
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Li et al.
EURASIP Journal on Advances in Signal Processing (2023) 2023:5
https://doi.org/10.1186/s13634-022-00963-3

EURASIP Journal on Advances
in Signal Processing

A reconfigurable and compact subpipelined
architecture for AES encryption and decryption
Ke Li, Hua Li* and Graeme Mund 

Abstract 

AES has been used in many applications to provide the data confidentiality. A new
32-bit reconfigurable and compact architecture for AES encryption and decryption is
presented and implemented in non-BRAM FPG in this paper. It can be reconfigured
for the options of different key sizes which is very flexible for the users to apply AES
for various application environments. The proposed design employs a single-round
architecture and subpipeling to minimize the hardware cost. The fully composite field
GF((24)2)-based encryption/decryption and keyschedule lead to the lower hardware
complexity and efficient subpipelining for 32-bit data path. In addition, a new subpipe-
lined on-the-fly keyschedule over composite field GF((24)2) is proposed for all standard
key sizes (128-, 192-, 256-bit) which generates the roundkeys simultaneously and effi-
ciently. This feature is very useful and efficient when the main key has been changed
since AES is a symmetric-key cryptography and the session key usually changes
frequently. The proposed reconfigurable and compact design has higher throughput
and lower hardware cost. It achieves throughputs of 375Mbits/s with 128-bit key,
318Mbits/s with 192-bit key and 275Mbits/s with 256-bit key on VIRTEX XC4VSX25-12,
and the total number of slices is 1766. The proposed reconfigurable and compact AES
architecture can be efficiently applied in computing-restricted environments such as
wireless and embedded devices.

Keywords:  AES, FPGA, Pipelining, Fully composite field, Reconfigurable architecture,
Computing-restricted environments

1  Introduction
Advanced Encryption Standard (AES) based on Rijndael encryption algorithm has
been used to replace DES in security services [1–3]. Hardware AES implementations
are attractive because it provides better throughput as well as higher physical security.
Compared with Application-Specific Integrated Circuit (ASIC), field programmable gate
array (FPGA) becomes more and more popular because of its scalability, re-programma-
bility, and fast development.

Numerous FPGA [4–10] and ASIC [7, 11, 12] implementations of the AES have been
presented and evaluated. Other AES implementations have also been proposed such
as GPU-based [13], Multicore Processor-based [14], and Rapid Single-Flux-Quantum
Circuits-based [15] implementations. Fully unrolled schemes [6, 8] can achieve high

*Correspondence:
hua.li@uleth.ca

Department of Mathematics
and Computer Science,
University of Lethbridge,
Lethbridge, AB, Canada

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00963-3&domain=pdf

Page 2 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

throughput, but there are much more area and energy cost which only suitable for
high-end applications. Another approach is only implementing a single-round unit and
applies the same unit in different rounds.

In this paper, a compact and reconfigurable design of AES with low hardware cost and
adequate throughput is proposed and implemented in a non-BRAM FPGA. This design
applies a 32-bit single-round unit, which costs much less hardware area than the 128-bit
fully unrolled schemes. In order to reduce the hardware complexity further, we convert
the arithmetic operations of AES from field GF(28) to field GF((24)2). Unlike the previ-
ous designs in [6, 8, 12, 16] where partial-composite field AES is applied, we conduct
the entire AES operations in GF((24)2) to minimize the overhead of isomorphic mapping
functions. In our design, only two forward mapping functions and one backward map-
ping function are used. In addition, subpipelining is applied to improve the throughput/
area ratio.

The standard announced by NIST [2] indicates that AES is a block cipher with 128-
bit block size and 128-, 192-, 256- bit key sizes. These three key sizes are specified for
various security levels. The capability to deal with all key sizes makes reconfigurability
an important feature of AES implementations. The previous work of [6, 8, 12, 17–20]
applied the on-the-fly key generator to support instant key changing. The design in [8]
made a subpipelined keyschedule, but it only supported 128-bit key size. When sub-
pipelining on-the-fly keyschedule is employed in an AES implementation, the stages in
keyschedule must be synchronized with the stages in the cipher, because they share the
same clock. In this design, we propose a subpipelined on-the-fly keyschedule over field
GF((24)2), which supports all three key sizes.

The issue of secure communication in computing-restricted environments, such as
personal digital assistants (PDAs), wireless devices, and many other embedded devices,
has become more important recently. In order to apply AES in these devices, the AES
implementations must be cost efficient. The objective of this research work is to design
a reconfigurable and compact AES architecture which can be applied to the computing-
restricted devices. The proposed architecture can be reconfigured to three different AES
key sizes which is very useful when the users change the main key and also change the
key sizes for different security levels because AES is a symmetric-key cryptography and
the session key usually changes frequently. We also propose a subpipelined on-the-fly
keyschedule for three options of key sizes that make the proposed architecture be easily
implemented on non-BRAM FPGA.

The remainder of the paper is organized as the following. In Sect. 2, AES algorithm is
introduced. The proposed compact and reconfigurable AES architecture is presented in
Sect. 3. Implementation and performance are included in Sect. 4. Sections 5 and 6 are
the conclusion and future work.

2 � AES algorithm
AES is a symmetric block cipher with block size of 128-bit and three key sizes of (128-,
192-, or 256-bit) [1–3]. The AES parameters depend on the key size (Table 1, the size of
word is 32 bits): AES runs iteratively on four transformations (inv-/Subbytes, inv-/Shift-
Rows, inv-/MixColumns and addroundkey) with different sequences in encryption and
decryption. Figure 1 illustrates the basic architecture of AES. In the initial round (r = 0),

Page 3 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

only addroundkey is performed; in the final round (r = Nr), it skips inv-/MixColumns.
The keyschedule module expands cipherkey to (Nr + 1) × 4 words of roundkeys. Each
round applies a unique 128-bit roundkey in the addroundkey operation [1, 2].

2.1 � Subbytes

Subbytes are the only non-linear transformation in AES which is also called S-Box.
S-Box is a 16 × 16 matrix containing all possible 256 8-bit values, which is used to per-
form a non-linear byte-by-byte substitution of the state.

Considering a byte {x7x6x5x4x3x2x1x0}, Subbytes transformation has two steps [1]:
	(i)	 {x’7 x’6 x’5 x’4 x’3 x’2 x’1 x’0} is its multiplicative inverse in GF(28) field, modulo the

irreducible polynomial m(x) = x8 + x4 + x3 + x + 1; {00000000}’s multiplicative
inverse in GF(28) field is itself;

	(ii)	 An affine transformation over GF(2) is conducted on the inverse of
{x7x6x5x4x3x2x1x0} (Eq. 1 [1]).

Table 1  AES parameters [2]

Key length
(Nk words)

Block size
(Nb words)

Number
of rounds
(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Fig. 1  AES architecture [1, 2]

Page 4 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

2.2 � ShiftRows

This transformation circularly shifts each row of the state to the left on encryption. As
in Fig. 2 [1], the top row of the state is noted as row(0), and the bottom row is noted as
row(3). The ShiftRows perform i − byte circular left shift to row(i) (i = 0, 1, 2, 3).

