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1  Introduction
The Doppler scale estimation of sonar signals plays a critical role in underwater commu-
nication and detection systems. The method of matching the received signal with differ-
ent Doppler copies of the transmitted signal is a universal solution, and its performance 
depends on the ambiguity function of the transmitted waveform. However, it requires a 
large amount of calculation to obtain a high-precision estimate [1]. The block Doppler 
estimation method inserts two synchronous waveforms before and after the signal seg-
ment, respectively, to obtain the average Doppler parameter [2]. This method is efficient 
for estimating the average speed but leads to a downgraded real-time performance.

The combination of two HFM signals with different sweeping directions provides a 
modern Doppler estimation solution in the past decade. Due to the excellent Doppler 
tolerance of the HFM signal, the combined HFM waveform is introduced into the pre-
amble of underwater acoustic communication. This waveform is also called the UMD-
HFM [3] or dual-HFM [4] signal. The classic methods include the double delay difference 
method [5, 6] and the correlation peak matching (CPM) method [7], and experimental 
results have confirmed the effectiveness of this waveform in Doppler estimation tasks.

Based on the spectrum properties of the HFM waveform, a speed spectrum scan-
ning method was proposed for Doppler estimation [4]. This method makes full use 
of the Doppler invariance of the HFM signal in the frequency domain and produces 
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continuous high-accuracy speed estimates. However, theoretical analysis of the perfor-
mance of this method has not been mentioned, despite its success in field experiments. 
In practical applications, the underwater acoustic (UWA) channel produces a multipath 
propagation phenomenon, and the echo of the target to the active incident sonar signal 
usually appears as multiple or distributed highlights. Therefore, in this paper, we spe-
cifically analyzed the effectiveness of the dual-HFM speed spectrum method in the mul-
tipath UWA channel, as well as the relation between the main lobe width of the speed 
spectrum and the transmitted waveform parameters.

Before giving out the speed spectrum method, it is necessary to analyze the spectral 
properties of the HFM waveform in detail. This waveform, which is very similar to bats, 
dolphins and other biological sonar signals, has excellent Doppler tolerance and has 
been widely used in sonar systems. Previous studies mainly focus on its time-domain 
properties. Although there have been approximate expressions for its spectrum, they 
are derived from the time-domain waveform and the stationary phase approximation. 
In this paper, the spectral properties of the HFM waveform are derived in terms of the 
ideal Doppler invariant (DI) signal, and the result is consistent with that of the stationary 
phase approximation. An understanding of the frequency-domain Doppler invariance of 
the HFM signal will help better utilize this waveform.

The paper is organized as follows. Section 2.1 introduces the HFM waveform and its 
time-domain Doppler invariance property. Section 2.2 analyzes the spectral properties 
of the ideal Doppler invariant (DI) signal and presents their relations with the HFM sig-
nal. Section  3.1 introduces the speed spectrum estimation method and gives the res-
olution performance analysis based on the spectral properties of the HFM waveform. 
Section  3.2 discusses the robustness of the proposed method on the UWA multipath 
channel and the multi-highlight targets. Section 4 gives out results and discussions of 
the speed spectrum. Section 5 makes a conclusion.

2 � HFM properties
2.1 � HFM waveform and the Doppler invariance

The Doppler effect occurs when the sound source or the receiver is moving, and the 
received signal appears to be the time-domain expansion of the source waveform. Let 
s(t) be the source signal and x(t) be the received signal, then

where A is the amplitude, τ is the propagation time, and k is the Doppler scaling factor. 
The Doppler scaling factor is closely related to the speed of the source or the target, e.g., 
k = c/(c + v) in the scene of underwater communication with a moving source, where c 
is the speed of sound and v is the moving away speed of the source. This effect is signifi-
cant for both underwater communication and active detection or positioning, because 
the received signal cannot accurately match the transmitted waveform, which leads to an 
increase in code error rate in communication, or the degradation in performance of tar-
get detection and parameter estimation. The accurate estimation of the Doppler infor-
mation will massively alleviate the negative effect, and the estimate of the speed of the 
source or the target is usually valuable.

