∧y1. Equations 8, 9, 
10 and 11 [21] are used to calculate squaring, constant multiplication with {e}, multi-
plication and multiplicative inverse.

(8)y = x2 : y0 = x0 ⊕ x2, y1 = x2, y2 = x1 ⊕ x3, y3 = x3

(9)
y = x × {e} : a = x0 ⊕ x1, b = x2 ⊕ x3, y0 = x1⊕ b, y1 = a, y2 = a⊕ x2, y3 = a⊕ b

(10)

z = x × y : a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2

z0 =
(

x0y0
)

⊕
(

x3y1
)

⊕
(

x2y2
)

⊕
(

x1y3
)

, z1 =
(

x1y0
)

⊕
(

ay1
)

⊕
(

by2
)

⊕
(

cy3
)

z2 =
(

x2y0
)

⊕
(

x1y1
)

⊕
(

ay2
)

⊕
(

by3
)

, z3 =
(

x3y0
)

⊕
(

x2y1
)

⊕
(

x1y2
)

⊕
(

ay3
)

Fig. 7  Subbytes in composite field GF((24)2) [8]
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In our design which is illustrated in Fig.  5, Subbytes should be cut into four sub-
stages. The key to an efficient subpipelining technology is to balance the delays of these 
substages.

We derive a new Eq. 12 from Eq. 11 to reduce the delay caused by x−1.
Equation 12 is derived in three steps:

(1)	 In Eq. 11, replace “a” by its expression:

(2)	 The expressions in step 1 can be equally changed to:

(3)	 Let a = x1x2, b = x0x2, c = x0x1, d = x1 ⊕ x2, e = 1⊕ a, f = b⊕ c , we have:

According to Eq. 12, we design the logic circuit illustrated in Fig. 8 to perform x−1 
over GF(24)2. Besides multiplicative inversion, other operations in Fig. 7 are the three 
multiplications (× 1, × 2 and × 3). In order to decrease the maximum delay caused by 
multiplication, we separate each multiplication into two steps and put each step in 
different substages. The registers between each substage store the result of the first 
step of multiplication and pass it to the second step. We decompose these three multi-
pliers into two different manners (AB-type and MN-type) to achieve the best balance.

AB-type The AB-type multiplication is based on Eq. 13 which is derived from Eq. 10. 
Step A calculates the value of all the binomials; Step B conducts XOR of every four 

(11)

y = x−1 : a = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3), y0 = a⊕ x0 ⊕ (x0x2)⊕ (x1x2)⊕ (x0x1x2)

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3 ⊕ (x1x3)⊕ (x0x1x3)

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3 ⊕ (x0x3)⊕ (x0x2x3)

y3 = a⊕ (x0x3)⊕ (x1x3)⊕ x2x3

y0 = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3)⊕ x0 ⊕ (x0x2)⊕ (x1x2)⊕ (x0x1x2)

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3 ⊕ (x1x3)⊕ (x0x1x3)

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3 ⊕ (x0x3)⊕ (x0x2x3)

y3 = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3)⊕ (x0x3)⊕ (x1x3)⊕ x2x3

y0 = x1 ⊕ x2 ⊕ (x1x2)⊕ (x0x2)⊕ (x0 ⊕ x3)(1⊕ (x1x2))

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3(1⊕ x1 ⊕ (x0x1))

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3(1⊕ x0 ⊕ (x0x2))

y3 = x1 ⊕ x2 ⊕ x3(1⊕ x0 ⊕ x1 ⊕ x2 ⊕ (x1x2))

(12)

y0 = a⊕ b⊕ d ⊕ ((x0 ⊕ x3)e)

y1 = a⊕ f ⊕ x3(1⊕ x1 ⊕ c)

y2 = f ⊕ x2 ⊕ x3(1⊕ x0 ⊕ b)

y3 = d ⊕ x3(e⊕ x0 ⊕ d)
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values to generate z0, z1, z2 and z3. A register is inserted between Step A and Step B 
to store p0, p1, …, p15. The multiplication “ × 1” in Fig. 7 is separated as × 1A and × 1B in 
Fig. 8;

Step A:

Step B:

MN-type The MN-type multiplication is based on Eq. 14 which is also derived from 
Eq. 10. Step M creates the value of a, b and c; Step N implements the rest of Eq. 10. A 
register is inserted between Step M and Step N to store a, b, c. The multiplications of 
“ × 2” and “ × 3” in Fig. 7 are separated as × 2 M and × 2 N, × 3 M and × 3 N in Fig. 8.