2.3 � MixColumns

This transformation treats each column of the state as a four-term polynomial over
GF(28) and transforms each column to a new one by multiplying it with a constant poly-
nomial a(x) = {03}x3 + {01}x2 + {01}x + {02} modulo x4 + 1. Equation 2 [1] is the matrix
form of MixColumns.

2.4 � Addroundkey

The addroundkey is a simple logical XOR of the current state with a roundkey which is
generated by the keyschedule.

2.5 � Keyschedule

Keyschedule derives roundkeys from the cipherkey. It consists of key expansion and
roundkey selections. Figure 3 [2] shows the keyschedule algorithm which generates
roundkeys for AES-128, AES-192 and AES-256. The functions used in keyschedule are
the following [1, 2]:

(1)























y0
y1
y2
y3
y4
y5
y6
y7























=























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

















































x′0
x
′

1

x
′

2

x
′

3

x
′

4

x
′

5

x
′

6

x
′

7



























+























1
1
0
0
0
1
1
0























(2)

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

Fig. 2  AES ShiftRows [1]

Page 5 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

•	 Rotword: One-byte circular left shift on a word.
•	 Subword: Using S-Box to perform a byte substitution on each byte.
•	 XOR with Rcon: XORing with a round constant Rcon[j], Rcon[j] = (RC[j], 0, 0, 0)

with RC[1] = 1, RC[j] = 2 · RC[j − 1].

3 � 32‑bit subpipelined reconfigurable and compact architecture for AES
In this section, the 32-bit reconfigurable and compact AES architecture is proposed.
In our design, the data path is 32-bit. That is one operation, for example, s-box, will be
applied four times to process the 128 bits of one block in plaintext. The subpipelined
on-the-fly keyschedule for different key sizes is also presented to provide the roundkey
simultaneously and efficiently. In addition, the equivalent cipher [1] is adopted to make
the same data flow for encryption and decryption and to share the reusable units.

3.1 � 32‑bit single‑round unit

Roll unfolded architecture is widely used to achieve high throughput. It conducts mul-
tiple rounds on one block by implementing more than one round units on the hard-
ware. The more round units the architecture includes, the higher the hardware cost. The
alternative scheme, which is called the single-round unit architecture, can be applied to
simplify the hardware complexity. Instead of unfolding all the round units in devices,
it implements a single-round unit which costs approximately 1/Nr area of the unfolded
scheme.

We propose a 32-bit single-round unit for a compact AES architecture. It needs iterat-
ing four times to perform a round on a block (128-bit), once every 32 bits.

Fig. 3  Pseudo-code for AES keyschedule [2]

Page 6 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

3.2 � Full composite field architecture with keyschedule

Many high-end FPGA devices possess Block-RAMs (BRAMs) which is efficient for the
implementation of S-Box. S-Box, also referred as Subbytes, is the important and compli-
cated operation in both encryptor/decryptor and keyschedule modules. However, these
BRAM-based designs cannot be implemented in the low-cost devices which do not have
BRAMs. An alternative approach for S-Box implementation is using combinational
logic. But this method may lead to high hardware complexity because of the mathemati-
cal operations in AES over finite field GF(28).

The key step of S-Box is calculating multiplicative inverse of each byte. Since the
introduction of composite field GF((24)2), the calculation of multiplicative inverse over
GF((24)2) has been investigated [6, 8, 12, 16]. The architectures in [5, 18, 21] applied
the field GF((24)2) to affine transformation in S-Box. By decomposing these operations
from GF(28) to its subfield GF(24), the hardware complexity of S-Box can be decreased
dramatically.

In Fig. 4a, in each round before S-Box, it needs an isomorphic mapping function
(MAP) from GF(28) to GF((24)2); and the inverse mapping (MAP−1) afterwards. If key
size is 128 bits, it applies 10 times S-Box to the plaintext and the cipherkey, which means
that it needs 20MAPs and 20 MAP−1 s for the encryption of 128-bit data. In order to
save the cost of MAP and MAP−1, we propose a new 32-bit complete composite field
approach (Fig. 4b). The GF((24)2) field applies in all transformations in encryptor/decryp-
tor and keyschedule. As illustrated in Fig. 4b, one MAP and one MAP−1 are applied in
encryption, and one MAP is applied in keyschedule. This is a constant overhead which is
not affected by the number of rounds.

We use the composite field defined by Wolkerstorfer et al. [21]. There are two irreduc-
ible polynomials (Eqs. 3 and 4) involved in multiplication and inversion in GF((24)2).

Fig. 4  a Partial in composite field b Complete in composite field

Page 7 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

The irreducible polynomial for the field GF(28) in AES is:

The isomorphic mapping functions between field GF(28) and field GF((24)2) are deter-
mined by the irreducible polynomials of field GF(28) (Eq. 5) and field GF((24)2) (Eqs. 3
and 4). We use the following mapping formulas in [21] to convert the representations
between GF(28) and GF((24)2).

In Eq. 6, a is an element in field GF(28). MAP(a) converts a to its isomorphic element
in GF((24)2), which is represented as ahx + al.

In Eq. 7, ahx + al is an element in field GF((24)2). MAP−1(ahx + al) converts ahx + al to
its isomorphic element in GF(28), which is represented as a.

3.3 � Subpipelined encryptor/decryptor and keyschedule

Pipelining is applied in the designs to optimize speed/area ratio of AES. By inserting reg-
isters in combinational logic circuits, multiple blocks of hardware are running simul-
taneously. The frequency of the design is determined by the maximum delay between
registers. We reduce the maximum delay and increase the frequency by optimizing the
balance between stages. A 32-bit single-round subpipelined architecture in full compos-
ite field is proposed where one round unit is implemented and subpipelined into eight
substages. To generate the roundkeys synchronously, we present an on-the-fly keysched-
ule. The encryption/decryption unit and the key expansion unit share the same clock
which leads to the fact that the clock frequency is determined by the maximum delay in
both units. This makes the balance of substage in keyschedule as important as in encryp-
tor/decryptor. We propose a new subpipelined keyschedule on composite field for all
standard key sizes. The most costly part of keyschedule is still S-Box. We divide it into
the same substages as in encryptor/decryptor.