(1)x(t) = A · s(k(t − τ))
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The Doppler invariant signal refers to the waveform that can be closely matched with 
its Doppler scaled copy. And the HFM waveform is one of those Doppler tolerant sig-
nals. The HFM signal waveform with frequency sweeping range 

(

fl , fh
)

 and duration T is 
expressed as

where −T/2 < t < T/2 , j =
√
−1 , f0 = 2fl fh/ fl + fh  is the instantaneous frequency at 

t = 0 , and M = 4fl fh
(

fh − fl
)

/

(

(

fl + fh
)2 · T

)

 is the frequency modulating factor. We 

will hereinafter omit fl and fh for they are invariable. The instantaneous frequency of the 

HFM signal ft(T , t) = f0
(

1−Mt/f0
)−1 is a hyperbolic function. By taking the deriva-

tive, we have dt/dft(T, t) = Mf−2
0 · [ft(T, t)]−2 , which suggests the duration of the HFM 

waveform on frequency f is proportional to f −2 , and the duration on the lower fre-
quency is longer.

We temporarily omit the amplitude and the delay in (1), and then, the HFM signal with 
Doppler effect can be written as

where ε(k) = f0
M

(

1
k
− 1

)

 and ϑ(k) = −2π
f 20
M ln k . The approximation error comes from 

the difference between the definitional domains of sHFM(kt) and sHFM(t − ε(k)) , which 
is very small in the case of an infinitesimal |v|/c and a large bandwidth. Therefore, the 
Doppler scaled HFM signal is almost a time-shift of the original waveform, which makes 
it closely matched with the transmitted waveform. This is the so-called Doppler invari-
ance [8].

The spectrum of sHFM(t) can only be accurately expressed with the incomplete gamma 
functions [9], but the approximate result can be obtained within the frequency range 
(

fl , fh
)

 using the principle of stationary phase (PSP) [10].

This method regards the phase term in the HFM signals as linear chirps and derives 
the spectrum using the approximation of the Fresnel integral. The approximation result 
is reasonable, but the derivation does not reveal the relationship between the spectral 
property and the Doppler invariance property of the HFM signal. In the next section, we 
will re-analyze this spectrum from the perspective of the Doppler invariance property.

2.2 � Doppler invariant spectrum

We now put aside the waveform of the HFM signal and consider an ideal Doppler invari-
ant (DI) signal sDI(t) with an unknown waveform. The DI signal strictly satisfies the 
Doppler invariance

(2)sHFM

(

fl , fh,T , t
)

= exp

[

−j2π
f 20
M

ln

(

1− M

f0
t

)

]

(3)sHFM(kt) = sHFM(t − ε(k)) · exp
(

jϑ(k)
)

(4)SHFM

(

f
)

= f0

f
√
M

· exp
(

j

(

2π
f0

M

(

f0 ln f − f −
(

f0 ln f0 − f0
))

+ π

4

))

(5)sDI(kt) = sDI(t − ε(k)) · exp
(

jϑ(k)
)
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where ε(k) and ϑ(k) are derivable functions and ε(1) = ϑ(1) = 0 . This means that sDI(t) 
has the same waveform as its Doppler scaled copy. Taking Fourier Transform on (5), 
then the spectrum of sDI(t) satisfies the “frequency-domain Doppler invariance”

Taking the modulus and the phase of (6) yields

where SDI
(

f
)

=
∣

∣SDI
(

f
)∣

∣ · exp
(

j�DI

(

f
))