Step M:

Step N:

z = x × y(AB− type)

a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2, p0 = x0y0, p1 = x3y1, p2 = x2y2, p3 = x1y3

p4 = x1y0, p5 = ay1, p6 = by2, p7 = cy3, p8 = x2y0, p9 = x1y1, p10 = ay2, p11 = by3

p12 = x3y0, p13 = x2y1, p14 = x1y2, p15 = ay3

(13)
z0 = p0 ⊕ p1 ⊕ p2 ⊕ p3, z1 = p4 ⊕ p5 ⊕ p6 ⊕ p7

z2 = p8 ⊕ p9 ⊕ p10 ⊕ p11, z3 = p12 ⊕ p13 ⊕ p14 ⊕ p15

z = x × y
(

MN − type
)

a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2

(14)
z0 = x0y0 ⊕ x3y1 ⊕ x2y2 ⊕ x1y3, z1 = x1y0 ⊕ ay1 ⊕ by2 ⊕ cy3

z2 = x2y0 ⊕ x1y1 ⊕ ay2 ⊕ by3, z3 = x3y0 ⊕ x2y1 ⊕ x1y2 ⊕ ay3

Fig. 8  Pipelined Subbytes in composite field GF((24)2)
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The last operation in Subbytes is the affine transformation. We derive Eq. 21 to do 
the affine transformation in GF

(

24
)2 based on Eqs. 1,6 and 7.

Consider p ∈ GF
(

24
)2
, q ∈ GF

(

28
)

: p =
{

p7p6p5p4p3p2p1p0
}

, q =
{

q7q6q5q4q3q2q1q0
}

For Eq. 6:

(1)	 Replace aA, aB, aCwith their expressions:

(2)	 Let preplace ahx + al , q replace a, we derive Eq. 15:

Similar steps are applied in Eq. 7. Equation 16 is derived:

In the following, we derive Eq. 21 based on Eqs. 1, 15 and 16.
Let x′

, y be the element in GF
(

28
)

 .: x′ =
{

x′7x
′
6x

′
5x

′
4x

′
3x

′
2x

′
1x

′
0

}

, y =
{

y7y6y5y4y3y2y1y0
}

.
According to Eq. 1:

We convert y to GF
(

24
)2 and also represent x′ in GF

(

24
)2 to derive the affine transfor-

mation in GF
(

24
)2
.

(1)	 Let w represent y in GF
(

24
)2 . By Eq. 15 (map from GF

(

28
)

 to GF
(

24
)2):

(2)	 Let z be the GF
(

24
)2 format of x′. From Eq. 16:

al0 = a4 ⊕ a6 ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2, al2 = a1 ⊕ a7, al3 = a2 ⊕ a4

ah0 = a4 ⊕ a6 ⊕ a5, ah1 = a1 ⊕ a7 ⊕ a4 ⊕ a6, ah2 = a5 ⊕ a7 ⊕ a2 ⊕ a3, ah3 = a5 ⊕ a7

(15)

p = MAP(q),p ∈ GF
(

24
)2

, q ∈ GF
(

28
)

p0 = q0 ⊕ q4 ⊕ q5 ⊕ q6, p1 = q1 ⊕ q2, p2 = q1 ⊕ q7, p3 = q2 ⊕ q4

p4 = q4 ⊕ q5 ⊕ q6, p5 = q1 ⊕ q4 ⊕ q6 ⊕ q7, p6 = q2 ⊕ q3 ⊕ q5 ⊕ q7, p7 = q5 ⊕ q7

(16)

q = MAP−1(p),p ∈ GF
(

24
)2

, q ∈ GF
(

28
)

q0 = p0 ⊕ p4, q1 = p4 ⊕ p5 ⊕ p7, q2 = p1 ⊕ p4 ⊕ p5 ⊕ p7, q3 = p1 ⊕ p4 ⊕ p5 ⊕ p6

q4 = p1 ⊕ p3 ⊕ p4 ⊕ p5 ⊕ p7, q5 = p2 ⊕ p4 ⊕ p5, q6 = p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p7,

q7 = p2 ⊕ p4 ⊕ p5 ⊕ p7

(17)

y0 = x
′

0 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1, y1 = x
′

0 ⊕ x
′

1 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1

y2 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

6 ⊕ x
′

7, y3 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

7

y4 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4, y5 = x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ 1

y6 = x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ 1, y7 = x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7