(3)n(x) = x2 + {1}x + {e}, {e} denotes {1110}

(4)m(x) = x4 + x + 1

(5)m(x) = x8 + x4 + x3 + x + 1

(6)

ahx + al = MAP(a), ah, al ∈ GF
(

24
)

, a ∈ GF
(

28
)

aA = a1 ⊕ a7, aB = a5 ⊕ a7, aC = a4 ⊕ a6

al0 = aC ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2, al2 = aA, al3 = a2 ⊕ a4

ah0 = aC ⊕ a5, ah1 = aA ⊕ aC , ah2 = aB ⊕ a2 ⊕ a3, ah3 = aB

(7)

a = MAP−1
(ahx + al), a ∈ GF

(

28
)

, ah, al ∈ GF
(

24
)

aA = al1 ⊕ ah3, aB = ah0 ⊕ ah1

a0 = al0 ⊕ ah0, a1 = aB ⊕ ah3, a2 = aA ⊕ aB

a3 = aB ⊕ al1 ⊕ ah2, a4 = aA ⊕ aB ⊕ al3, a5 = aB ⊕ al2

a6 = aA ⊕ al2 ⊕ al3 ⊕ ah0, a7 = aB ⊕ al2 ⊕ ah3

Page 8 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

3.4 � Double‑block subpipelined architecture

The proposed architecture for encryptor is illustrated in Fig. 5. The decryption can be
easily implemented by the equivalent cipher [1]. The eight 32-bit registers (four in Shift-
Rows, three in Subbytes and one between Subbytes and MixColumns) are used to cut
one round unit into eight substages, which leads to an eight clock cycles initial delay to
generate the first 32-bit ciphertext. clk counter is a clock register counter generated in
keyschedule. It is used to synchronize encryptor/decryptor and keyschedule. We use a
double-block (block A and B) data flow in our subpipelined architecture.

Figure 5a illustrates the subpipelining in ShiftRows operation, and Fig. 5b shows the
subpipelining in Subbytes operation. We can see that the mappings from GF(28) to
GF((24)2) are only required once after the inputs of plaintext and cipherkey. The inverse
mapping (GF((24)2) to GF(28)) is applied to the final output in order to get the cipher
text.

The 3-to-1 multiplexer (“mul”) is controlled by the clk counter:

•	 Case a In initial round, where 0 ≤ clk counter < 8, 128-bit plaintext is MAPed into
GF((24)2) and XORed with the according roundkey in four clock cycles, 32 bits at

Fig. 5  AES encryption architecture

Page 9 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

each clock. The result is the outcome of the initial round (Nr = 0) which is the input
of the second round;

•	 Case b In normal rounds, where 8 ≤ clk counter < Nr × 8, the output of MixColumns
XORs with the corresponding roundkey.

•	 Case c In the last round, where Nr × 8 ≤ clk counter < (Nr + 1) × 8. The output of Sub-
bytes XORs with the corresponding roundkey. The ciphertext is obtained.

The detail operations of the ShiftRows, Subbytes and MixColumns are presented in
the following.

3.4.1 � ShiftRows

We use our proposed ShiftRows operation [22] in the design. It includes sixteen 8-bit
registers and three 2-to-1 multiplexers. The block of data is shifted column by column.
Two blocks of data are processed in the pipeline.

Our ShiftRows operation is designed in a column fashion (Fig. 6). In the architecture,
the data (32-bits) in the columns are shifted in the order of column instead of rows. Each
column is composed of four shift registers, and each register has 8 bits. By transforming
the ShiftRows operation to a column fashion operation, we can make the design of Mix-
columns operation easier, since all the data in one column are required in the MixCol-
umn operation.

The following are the ShiftRows procedure for encryption.

(1)	 First row No shift. We just let the data flow through.
(2)	 Second row Circular left shift operation. In this case, we connect the output of reg-

ister R1C2 and the output of R1C3 to a multiplexer in order to select the output.
(3)	 Third row Switch data. Switch the data between first element and third element,

second element and fourth element in the row. The outputs of R2C1 and R2C3 are
connected to a Multiplexer.

(4)	 Fourth row Circular right shift operation. Similar to the case of second row, we con-
nect the output of register R3C0 and the output of R3C3 to a Multiplexer.

Fig. 6  ShiftRows operations in encryption and decryption

Page 10 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

Similarly, we can derive the procedures for Inverse ShiftRows (Inv-ShiftRows)
operations:

(1)	 First row No shift.
(2)	 Second row Circular right shift operation. We connect the output of register R1C0

and the output of R1C3 to a Multiplexer.
(3)	 Third row Switch Data. Same as the operation in ShiftRows of encryption.
(4)	 Fourth row Circular left shift operation. We connect the output of register R3C2

and the output of R3C3 to a multiplexer in order to select the output.

The multiplexers are controlled by some clock counters and the encryption/decryp-
tion signals.

3.4.2 � Subpipelined Subbytes

The key step of Subbytes is the calculation of the multiplicative inverse. Figure 7 illus-
trates the architecture of Subbytes proposed in [8]. It uses multiplication in GF(24)2
three times. It also needs one inversion (x−1), one constant multiplier with {e} (× e,
{e} is in hexadecimal notation, which is ‘1110’ in binary notation), one squarer and
two 4-bit XORs ( ⊕).

We proposed a 32-bit subpipelined compact s-box architecture in compos-
ite field of GF(24)2 with balanced substages and efficient performance [23]. Con-
sidering x, y, z ∈ GF(24), x, y and z are represented in binary notation where
x = {x3x2x1x0}, y =

{

y3y2y1y0
}

, z = {z3z2z1z0} . Let a, b, c, d, e and f be 1-bit values,
which equal to 0 or 1. ⊕ stands for XOR-operation. x0y1 means x0∧y1. Equations 8, 9,
10 and 11 [21] are used to calculate squaring, constant multiplication with {e}, multi-
plication and multiplicative inverse.

(8)y = x2 : y0 = x0 ⊕ x2, y1 = x2, y2 = x1 ⊕ x3, y3 = x3

(9)
y = x × {e} : a = x0 ⊕ x1, b = x2 ⊕ x3, y0 = x1⊕ b, y1 = a, y2 = a⊕ x2, y3 = a⊕ b

(10)

z = x × y : a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2

z0 =
(

x0y0
)

⊕
(

x3y1
)

⊕
(

x2y2
)

⊕
(

x1y3
)

, z1 =
(

x1y0
)

⊕
(

ay1
)

⊕
(

by2
)

⊕
(

cy3
)

z2 =
(

x2y0
)

⊕
(

x1y1
)

⊕
(

ay2
)

⊕
(

by3
)

, z3 =
(

x3y0
)

⊕
(

x2y1
)

⊕
(

x1y2
)

⊕
(

ay3
)

Fig. 7  Subbytes in composite field GF((24)2) [8]

Page 11 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

In our design which is illustrated in Fig. 5, Subbytes should be cut into four sub-
stages. The key to an efficient subpipelining technology is to balance the delays of these
substages.

We derive a new Eq. 12 from Eq. 11 to reduce the delay caused by x−1.
Equation 12 is derived in three steps:

(1)	 In Eq. 11, replace “a” by its expression:

(2)	 The expressions in step 1 can be equally changed to:

(3)	 Let a = x1x2, b = x0x2, c = x0x1, d = x1 ⊕ x2, e = 1⊕ a, f = b⊕ c , we have:

According to Eq. 12, we design the logic circuit illustrated in Fig. 8 to perform x−1
over GF(24)2. Besides multiplicative inversion, other operations in Fig. 7 are the three
multiplications (× 1, × 2 and × 3). In order to decrease the maximum delay caused by
multiplication, we separate each multiplication into two steps and put each step in
different substages. The registers between each substage store the result of the first
step of multiplication and pass it to the second step. We decompose these three multi-
pliers into two different manners (AB-type and MN-type) to achieve the best balance.