 . Substituting k = 1
1+p into (7) and making use 

of the derivative d|SDI(f )|df
= lim

p→0

|SDI[(1+p)f ]|−|SDI(f )|
pf  yields d|SDI(f )|df

= −|SDI(f )|
f

 . There-

fore, we obtain

which indicates that the signal satisfies the Doppler invariance must have an amplitude 
spectrum inversely proportional to f. Substituting k = 1

1+p into (8) and making use of the 

derivative d�DI(f )
df

= lim
p→0

�DI[(1+p)f ]−�DI(f )
pf  yields d�DI(f )

df
= 2π f ε′(1)−ϑ ′(1)

f
 , where ε′(1) 

and ϑ ′(1) are the derivatives of ε(k) and ϑ(k) at k = 1 , respectively. Through transposi-
tion and integration, we obtain

where ϕ0 is an arbitrary phase constant. So far, we have the frequency spectrum of the 
ideal DI signal sDI(t)

where C · exp
(

jϕ0
)

 is a constant term and does not affect the waveform of sDI(t) . Mean-
while, ε′(1) and ϑ ′(1) completely determine the waveform and the spectrum of the DI 
signal. Since this spectrum expression is derived from the frequency-domain Dop-
pler invariance (6), we call it “Doppler invariant spectrum.” Taking the Fourier inverse 
transform generates the waveform of sDI(t) as shown in Fig. 1. This is an infinitely long 
frequency sweeping signal with a hyperbolic instantaneous frequency. Because of the 
equivalence of time-domain energy and frequency-domain energy, the duration of sDI(t) 
at frequency f is proportional to f −2 as 

∣

∣SDI
(

f
)∣

∣

2 ∝ f −2.
It is not surprising that sDI(t) is indeed an HFM signal with lower frequency fl = 0 

and upper frequency fh = ∞ . This infinitely long signal perfectly satisfies the Doppler 
invariance (5), and (2) is indeed a truncation of sDI(t) . The truncation produces an HFM 

(6)
1

k
SDI

(

f

k

)

= SDI
(

f
)

· exp
[

−j
(

2π f ε(k)− ϑ(k)
)]

(7)
1

k

∣

∣

∣

∣

SDI

(

f

k

)∣

∣

∣

∣

=
∣

∣SDI
(

f
)
∣

∣

(8)�DI

(

f

k

)

=�DI

(

f
)

−
(

2π f ε(k)− ϑ(k)
)

(9)
∣

∣SDI
(

f
)∣

∣ = C · 1
f

(10)�DI

(

f
)

= 2π f ε′(1)− ϑ ′(1) ln f + ϕ0

(11)SDI
(

f
)

= C

f
· exp

[

j
(

2π f ε′(1)− ϑ ′(1) ln f + ϕ0
)]
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waveform with the band 
(

fl , fh
)

 , and its frequency spectrum is approximately the 
(

fl , fh
)

 
range of SDI

(

f
)

 , despite a tiny difference (like a convolution with a sampling function). 
By substituting ε(k) and ϑ(k) from (3) into (11), we can find that SDI

(

f
)

 is equivalent 
to the spectrum of the HFM signal, which means the HFM spectrum yielded by PSP is 
indeed the spectrum of sDI(t) . It further indicates that sHFM(t) is exactly (a period of ) 
sDI(t) and the SDI

(

f
)

 derived from frequency-domain Doppler invariance is SHFM

(

f
)

 , in 
which parameter ε′(1) and ϑ ′(1) depends on the frequency range and the pulse width. 
This derivation could help better understand and utilize the spectrum of this Doppler 
invariant waveform. It is worth pointing out that the derivation assumes the derivability 
of SDI

(

f
)

 . Strictly speaking, it is possible for sDI(t) to also be a constant signal otherwise.
Finally, we derive the spectral property of the differential HFM signal to prepare for 

the next section. Rewrite the spectrum of the HFM signal sHFM(T , t) as 
S
(

T , f
)

= C(T )
f

· exp
(

j · 2π f0
M

(

f0 ln f − f + ϕ(T )
)

)

 , where C(T ) = f0√
M

 and 

ϕ(T ) = −f0 ln f0 + f0 + M
8f0

 are the parameters independent of frequency. We will omit 

the subscript of SHFM

(

f
)

 in the following text. For any β > 0 , we have

for the HFM signal sHFM(βT , t) with pulse width βT  , where 
η(T ,β) = 2π

βf0
M (ϕ(T )− ϕ(βT )) is independent of t. The differential HFM signal on the 

right side of the equation

is still a frequency-modulated signal, but the amplitude is slowly changing.