(18)

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6,w1 = y1 ⊕ y2,w2 = y1 ⊕ y7,w3 = y2 ⊕ y4,w4 = y4 ⊕ y5 ⊕ y6

w5 = y1 ⊕ y4 ⊕ y6 ⊕ y7,w6 = y2 ⊕ y3 ⊕ y5 ⊕ y7,w7 = y5 ⊕ y7
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(3)	 Replace y in Eq. 18 with x’ in Eq. 17 and replace x’ with its GF
(

24
)2 format z:

	 Similarly, we can get:

(4)	 For the consistency of the other equations in this paper, we replace w by y, z by x 
(x,y ∈ GF

(

24
)2 ) in Eq. 20 and let a = x5 ⊕ x6 ⊕ x7 , we derive

Figure 8 describes the proposed subpipelined architecture of Subbytes in GF((24)2). 
The dashed lines stand for the registers.

We cut an AES round unit into 8 substages with the maximum delay determined by 
part II (Fig. 8) in Subbytes. The inverse S-box can use the same multiplicative inverse 
in encryption except that the inverse affine transformation is applied before the mul-
tiplicative inverse. We also derive the following formula for the inverse affine trans-
formation in GF(24)2:

 
Figure 9 illustrates the design of S-box in encryption and decryption. It can process 

eight bits input in GF(24)2. Four units are required to process the 32-bit data path.

(19)

x′0 = z0 ⊕ z4, x
′
1 = z4 ⊕ z5 ⊕ z7, x

′
2 = z1 ⊕ z4 ⊕ z5 ⊕ z7, x

′
3 = z1 ⊕ z4 ⊕ z5 ⊕ z6

x′4 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7, x
′
5 = z2 ⊕ z4 ⊕ z5, x

′
6 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7,

x′7 = z2 ⊕ z4 ⊕ z5 ⊕ z7

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6

= (x
′

0 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1)⊕ (x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4)

⊕

(

x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ 1
)

⊕

(

x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ 1
)

(

by Equation 17
)

= x
′

2 ⊕ x
′

3 ⊕ x
′

5 ⊕ x
′

7 ⊕ 1 = (z1 ⊕ z4 ⊕ z5 ⊕ z7)

⊕ (z1 ⊕ z4 ⊕ z5 ⊕ z6)⊕ (z2 ⊕ z4 ⊕ z5)

⊕ (z2 ⊕ z4 ⊕ z5 ⊕ z7)⊕ 1
(

by Equation 19
)

= z6 ⊕ 1 = (z6)
′

(20)

w1 = (z1 ⊕ z2 ⊕ z7)
′,w2 = (z0 ⊕ z5 ⊕ z6 ⊕ z3)

′,w3 = z1 ⊕ z5 ⊕ z6 ⊕ z7

w4 = z0 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,w5 = z1 ⊕ z5 ⊕ z6,w6 = (z2 ⊕ z6 ⊕ z7)
′

w7 = (z3 ⊕ z5)
′

(21)

y=AFF_TRAN(x):

a = x5 ⊕ x6 ⊕ x7

y0 = (x6)
′, y1 = (x1 ⊕ x2 ⊕ x7)

′, y2 = (x0 ⊕ x3 ⊕ x5 ⊕ x6)
′, y3 = x1 ⊕ a

y4 = x0 ⊕ x2 ⊕ x4 ⊕ a, y5 = x1 ⊕ x5 ⊕ x6, y6 = (x2 ⊕ x6 ⊕ x7)
′, y7 = (x3 ⊕ x5)

′

(22)

y= Inv_AFF_TRAN (x)

a = x1 ⊕ x5 ⊕ x6, b = x0 ⊕ x2 ⊕ x7

y0 = b′, y1 = (x0 ⊕ x1 ⊕ x6)
′, y2 = x0 ⊕ x3 ⊕ x5 ⊕ x6, y3 = (x7 ⊕ a)′

y4 = x1 ⊕ x4 ⊕ x5 ⊕ b, y5 = a, y6 = x
′

0, y7 = x3 ⊕ x5
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3.4.3 � MixColumns on GF((24)2)

MixColumns are another transformation which involves mathematical operations in 
GF((24)2). We derive the following formulas to perform MixColumns in composite 
field.