AB-type The AB-type multiplication is based on Eq. 13 which is derived from Eq. 10.
Step A calculates the value of all the binomials; Step B conducts XOR of every four

(11)

y = x−1 : a = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3), y0 = a⊕ x0 ⊕ (x0x2)⊕ (x1x2)⊕ (x0x1x2)

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3 ⊕ (x1x3)⊕ (x0x1x3)

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3 ⊕ (x0x3)⊕ (x0x2x3)

y3 = a⊕ (x0x3)⊕ (x1x3)⊕ x2x3

y0 = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3)⊕ x0 ⊕ (x0x2)⊕ (x1x2)⊕ (x0x1x2)

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3 ⊕ (x1x3)⊕ (x0x1x3)

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3 ⊕ (x0x3)⊕ (x0x2x3)

y3 = x1 ⊕ x2 ⊕ x3 ⊕ (x1x2x3)⊕ (x0x3)⊕ (x1x3)⊕ x2x3

y0 = x1 ⊕ x2 ⊕ (x1x2)⊕ (x0x2)⊕ (x0 ⊕ x3)(1⊕ (x1x2))

y1 = (x0x1)⊕ (x0x2)⊕ (x1x2)⊕ x3(1⊕ x1 ⊕ (x0x1))

y2 = (x0x1)⊕ x2 ⊕ (x0x2)⊕ x3(1⊕ x0 ⊕ (x0x2))

y3 = x1 ⊕ x2 ⊕ x3(1⊕ x0 ⊕ x1 ⊕ x2 ⊕ (x1x2))

(12)

y0 = a⊕ b⊕ d ⊕ ((x0 ⊕ x3)e)

y1 = a⊕ f ⊕ x3(1⊕ x1 ⊕ c)

y2 = f ⊕ x2 ⊕ x3(1⊕ x0 ⊕ b)

y3 = d ⊕ x3(e⊕ x0 ⊕ d)

Page 12 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

values to generate z0, z1, z2 and z3. A register is inserted between Step A and Step B
to store p0, p1, …, p15. The multiplication “ × 1” in Fig. 7 is separated as × 1A and × 1B in
Fig. 8;

Step A:

Step B:

MN-type The MN-type multiplication is based on Eq. 14 which is also derived from
Eq. 10. Step M creates the value of a, b and c; Step N implements the rest of Eq. 10. A
register is inserted between Step M and Step N to store a, b, c. The multiplications of
“ × 2” and “ × 3” in Fig. 7 are separated as × 2 M and × 2 N, × 3 M and × 3 N in Fig. 8.

Step M:

Step N:

z = x × y(AB− type)

a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2, p0 = x0y0, p1 = x3y1, p2 = x2y2, p3 = x1y3

p4 = x1y0, p5 = ay1, p6 = by2, p7 = cy3, p8 = x2y0, p9 = x1y1, p10 = ay2, p11 = by3

p12 = x3y0, p13 = x2y1, p14 = x1y2, p15 = ay3

(13)
z0 = p0 ⊕ p1 ⊕ p2 ⊕ p3, z1 = p4 ⊕ p5 ⊕ p6 ⊕ p7

z2 = p8 ⊕ p9 ⊕ p10 ⊕ p11, z3 = p12 ⊕ p13 ⊕ p14 ⊕ p15

z = x × y
(

MN − type
)

a = x0 ⊕ x3, b = x2 ⊕ x3, c = x1 ⊕ x2

(14)
z0 = x0y0 ⊕ x3y1 ⊕ x2y2 ⊕ x1y3, z1 = x1y0 ⊕ ay1 ⊕ by2 ⊕ cy3

z2 = x2y0 ⊕ x1y1 ⊕ ay2 ⊕ by3, z3 = x3y0 ⊕ x2y1 ⊕ x1y2 ⊕ ay3

Fig. 8  Pipelined Subbytes in composite field GF((24)2)

Page 13 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

The last operation in Subbytes is the affine transformation. We derive Eq. 21 to do
the affine transformation in GF

(

24
)2 based on Eqs. 1,6 and 7.

Consider p ∈ GF
(

24
)2
, q ∈ GF

(

28
)

: p =
{

p7p6p5p4p3p2p1p0
}

, q =
{

q7q6q5q4q3q2q1q0
}

For Eq. 6:

(1)	 Replace aA, aB, aCwith their expressions:

(2)	 Let preplace ahx + al , q replace a, we derive Eq. 15:

Similar steps are applied in Eq. 7. Equation 16 is derived:

In the following, we derive Eq. 21 based on Eqs. 1, 15 and 16.
Let x′

, y be the element in GF
(

28
)

 .: x′ =
{

x′7x
′
6x

′
5x

′
4x

′
3x

′
2x

′
1x

′
0

}

, y =
{

y7y6y5y4y3y2y1y0
}

.
According to Eq. 1:

We convert y to GF
(

24
)2 and also represent x′ in GF

(

24
)2 to derive the affine transfor-

mation in GF
(

24
)2
.

(1)	 Let w represent y in GF
(

24
)2 . By Eq. 15 (map from GF

(

28
)

 to GF
(

24
)2):

(2)	 Let z be the GF
(

24
)2 format of x′. From Eq. 16:

al0 = a4 ⊕ a6 ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2, al2 = a1 ⊕ a7, al3 = a2 ⊕ a4

ah0 = a4 ⊕ a6 ⊕ a5, ah1 = a1 ⊕ a7 ⊕ a4 ⊕ a6, ah2 = a5 ⊕ a7 ⊕ a2 ⊕ a3, ah3 = a5 ⊕ a7

(15)

p = MAP(q),p ∈ GF
(

24
)2

, q ∈ GF
(

28
)

p0 = q0 ⊕ q4 ⊕ q5 ⊕ q6, p1 = q1 ⊕ q2, p2 = q1 ⊕ q7, p3 = q2 ⊕ q4

p4 = q4 ⊕ q5 ⊕ q6, p5 = q1 ⊕ q4 ⊕ q6 ⊕ q7, p6 = q2 ⊕ q3 ⊕ q5 ⊕ q7, p7 = q5 ⊕ q7

(16)

q = MAP−1(p),p ∈ GF
(

24
)2

, q ∈ GF
(

28
)

q0 = p0 ⊕ p4, q1 = p4 ⊕ p5 ⊕ p7, q2 = p1 ⊕ p4 ⊕ p5 ⊕ p7, q3 = p1 ⊕ p4 ⊕ p5 ⊕ p6

q4 = p1 ⊕ p3 ⊕ p4 ⊕ p5 ⊕ p7, q5 = p2 ⊕ p4 ⊕ p5, q6 = p1 ⊕ p2 ⊕ p3 ⊕ p4 ⊕ p7,

q7 = p2 ⊕ p4 ⊕ p5 ⊕ p7

(17)

y0 = x
′

0 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1, y1 = x
′

0 ⊕ x
′

1 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1

y2 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

6 ⊕ x
′

7, y3 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

7

y4 = x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4, y5 = x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ 1

y6 = x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ 1, y7 = x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7