(12)F
−1

[

(

f · S
(

T , f
))β

]

= (C(T ))β−1

j2π
√
β

exp
(

j · η(T ,β)
)

· d

dt
sHFM(βT , t)

(13)
d

dt
sHFM(T , t) = j2π ft(T , t) · sHFM(T , t)

Fig. 1  The waveform and instantaneous frequency of the ideal Doppler invariant signal sDI(t)
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3 � Proposed method
3.1 � Speed spectrum estimation

In the previous study, Wei [4] introduced the method of the speed spectrum estimation 
with dual-HFM waveform; therefore, this paper will omit most of the derivations and 
instead focus on the analysis of the estimation performance, which has not been investi-
gated in the previous literature. Let the transmitted signal of the communication sonar 
or the active sonar system be the dual-HFM signal

where s(d)(T , t) = sHFM

(

fh, fl ,T , t
)

 and s(u)(T , t) = sHFM

(

fl , fh,T , t
)

 are the HFM sig-
nals with the same frequency band and the opposite sweep directions. Transform the 
received Doppler scaled signal x(t) = A · sdual(k(t − τ)) into frequency domain, and cal-
culate the following statistics in the frequency range 

(

fl , fh
)

where S
(

f
)

 is the spectrum of s(d)(T , t) . Then, U
(

f
)

 contains a single-frequency complex 
exponential signal with period �τ = 1

k (T + Te)+ 2ε(k) . By taking the Fourier inverse 
transform, we obtain the time-domain signal

where δ(t) is the impulse function, C = C(T ) and ϑ(k) are the parameters in the HFM 
signal mentioned in Sects  2.1 and 2.2, and the frequency modulation coefficient M is 
taken as the absolute value. u(t) has a peak at t = �τ which can be used to derive the 
Doppler scaling factor estimate. In Eq. (16), we correct the minor error in the previous 
study [4]. In order to obtain a more accurate estimate, we can take the IDFT on U

(

f
)

 
near t = �τ

where c1 = T + Te + 2f0
/

M and c2 = T + Te are constants, and α(v) is the Doppler fac-

tor defined as α(v) = v
c for passive situation and α(v) = 2v

c−v for active situations. y(v) is 

called the speed spectrum, and its peak v̂ = arg max
v

∣

∣y(v)
∣

∣ gives the estimation of the 

target speed. The estimation of speed can be obtained by taking the maximum value of 
y(v) within the possible speed range, and c1 , c2 and α(v) can all be preset. The analytical 
results of underwater communication experimental data have verified the effectiveness 
of this method [4].

A noteworthy problem is the relationship between the main lobe width of the speed 
spectrum y(v) and the waveform parameters. Since U

(

f
)

 does not extend infinitely, the 
impulse function contained in the speed spectrum y(v) is a sampling function indeed. 
According to the characteristics of the Fourier transform of the truncated signal, the 
main lobe width of y(v) can be determined by

(14)sdual(t) = s(d)(T , t)+ s(u)(T , t − T − Te)

(15)U
(

f
)

= f 4
∣

∣X
(

f
)∣

∣

2(
S
(

f
))2

(16)

u(t) = F
−1

�

U
�

f
��

= A2C3







1
4π j

�

2
√
2 exp

�

jη(2)
�

· d
dt
s(d)(2T , t)+

exp
�

j(η(4)− 2ϑ(k))
�

· d
dt
s(d)(4T , t +�τ)