Since GF((24)2) is an isomorphic field to GF(28), and {02}, {03}, {01} in GF(28) are 
mapped to {26}, {27}, {01}, respectively, in GF((24)2), the MixColumns operation 
described by Eq. 2 can be mapped directly to Eq. 23.

Observing that in GF((24)2), {27} = {26} ⊕ {01}, Eq. 23 is equal to Eq. 24, where j = 0, 
1, 2, 3:

Equation 24 presents the MixColumn transformation of one column of a state. The 
MixColumn transformation can be implemented by the parallel structure in Fig. 10.

In the following, we derive Eq. 28 to calculate x × 26 in GF((24)2). That is, we repre-
sent the results of x × {02} in GF((24)2).

(1)	 Let x,y ∈ GF
(

28
)

, y = x × {02} :

(2)	 Convert y to the element in GF((24)2). Let w represent y in GF((24)2), that is Eq. 18.
(3)	 Let z be the GF

(

24
)2 format of x:

(4)	 Replace x and y with their corresponding GF((24)2) format z and w:

(23)







26 27 01 01
01 26 27 01
01 01 26 27
27 01 01 26













s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3







(24)

S
′

0,j = {26} ×
(

S0,j + S1,j
)

+ S1,j + S2,j + S3,j

S
′

1,j = {26} ×
(

S1,j + S2,j
)

+ S0,j + S2,j + S3,j

S
′

2,j = {26} ×
(

S2,j + S3,j
)

+ S0,j + S1,j + S3,j

S
′

3,j = {26} ×
(

S0,j + S3,j
)

+ S0,j + S1,j + S2,j

(25)
y0 = x7, y1 = x0 ⊕ x7, y2 = x1, y3 = x2 ⊕ x7, y4 = x3 ⊕ x7, y5 = x4, y6 = x5, y7 = x6

(26)

x0 = z0 ⊕ z4, x1 = z4 ⊕ z5 ⊕ z7, x2 = z1 ⊕ z4 ⊕ z5 ⊕ z7, x3 = z1 ⊕ z4 ⊕ z5 ⊕ z6

x4 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7, x5 = z2 ⊕ z4 ⊕ z5, x6 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7,

x7 = z2 ⊕ z4 ⊕ z5 ⊕ z7

Fig. 9  S-Box operation in composite field GF((24)2) for encryption and decryption
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	 Through the same procedures, we can derive:

(5)	For consistency, replace z with x, and replace w with y (x,y ∈ GF
(

24
)2):

In this design for both encryption and decryption, we will modify the MixColumn and 
InvMixColumn architecture proposed by Fischer et al. [24]. We need to map the previ-
ous architecture from GF(28) to GF((24)2). It can be seen that we only need to modify the 
“xtime” operation. That is, to calculate “xtimes” in GF((24)2).

3.4.4 � Subpipelined keyschedule

There are two approaches to implement keyschedule: (1) pre-calculated keyschedule 
and (2) on-the-fly keyschedule. In the pre-calculated keyschedule, the (Nr + 1) 128-bit 
roundkeys are generated before the encryption or decryption begins and stored in the 

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6
(

by Equation 18
)

= x7 ⊕ (x3 ⊕ x7)⊕ x4 ⊕ x5
(

by Equation 25
)

= x3 ⊕ x4 ⊕ x5

= (z1 ⊕ z4 ⊕ z5 ⊕ z6)⊕ (z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7)⊕ (z2 ⊕ z4 ⊕ z5)
(

by Equation 26
)

= z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

(27)

w0 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,w1 = z0 ⊕ z2 ⊕ z4,w2 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z5

w3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6,w4 = z3 ⊕ z6,w5 = z0 ⊕ z3 ⊕ z6 ⊕ z7

w6 = z1 ⊕ z4 ⊕ z7,w7 = z2 ⊕ z5

(28)

y = x × 26, x, y ∈ GF
(

24
)2

a = x2 ⊕ x4, b = x3 ⊕ x6 ⊕ x7, c = x1 ⊕ x5

y0 = a⊕ b⊕ x5, y1 = a⊕ x0, y2 = c ⊕ x0 ⊕ x3 ⊕ x4, y3 = c ⊕ a⊕ x6

y4 = x3 ⊕ x6, y5 = b⊕ x0, y6 = x1 ⊕ x4 ⊕ x7, y7 = x2 ⊕ x5

Fig. 10  MixColumns operation in composite field GF((24)2)
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memory. The addroundkey operation accesses the roundkeys by referring to the corre-
sponding address in the memory. The advantage of this approach is that the keyschedule 
only needs to be performed once; however, the drawbacks include:

	(i)	 The (Nr + 1) roundkeys cost (Nr + 1) × 128 bits memory space;
	(ii)	 The cipherkey should not change frequently. Every time it changes, the roundkeys 

must be recalculated.