(18)

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6,w1 = y1 ⊕ y2,w2 = y1 ⊕ y7,w3 = y2 ⊕ y4,w4 = y4 ⊕ y5 ⊕ y6

w5 = y1 ⊕ y4 ⊕ y6 ⊕ y7,w6 = y2 ⊕ y3 ⊕ y5 ⊕ y7,w7 = y5 ⊕ y7

Page 14 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

(3)	 Replace y in Eq. 18 with x’ in Eq. 17 and replace x’ with its GF
(

24
)2 format z:

	 Similarly, we can get:

(4)	 For the consistency of the other equations in this paper, we replace w by y, z by x
(x,y ∈ GF

(

24
)2 ) in Eq. 20 and let a = x5 ⊕ x6 ⊕ x7 , we derive

Figure 8 describes the proposed subpipelined architecture of Subbytes in GF((24)2).
The dashed lines stand for the registers.

We cut an AES round unit into 8 substages with the maximum delay determined by
part II (Fig. 8) in Subbytes. The inverse S-box can use the same multiplicative inverse
in encryption except that the inverse affine transformation is applied before the mul-
tiplicative inverse. We also derive the following formula for the inverse affine trans-
formation in GF(24)2:

Figure 9 illustrates the design of S-box in encryption and decryption. It can process

eight bits input in GF(24)2. Four units are required to process the 32-bit data path.

(19)

x′0 = z0 ⊕ z4, x
′
1 = z4 ⊕ z5 ⊕ z7, x

′
2 = z1 ⊕ z4 ⊕ z5 ⊕ z7, x

′
3 = z1 ⊕ z4 ⊕ z5 ⊕ z6

x′4 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7, x
′
5 = z2 ⊕ z4 ⊕ z5, x

′
6 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7,

x′7 = z2 ⊕ z4 ⊕ z5 ⊕ z7

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6

= (x
′

0 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ x
′

7 ⊕ 1)⊕ (x
′

0 ⊕ x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4)

⊕

(

x
′

1 ⊕ x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ 1
)

⊕

(

x
′

2 ⊕ x
′

3 ⊕ x
′

4 ⊕ x
′

5 ⊕ x
′

6 ⊕ 1
)

(

by Equation 17
)

= x
′

2 ⊕ x
′

3 ⊕ x
′

5 ⊕ x
′

7 ⊕ 1 = (z1 ⊕ z4 ⊕ z5 ⊕ z7)

⊕ (z1 ⊕ z4 ⊕ z5 ⊕ z6)⊕ (z2 ⊕ z4 ⊕ z5)

⊕ (z2 ⊕ z4 ⊕ z5 ⊕ z7)⊕ 1
(

by Equation 19
)

= z6 ⊕ 1 = (z6)
′

(20)

w1 = (z1 ⊕ z2 ⊕ z7)
′,w2 = (z0 ⊕ z5 ⊕ z6 ⊕ z3)

′,w3 = z1 ⊕ z5 ⊕ z6 ⊕ z7

w4 = z0 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,w5 = z1 ⊕ z5 ⊕ z6,w6 = (z2 ⊕ z6 ⊕ z7)
′

w7 = (z3 ⊕ z5)
′

(21)

y=AFF_TRAN(x):

a = x5 ⊕ x6 ⊕ x7

y0 = (x6)
′, y1 = (x1 ⊕ x2 ⊕ x7)

′, y2 = (x0 ⊕ x3 ⊕ x5 ⊕ x6)
′, y3 = x1 ⊕ a

y4 = x0 ⊕ x2 ⊕ x4 ⊕ a, y5 = x1 ⊕ x5 ⊕ x6, y6 = (x2 ⊕ x6 ⊕ x7)
′, y7 = (x3 ⊕ x5)

′

(22)

y= Inv_AFF_TRAN (x)

a = x1 ⊕ x5 ⊕ x6, b = x0 ⊕ x2 ⊕ x7

y0 = b′, y1 = (x0 ⊕ x1 ⊕ x6)
′, y2 = x0 ⊕ x3 ⊕ x5 ⊕ x6, y3 = (x7 ⊕ a)′

y4 = x1 ⊕ x4 ⊕ x5 ⊕ b, y5 = a, y6 = x
′

0, y7 = x3 ⊕ x5

Page 15 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

3.4.3 � MixColumns on GF((24)2)

MixColumns are another transformation which involves mathematical operations in
GF((24)2). We derive the following formulas to perform MixColumns in composite
field.

Since GF((24)2) is an isomorphic field to GF(28), and {02}, {03}, {01} in GF(28) are
mapped to {26}, {27}, {01}, respectively, in GF((24)2), the MixColumns operation
described by Eq. 2 can be mapped directly to Eq. 23.

Observing that in GF((24)2), {27} = {26} ⊕ {01}, Eq. 23 is equal to Eq. 24, where j = 0,
1, 2, 3:

Equation 24 presents the MixColumn transformation of one column of a state. The
MixColumn transformation can be implemented by the parallel structure in Fig. 10.

In the following, we derive Eq. 28 to calculate x × 26 in GF((24)2). That is, we repre-
sent the results of x × {02} in GF((24)2).

(1)	 Let x,y ∈ GF
(

28
)

, y = x × {02} :

(2)	 Convert y to the element in GF((24)2). Let w represent y in GF((24)2), that is Eq. 18.
(3)	 Let z be the GF

(

24
)2 format of x:

(4)	 Replace x and y with their corresponding GF((24)2) format z and w:

(23)







26 27 01 01
01 26 27 01
01 01 26 27
27 01 01 26













s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3







(24)

S
′

0,j = {26} ×
(

S0,j + S1,j
)

+ S1,j + S2,j + S3,j

S
′

1,j = {26} ×
(

S1,j + S2,j
)

+ S0,j + S2,j + S3,j

S
′

2,j = {26} ×
(

S2,j + S3,j
)

+ S0,j + S1,j + S3,j

S
′

3,j = {26} ×
(

S0,j + S3,j
)

+ S0,j + S1,j + S2,j

(25)
y0 = x7, y1 = x0 ⊕ x7, y2 = x1, y3 = x2 ⊕ x7, y4 = x3 ⊕ x7, y5 = x4, y6 = x5, y7 = x6

(26)

x0 = z0 ⊕ z4, x1 = z4 ⊕ z5 ⊕ z7, x2 = z1 ⊕ z4 ⊕ z5 ⊕ z7, x3 = z1 ⊕ z4 ⊕ z5 ⊕ z6

x4 = z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7, x5 = z2 ⊕ z4 ⊕ z5, x6 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z7,

x7 = z2 ⊕ z4 ⊕ z5 ⊕ z7

Fig. 9  S-Box operation in composite field GF((24)2) for encryption and decryption

Page 16 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

	 Through the same procedures, we can derive:

(5)	For consistency, replace z with x, and replace w with y (x,y ∈ GF
(

24
)2):

In this design for both encryption and decryption, we will modify the MixColumn and
InvMixColumn architecture proposed by Fischer et al. [24]. We need to map the previ-
ous architecture from GF(28) to GF((24)2). It can be seen that we only need to modify the
“xtime” operation. That is, to calculate “xtimes” in GF((24)2).