�

+Cδ(t −�τ) · exp
�

j2ϑ(k)
�







(17)y(v) =
∫

f
U
(

f
)

· exp
(

j2π f (c1α(v)+ c2)
)

df
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where the main lobe width is defined as the gap between the two zero points of the 
sampling function. Equation  (18) is the result for passive situations, while the main 
lobe width is about half of (18) for active situations. The increase in the bandwidth/the 
pulse width can both lead to a thinner main lobe. See Sect. 4.1 for numerical simulation 
results.

3.2 � Performance in multipath channel

In underwater applications, the performance of communication system or active sonar 
is seriously affected by multipath effects. The received signal usually appears as multiple 
or distributed highlights. The experimental results of the CPM method [7] and the speed 
spectrum method [4] have shown the effectiveness of dual-HFM-based methods in the 
multipath channel, but theoretical analysis has not been presented. Next, we will analyze 
the influence of the multipath channel on the Doppler estimation performance through 
speed spectrum scanning.

The impact of the multi-path channel is that one received signal frame could consist 
of multiple dual-HFM signals. They arrive almost simultaneously and cannot be sepa-
rated on the timeline. Figure 2 sketches the two kinds of multi-path effects. When the 
multiple sound rays are with different transmit angles, as shown in Fig. 2a, the multiple 
signals will be separable in the timeline because the sound ranges are different. These 
multiple signals will appear as they come from different range and with different mov-
ing speed, just like multiple objects. The single-frame processing will not be affected 
in this situation. When the multiple sound rays are with very close transmit angles, as 
shown in Fig. 2b, the sound ranges will be almost the same and the multiple signals will 
be included in the same frame. As the transmit angle is close, they are almost related to 
the same Doppler speed. The impulse response of the channel can be either multiple 
impulses or a distributed signal. We will next analyze whether this effect will impact the 
speed spectrum estimation. Figure 2 is an example sketch of sound ray structure, and 
other sound ray structures can also lead to similar effects.

Firstly, we consider the case of two paths. Let the multipath received signal be the 
superposition of two signals

(18)wv =
c
(

4f 20 −M2T 2
)

2MTf 20
(

T + Te + 2f0
/

M
)

Fig. 2  Diagrams of the underwater multipath channel: a Multipath signals with different transmit angles; b 
multipath signals with close transmit angles
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with arrival time difference µ , where x0(t) is the normalized received  
signal for the single path (i.e., x(t) with A = 1 in Sect.  3.1). Then, the  
spectrum of xMP(t) is XMP

(

f
)

= X0

(

f
)

·
(

A1 + A2 · exp
(

−j2π f µ
))

 , and 
UMP

(

f
)

= U0

(

f
)

·
(

A2
1 + A2

2 + 2A1A2 cos
(

j2π f µ
))

 . Therefore, the Fourier inverse trans-
form of U(t) is

where X0

(

f
)

 , U0

(

f
)

 and u0(t) are all derived from the normalized x0(t) . It can be seen 
that uMP(t) will be composed of three peaks when the received signal is composed of 
signals from two paths,

The main peak is still located at t = �τ corresponding to the Doppler scaling factor k, 
and the amplitude is 

(

A2
1 + A2

2

)

 . The intensity of the symmetrical pseudo-peaks is A1A2 . 
Similarly, for the received signal composed of multiple paths, we have

The intensity of the main peak is 
∑

i A
2
i  , and the surrounding cross-terms have intensity 

AmAn . The peak of the speed spectrum is still located at the actual value of k; therefore, 
we can conclude that the estimation is not biased, despite the decrease in sharpness of 
the peak.

4 � Result and discussion
In this section, the performance of the proposed method at different conditions will be 
illustrated by numerical simulations and experimental tests.