In this paper, we propose a new 32-bit pipelined on-the-fly keyschedule in fully com-
posite field (GF((24)2)) with 128-, 192-, 256-bit key sizes, where each 128-bit roundkey 
is generated at every four clock cycles (32-bit at each clock). The following shows the 
32-bit roundkeys at each clock cycle (KA(i), and KB(i) represent the round keys for block 
A and block B, each is 32-bit, 0 ≤ i ≤ 4Nr + 3).

The roundkeys for block A:
roundkey[0]={KA(0), KA(1), KA(2), KA(3)}
roundkey[1]={KA(4), KA(5), KA(6), KA(7)}
……
roundkey[Nr]={KA(4Nr), KA(4Nr+1), KA(4Nr+2), KA(4Nr+3)}
The roundkeys for block B:
roundkey[0]={KB(0), KB(1), KB(2), KB(3)}
roundkey[1]={KB(4), KB(5), KB(6), KB(7)}
……
roundkey[Nr]={KB(4Nr), KB(4Nr+1), KB(4Nr+2), KB(4Nr+3)}
Because we are using the on-the-fly keyschedule, keyschedule and encryptor/decryp-

tor are sharing the same clock, and the general frequency is determined by the maximum 
delay in both keyschedule and encryptor/decryptor modules. To achieve an efficient 
pipelining, proper division in keyschedule is as important as in encryptor/decryptor. We 
know that subword is the most costly component in keyschedule. In order to make the 
optimal delay in both modules, we implement subword in the same way as Subbytes in 
encryptor/decryptor.

All mathematic operations in keyschedule are transformed into field GF((24)2). Sub-
word shares the same structure as in Subbytes. Xorrcon is a simple XOR operation 
with a round constant, which is initially {01} and multiplied by {02} at each keysched-
ule round. Keyschedule round is defined as follows. It begins when clk counter = 0. If 
key size is 128 bit, keyschedule round cycle is four; if key size is 192 bit, keyschedule 
round cycle is six; if key size is 256 bit, keyschedule round cycle is eight. We know 
that in GF((24)2), {01} is still {01} and {02} is mapped to {26}. We can use Eq. 28 to gen-
erate round constant for each keyschedule round.

The proposed keyschedule has three key size options: Key128, Key192 and Key256. 
The notation of roundkey32 stands for 32-bit roundkey for each clock cycle, roundkey 
stands for 128-bit roundkey for a round of AES.

For decryption, the roundkey32 must be created in the reverse order. The last Nk 
roundkey32 from encryption is stored in a 256-bit register to be used as the initial 
decipherkey roundkey32 for decryption. For a given cipherkey, at least one encryp-
tion operation must be performed in order to store the final Nk roundkey32 for 
use during decryption. Multiplexers are then used to select between the cipherkey 
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and decipherkey, based on encryption or decryption mode, respectively. Since the 
decipherkey roundkey32 is already in GF((24)2), they do not pass through the MAP 
operation.

Figure 11 illustrates the keyschedule architecture. The multiplexers mul1 and mul2 
are used to reconfigure the pipeline for each of the three key sizes. 

SA, SB, SC and SD are the four sections of subword operation with interspersed 
registers. RW is the outcome of rotword. RC generates the round constant for xor-
rcon in GF((24)2). Multiplexor mul3 is used to select the correct previous roundkey32 
as input to the subword operation. Multiplexor mul4 selects the appropriate calcu-
lated result to serve as the next roundkey32.

Table 2 summarizes the reconfigurable control of the multiplexers to generate three 
key sizes (• represents that the multiplexer is enabled for the corresponding key size, and 
the numbers represent the input selections of the multiplexer depending on the corre-
sponding clock cycles). 

When key size is 128 bits, the encryptor round number is ten. Two blocks A and B 
need 22 roundkeys. In our design, the first step is to map (MAP) cipherkey from GF(28) 
to GF((24)2). After that, it performs its isomorphic functions in GF((24)2). The output of 
keyschedule is roundkey32s represented in GF((24)2). They are the exact format required 
in encryption where the message blocks are represented in GF((24)2). No inverse MAP is 
required in keyschedule. SA, SB, SC and SD are the four sections of subword operation. 
We place three registers among the four substages in subword. RW is the outcome of 
rotword. RC generates the round constant for xorrcon in GF((24)2).