3.4.4 � Subpipelined keyschedule

There are two approaches to implement keyschedule: (1) pre-calculated keyschedule
and (2) on-the-fly keyschedule. In the pre-calculated keyschedule, the (Nr + 1) 128-bit
roundkeys are generated before the encryption or decryption begins and stored in the

w0 = y0 ⊕ y4 ⊕ y5 ⊕ y6
(

by Equation 18
)

= x7 ⊕ (x3 ⊕ x7)⊕ x4 ⊕ x5
(

by Equation 25
)

= x3 ⊕ x4 ⊕ x5

= (z1 ⊕ z4 ⊕ z5 ⊕ z6)⊕ (z1 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z7)⊕ (z2 ⊕ z4 ⊕ z5)
(

by Equation 26
)

= z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7

(27)

w0 = z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7,w1 = z0 ⊕ z2 ⊕ z4,w2 = z0 ⊕ z1 ⊕ z3 ⊕ z4 ⊕ z5

w3 = z1 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6,w4 = z3 ⊕ z6,w5 = z0 ⊕ z3 ⊕ z6 ⊕ z7

w6 = z1 ⊕ z4 ⊕ z7,w7 = z2 ⊕ z5

(28)

y = x × 26, x, y ∈ GF
(

24
)2

a = x2 ⊕ x4, b = x3 ⊕ x6 ⊕ x7, c = x1 ⊕ x5

y0 = a⊕ b⊕ x5, y1 = a⊕ x0, y2 = c ⊕ x0 ⊕ x3 ⊕ x4, y3 = c ⊕ a⊕ x6

y4 = x3 ⊕ x6, y5 = b⊕ x0, y6 = x1 ⊕ x4 ⊕ x7, y7 = x2 ⊕ x5

Fig. 10  MixColumns operation in composite field GF((24)2)

Page 17 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

memory. The addroundkey operation accesses the roundkeys by referring to the corre-
sponding address in the memory. The advantage of this approach is that the keyschedule
only needs to be performed once; however, the drawbacks include:

	(i)	 The (Nr + 1) roundkeys cost (Nr + 1) × 128 bits memory space;
	(ii)	 The cipherkey should not change frequently. Every time it changes, the roundkeys

must be recalculated.

In this paper, we propose a new 32-bit pipelined on-the-fly keyschedule in fully com-
posite field (GF((24)2)) with 128-, 192-, 256-bit key sizes, where each 128-bit roundkey
is generated at every four clock cycles (32-bit at each clock). The following shows the
32-bit roundkeys at each clock cycle (KA(i), and KB(i) represent the round keys for block
A and block B, each is 32-bit, 0 ≤ i ≤ 4Nr + 3).

The roundkeys for block A:
roundkey[0]={KA(0), KA(1), KA(2), KA(3)}
roundkey[1]={KA(4), KA(5), KA(6), KA(7)}
……
roundkey[Nr]={KA(4Nr), KA(4Nr+1), KA(4Nr+2), KA(4Nr+3)}
The roundkeys for block B:
roundkey[0]={KB(0), KB(1), KB(2), KB(3)}
roundkey[1]={KB(4), KB(5), KB(6), KB(7)}
……
roundkey[Nr]={KB(4Nr), KB(4Nr+1), KB(4Nr+2), KB(4Nr+3)}
Because we are using the on-the-fly keyschedule, keyschedule and encryptor/decryp-

tor are sharing the same clock, and the general frequency is determined by the maximum
delay in both keyschedule and encryptor/decryptor modules. To achieve an efficient
pipelining, proper division in keyschedule is as important as in encryptor/decryptor. We
know that subword is the most costly component in keyschedule. In order to make the
optimal delay in both modules, we implement subword in the same way as Subbytes in
encryptor/decryptor.

All mathematic operations in keyschedule are transformed into field GF((24)2). Sub-
word shares the same structure as in Subbytes. Xorrcon is a simple XOR operation
with a round constant, which is initially {01} and multiplied by {02} at each keysched-
ule round. Keyschedule round is defined as follows. It begins when clk counter = 0. If
key size is 128 bit, keyschedule round cycle is four; if key size is 192 bit, keyschedule
round cycle is six; if key size is 256 bit, keyschedule round cycle is eight. We know
that in GF((24)2), {01} is still {01} and {02} is mapped to {26}. We can use Eq. 28 to gen-
erate round constant for each keyschedule round.

The proposed keyschedule has three key size options: Key128, Key192 and Key256.
The notation of roundkey32 stands for 32-bit roundkey for each clock cycle, roundkey
stands for 128-bit roundkey for a round of AES.

For decryption, the roundkey32 must be created in the reverse order. The last Nk
roundkey32 from encryption is stored in a 256-bit register to be used as the initial
decipherkey roundkey32 for decryption. For a given cipherkey, at least one encryp-
tion operation must be performed in order to store the final Nk roundkey32 for
use during decryption. Multiplexers are then used to select between the cipherkey

Page 18 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

and decipherkey, based on encryption or decryption mode, respectively. Since the
decipherkey roundkey32 is already in GF((24)2), they do not pass through the MAP
operation.

Figure 11 illustrates the keyschedule architecture. The multiplexers mul1 and mul2
are used to reconfigure the pipeline for each of the three key sizes.

SA, SB, SC and SD are the four sections of subword operation with interspersed
registers. RW is the outcome of rotword. RC generates the round constant for xor-
rcon in GF((24)2). Multiplexor mul3 is used to select the correct previous roundkey32
as input to the subword operation. Multiplexor mul4 selects the appropriate calcu-
lated result to serve as the next roundkey32.

Table 2 summarizes the reconfigurable control of the multiplexers to generate three
key sizes (• represents that the multiplexer is enabled for the corresponding key size, and
the numbers represent the input selections of the multiplexer depending on the corre-
sponding clock cycles).

When key size is 128 bits, the encryptor round number is ten. Two blocks A and B
need 22 roundkeys. In our design, the first step is to map (MAP) cipherkey from GF(28)
to GF((24)2). After that, it performs its isomorphic functions in GF((24)2). The output of
keyschedule is roundkey32s represented in GF((24)2). They are the exact format required
in encryption where the message blocks are represented in GF((24)2). No inverse MAP is
required in keyschedule. SA, SB, SC and SD are the four sections of subword operation.
We place three registers among the four substages in subword. RW is the outcome of
rotword. RC generates the round constant for xorrcon in GF((24)2).

4 � Implementation performance and comparison
Many studies of hardware AES implementations have been published. Table 3 summa-
rizes the functions provided by different FPGA implementations.

We do not use BRAM in our design in order to make the architecture suitable for
wireless and embedded devices. Our proposed architecture has been simulated and syn-
thesized with Xilinx Synthesis Technology (XST) ISE 10, and implemented on a Xilinx

Fig. 11  Architecture of keyschedule-128/192/256

Page 19 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

Virtex-4 device. From the synthesis result, we also optimize the delay time between dif-
ferent stages in our design to improve the performance. Table 4 illustrates the synthesis
results with Virtex-4 XC4VSX25 and performance comparison.

Compared with the previous architectures, our design focuses on the low cost, non-
BRAM implementations. Pramstaller et al. proposed a compact design costing 1125
slices in [5] with throughput of 215 Mbps for 128-bit, 180 Mbps for 192-bit, and 156
Mbps for 256-bit in the maximum frequency of 161 MHz. However, the round keys were
pre-calculated by the key generator and RAM required to store those keys. We gener-
ate the round keys on-the-fly which is very useful and efficient when the key has been
changed (AES is a symmetric-key cryptography, and the session key usually changes fre-
quently.) In addition, our throughput increases greatly for each of the three key sizes.
Furthermore, we propose a new subpipelined keyschedule which can support all three
key sizes (128, 192, 256-bits). The time delays between the stages in encryption/decryp-
tion and keyschedule have been optimized in our architecture. We also present a new
32-bit complete composite field approach where the GF((24)2) field arithmetic applies in
all transformations in encryptor/decryptor and keyschedule to save the cost of mapping
between GF(28) and GF((24)2) greatly. In addition, the 32-bit data path in our design can
reduce the hardware cost greatly and can be efficiently applied in computing-resources
restricted environments, such as wireless devices and embedded devices.

5 � Conclusion
AES is an important and popular cryptographic algorithm to secure the information and
data transmission. In this paper, we propose a compact reconfigurable FPGA architec-
ture for the AES implementation. The 32-bit single-round unit design results in low area
cost, which makes it suitable for low-end devices. The combinational logic approach of
S-Box eliminates the need for BRAMs.

In our architecture, a fully GF((24)2) composite field arithmetic is applied in all trans-
formations in encryption/decryption and keyschedule to save the cost of mapping
greatly. That is, only one MAP and one MAP−1 are applied in encryption/decryption,
and one MAP is applied in keyschedule. Full composite field-based design decreases
hardware complexity of arithmetic operations in AES. In addition, we apply subpipelin-
ing technology in both encryptor/decryptor and keyschedule modules to optimize the
speed/area ratio. The capability to deal with three key sizes makes our design an efficient
reconfigurable architecture of AES. The performance comparison indicates that the pro-
posed AES architecture achieves better performance than previous work.

Table 2  Summary of reconfigurable control for keyschedule-128/192/256

Key_Size options mul1 mul2 mul3 mul4

Key_128 Encryption ⦁ (1) ⦁ (4) ⦁ (1, 4, 9)

Decryption ⦁ (1) ⦁ (1) ⦁ (1,7, 9)

Key_192 Encryption ⦁ (1) ⦁ (3, 5) ⦁ (1, 2, 4, 5, 9, 10)

Decryption ⦁ (1) ⦁ (2) ⦁ (1,3, 6, 7, 9, 10)

Key_256 Encryption ⦁ (4) ⦁ (1, 4, 8, 9)

Decryption ⦁ (2) ⦁ (1,8, 9)

Page 20 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5

In conclusion, the proposed compact and reconfigurable AES architecture has high
throughput and low area cost, which is very useful in the computing-restricted environ-
ment and wireless devices.

6 � Future work
In the future, we will synthesize our FPGA prototype, optimize the design and imple-
ment it in VLSI. We believe the performance of the proposed architecture could be
increased with current VLSI design tools and technology, and develop a new reconfigur-
able and efficient AES encryption/decryption chip which can be easily embedded into
the wireless and computing-restricted devices to provide the security services.

Author contributions
KL and HL proposed the reconfigurable and compact AES architecture for encryption and decryption. GM implemented
the design with Xilinx FPGA. All authors read and approved the final manuscript.

Declarations

Competing interests
There are no conflict/competing interests.

Received: 28 July 2022 Accepted: 14 December 2022

References
	1.	 W. Stallings, Cryptography and Network Security-Principles and Practices, 4th edn. (Pearson Prentice hall, 2006)
	2.	 NIST. Announcing the advanced encryption standard (AES). Available at https://​nvlpu​bs.​nist.​gov/​nistp​ubs/​FIPS/​

NIST.​FIPS.​197.​pdf, 2001.

Table 3  Function comparisons of different AES architectures

Design Encryption Decryption KeySchedule Key Size BRAM

Chodowiec et al. [4] ⦁ ⦁ Pre-Calculate 128 ⦁
Satoh et al. [12] ⦁ ⦁ On-The-Fly 128

Järvinen et al. [19] ⦁ On-The-Fly 128

Good et al. [6] ⦁ ⦁ On-The-Fly 128

Zhang et al. [8] ⦁ On-The-Fly 128

Chang et al. [20] ⦁ ⦁ On-The-Fly 128 ⦁
Pramstaller et al. [5] ⦁ ⦁ Pre-Calculate 128/192/256

McLoone et al. [17] ⦁ ⦁ On-The-Fly 128/192/256 ⦁
Bulens et al. [25] ⦁ ⦁ Pre-Calculate 128 ⦁
Our Design ⦁ ⦁ On-The-Fly 128/192/256

Table 4  Design synthesis results and performance comparison

Key Sizes Frequency
(MHz)

Area
(Slices)

Clock
cycles

Throughput
(Mbps)

Throughput
(Mbps) [5]

128 bit 129 1766 88 375 215

192 bit 129 1766 104 318 180

256 bit 129 1766 120 275 156

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

Page 21 of 21Li et al. EURASIP Journal on Advances in Signal Processing (2023) 2023:5 	

	3.	 Daemen J, Rijmen V. AES proposal: Rijndael. Technical report, National Institute of Standards and Technology (NIST).
Available at http://​www.​nic.​funet.​fi/​pub/​crypt/​crypt​ograp​hy/​symme​tric/​aes/​nist/​Rijnd​ael.​pdf, 2000.