4 � Implementation performance and comparison
Many studies of hardware AES implementations have been published. Table 3 summa-
rizes the functions provided by different FPGA implementations.

We do not use BRAM in our design in order to make the architecture suitable for 
wireless and embedded devices. Our proposed architecture has been simulated and syn-
thesized with Xilinx Synthesis Technology (XST) ISE 10, and implemented on a Xilinx 

Fig. 11  Architecture of keyschedule-128/192/256
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Virtex-4 device. From the synthesis result, we also optimize the delay time between dif-
ferent stages in our design to improve the performance. Table 4 illustrates the synthesis 
results with Virtex-4 XC4VSX25 and performance comparison.

Compared with the previous architectures, our design focuses on the low cost, non-
BRAM implementations. Pramstaller et  al. proposed a compact design costing 1125 
slices in [5] with throughput of 215 Mbps for 128-bit, 180 Mbps for 192-bit, and 156 
Mbps for 256-bit in the maximum frequency of 161 MHz. However, the round keys were 
pre-calculated by the key generator and RAM required to store those keys. We gener-
ate the round keys on-the-fly which is very useful and efficient when the key has been 
changed (AES is a symmetric-key cryptography, and the session key usually changes fre-
quently.) In addition, our throughput increases greatly for each of the three key sizes. 
Furthermore, we propose a new subpipelined keyschedule which can support all three 
key sizes (128, 192, 256-bits). The time delays between the stages in encryption/decryp-
tion and keyschedule have been optimized in our architecture. We also present a new 
32-bit complete composite field approach where the GF((24)2) field arithmetic applies in 
all transformations in encryptor/decryptor and keyschedule to save the cost of mapping 
between GF(28) and GF((24)2) greatly. In addition, the 32-bit data path in our design can 
reduce the hardware cost greatly and can be efficiently applied in computing-resources 
restricted environments, such as wireless devices and embedded devices.

5 � Conclusion
AES is an important and popular cryptographic algorithm to secure the information and 
data transmission. In this paper, we propose a compact reconfigurable FPGA architec-
ture for the AES implementation. The 32-bit single-round unit design results in low area 
cost, which makes it suitable for low-end devices. The combinational logic approach of 
S-Box eliminates the need for BRAMs.

In our architecture, a fully GF((24)2) composite field arithmetic is applied in all trans-
formations in encryption/decryption and keyschedule to save the cost of mapping 
greatly. That is, only one MAP and one MAP−1 are applied in encryption/decryption, 
and one MAP is applied in keyschedule. Full composite field-based design decreases 
hardware complexity of arithmetic operations in AES. In addition, we apply subpipelin-
ing technology in both encryptor/decryptor and keyschedule modules to optimize the 
speed/area ratio. The capability to deal with three key sizes makes our design an efficient 
reconfigurable architecture of AES. The performance comparison indicates that the pro-
posed AES architecture achieves better performance than previous work.

Table 2  Summary of reconfigurable control for keyschedule-128/192/256

Key_Size options mul1 mul2 mul3 mul4

Key_128 Encryption ⦁ (1) ⦁ (4) ⦁ (1, 4, 9)

Decryption ⦁ (1) ⦁ (1) ⦁ (1,7, 9)

Key_192 Encryption ⦁ (1) ⦁ (3, 5) ⦁ (1, 2, 4, 5, 9, 10)

Decryption ⦁ (1) ⦁ (2) ⦁ (1,3, 6, 7, 9, 10)

Key_256 Encryption ⦁ (4) ⦁ (1, 4, 8, 9)

Decryption ⦁ (2) ⦁ (1,8, 9)
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In conclusion, the proposed compact and reconfigurable AES architecture has high 
throughput and low area cost, which is very useful in the computing-restricted environ-
ment and wireless devices.

6 � Future work
In the future, we will synthesize our FPGA prototype, optimize the design and imple-
ment it in VLSI. We believe the performance of the proposed architecture could be 
increased with current VLSI design tools and technology, and develop a new reconfigur-
able and efficient AES encryption/decryption chip which can be easily embedded into 
the wireless and computing-restricted devices to provide the security services.
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