	4.	 P. Chodowiec, K. Gaj, Very compact FPGA implementation of the AES algorithm. Cryptogr Hardw Embed Syst CHES
2003, 319–333 (2003)

	5.	 N. Pramstaller, J. Wolkerstorfer, A universal and efficient AES co-processor for field programmable logic arrays, in
Field programmable logic and application. ed. by J. Becker, M. Platzner, S. Vernalde (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004), pp.565–574. https://​doi.​org/​10.​1007/​978-3-​540-​30117-2_​58

	6.	 T. Good, M. Benaissa, AES on FPGA from the fastest to the smallest, in Cryptographic hardware and embedded systems
– CHES 2005. ed. by J.R. Rao, B. Sunar (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), pp.427–440. https://​doi.​
org/​10.​1007/​11545​262_​31

	7.	 N. Pramstaller, S. Mangard, S. Dominikus, J. Wolkerstorfer, Efficient AES implementations on ASICs and FPGAs, in
Advanced encryption standard – AES. ed. by H. Dobbertin, V. Rijmen, A. Sowa (Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005), pp.98–112. https://​doi.​org/​10.​1007/​11506​447_9

	8.	 X. Zhang, K.K. Parhi, High-speed VLSI architectures for the AES algorithm. IEEE Trans VLSI Syst 12(9), 957–967 (2004)
	9.	 Gaj K, Chodowiec P. Comparison of the hardware performance of the AES candidates using reconfigurable hard-

ware. In: AES candidate conference, pp. 40–54, 2000.
	10.	 Liberatori M, Otero F, Bonadero JC, Castineira J. AES-128 Cipher. high speed, low cost FPGA implementation. In: 2007

3rd southern conference on programmable logic, pp. 195–198, 2007.
	11.	 A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, P. Rohatgi, Efficient rijndael encryption implementation with com-

posite field arithmetic, in Cryptographic hardware and embedded systems — CHES 2001. ed. by Ç.K. Koç, D. Naccache,
C. Paar (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001), pp.171–184. https://​doi.​org/​10.​1007/3-​540-​44709-1_​16

	12.	 A. Satoh, S. Morioka, K. Takano, S. Munetoh, A compact Rijndael hardware Architecture with S-Box Optimization, in
Advances in Cryptology. ed. by C. Boyd (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001), pp.239–254. https://​doi.​
org/​10.​1007/3-​540-​45682-1_​15

	13.	 W.-K. Lee, H.J. Seo, S.C. Seo, S.O. Hwang, Efficient implementation of AES-CTR and AES-ECB on GPUs with applica-
tions for high-speed FrodoKEM and exhaustive key search. IEEE Trans Circuits Syst II Express Briefs 69(6), 2962–2966
(2022)

	14.	 A.A. Pammu, W.-G. Ho, N.K.Z. Lwin, K.-S. Chong, B.-H. Gwee, A high throughput and secure authentication-encryp-
tion AES-CCM algorithm on asynchronous multicore processor. IEEE Trans Inf Forensics Secur 14(4), 1023–1036
(2019)

	15.	 Y. Zhou, G.-M. Tang, J.-H. Yang, P.-S. Yu, C. Peng, Logic design and simulation of a 128-b AES encryption accelerator
based on rapid single-flux-quantum circuits. IEEE Trans Appl Supercond 31(6), 1–11 (2021)

	16.	 Hodjat A, Verbauwhede I. A 21.54 Gbits/s fully pipelined AES processor on FPGA. In: 12th annual IEEE symposium on
field-programmable custom computing machines, pp. 308–309, 2004.

	17.	 McLoone M´, McCanny JV. High performance single-chip FPGA Rijndael algorithm implementations. In: Crypto-
graphic hardware and embedded systems --- CHES 2001, pp. 65–76, 2001.

	18.	 N. Yu, H.M. Heys, Investigation of compact hardware implementation of the advanced encryption standard. Can
Conf Electr Comput Eng 2005, 1069–1072 (2005)

	19.	 Järvinen K, Tommiska M, Skyttä J. A fully pipelined memoryless 17.8 Gbps AES-128 encryptor. In: ACM/SIGDA elev-
enth international symposium on field programmable gate arrays, pp. 207–215, 2003.

	20.	 Chang C-J, Huang C-W, Tai H-Y, Lin M-Y. 8-bit AES implementation in FPGA by multiplexing 32-bit AES operation. In:
The first international symposium on data, privacy, and E-commerce (ISDPE 2007), pp. 505–507, 2007.

	21.	 J. Wolkerstorfer, E. Oswald, M. Lamberger, An ASIC implementation of the AES SBoxes, in Topics in cryptology —
CT-RSA 2002. ed. by B. Preneel (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002), pp.67–78. https://​doi.​org/​10.​
1007/3-​540-​45760-7_6

	22.	 H. Li, J. Li, A new compact architecture for AES with optimized ShiftRows operation. In: Proceedings of 2007 IEEE
international symposium on circuits and systems, pp. 1851–1854, New Orleans, USA, May 27–30, 2007.

	23.	 K. Li, H. Li, An efficient and compact subpipelined s-box architecture for AES. In: Proceedings of the ISCA 2nd inter-
national conference on advanced computing and communications, pp 45–49, Los Angeles, USA, 2012.

	24.	 V. Fischer, M. Drutarovsky, P. Chodowiec, F. Gramain, InvMixColumn decomposition and multilevel resource sharing
in AES implementations. IEEE Trans VLSI Syst 13(8), 989–992 (2005). https://​doi.​org/​10.​1109/​TVLSI.​2005.​853606

	25.	 P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, G. Rouvroy, Implementation of the AES-128 on virtex-5 FPGAs,
in Progress in cryptology – AFRICACRYPT 2008. ed. by S. Vaudenay (Springer Berlin Heidelberg, Berlin, Heidelberg,
2008), pp.16–26. https://​doi.​org/​10.​1007/​978-3-​540-​68164-9_2

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://www.nic.funet.fi/pub/crypt/cryptography/symmetric/aes/nist/Rijndael.pdf
https://doi.org/10.1007/978-3-540-30117-2_58
https://doi.org/10.1007/11545262_31
https://doi.org/10.1007/11545262_31
https://doi.org/10.1007/11506447_9
https://doi.org/10.1007/3-540-44709-1_16
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/3-540-45760-7_6
https://doi.org/10.1007/3-540-45760-7_6
https://doi.org/10.1109/TVLSI.2005.853606
https://doi.org/10.1007/978-3-540-68164-9_2

	A reconfigurable and compact subpipelined architecture for AES encryption and decryption
	Abstract
	1 Introduction
	2 AES algorithm
	2.1 Subbytes
	2.2 ShiftRows
	2.3 MixColumns
	2.4 Addroundkey
	2.5 Keyschedule

	3 32-bit subpipelined reconfigurable and compact architecture for AES
	3.1 32-bit single-round unit
	3.2 Full composite field architecture with keyschedule
	3.3 Subpipelined encryptordecryptor and keyschedule
	3.4 Double-block subpipelined architecture
	3.4.1 ShiftRows
	3.4.2 Subpipelined Subbytes
	3.4.3 MixColumns on GF((24)2)
	3.4.4 Subpipelined keyschedule

	4 Implementation performance and comparison
	5 Conclusion
	6 Future work
	References