4.1 � Single point target for different durations

Figure  3 shows the simulation results of the passive speed spectrum with different 
dual-HFM signal parameters. In Fig.  3a, the sweep range of the signal is fl = 2 kHz , 

(19)xMP(t) = A1x0(t)+ A2x0(t − µ)

(20)uMP(t) =
(

A2
1 + A2

2

)

u0(t)+ A1A2[u0(t − µ)+ u0(t + µ)]

(21)
uMP(t) ≈ C4 exp

(

j2πϑ(k)
)

·
[(

A2
1 + A2

2

)

δ(t −�τ)+ A1A2δ((t −�τ + µ)+ δ(t −�τ + µ))

]

(22)uMP(t) =
∑

n

A2
nu0(t)+

∑

m�=n

AmAn[u0(t − (tm − tn))+ u0(t + (tm − tn))]

Fig. 3  The speed spectrum results for different transmit waveform parameters: a different pulse width; b 
different bandwidth
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fh = 4 kHz , the speed of the source is v = 15 m/s , and the speed of sound is 1500 m/s . 
The curves show the results of the speed spectrum (without noise) for T = Te = 50 ms 
and T = Te = 100 ms , respectively. In Fig.  3b, the signal duration T = Te = 100 ms 
and the speed of the source/the sound are the same as the previous. The curves show 
the results of the speed spectrum (without noise) for the sweep range of the signal are 
( fl = 2 kHz , fh = 4 kHz ) and ( fl = 2.5 kHz , fh = 3.5 kHz ), respectively. The larger pulse 
width/bandwidth will lead to a thinner main lobe as is introduced in Eq. (18). A further 
comparison between the simulation result and the experimental data will be presented 
in the next section to verify the correctness of the theoretical result.

The concern about the main lobe width lies in situations with interfering signals, such 
as estimating the Doppler of moving targets in a zero Doppler or noisy background or 
distinguishing two targets of different speeds. In these cases, we might need to adjust the 
transmission parameters to obtain a sharper peak.

4.2 � Single target with multiple paths

In this subsection, two situations of multi-path effect are considered, including a point 
target with two paths and a distributed target. Figure  4 demonstrates the speed spec-
trum simulation result for the impulse response of two scenarios, respectively. The 
transmitted waveform parameter is fl = 2 kHz , fh = 4 kHz and T = Te = 100 ms , the 
actual speed of the source is v = 15 m/s , and the speed of sound is 1500 m/s . In Fig. 4a, 
the pseudo-peaks in Eq. (21) appear on both sides of the main peak; in Fig. 4b, the super-
position of a large number of pseudo-peaks in Eq.  (22) leads to the broadening of the 

Fig. 4  Speed spectrum for multipath signal: a two-path; b distributed
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speed spectrum main lobe and makes the side lobe smoother. Since the peak of the 
speed spectrum does not shift when it comes to a multipath channel, we can conclude 
that the method is effective in the underwater environment. In practical application, the 
main lobe width of the speed spectrum is determined jointly by Eq. (18) and the target/
channel distribution characteristics, and the background intensity of the speed spectrum 
is determined by the side lobe, pseudo-peaks and the noise. In Fig. 5, we compare the 
speed spectrum between the theoretical result (without noise and multipath effect) and 
the experimental result [4]. It can be seen that the experimental width of the speed spec-
trum peak matches the ideal theoretical result, although there is a little spread which 
is caused by complex factors like velocity spread (acceleration) and multipath distribu-
tion effect. This result can further prove that the waveform parameters are the princi-
pal determinants of the speed spectrum main lobe width, and the environmental factors 
including the distributed/multipath channel and the acceleration will make the main 
lobe spread a little.

5 � Conclusion
In this paper, we derive and analyze the performance of the speed spectrum estima-
tion method based on the dual-HFM waveform comprehensively. Firstly, we analyze the 
spectral properties of the HFM signal from the perspective of an ideal DI signal. The der-
ivation could provide insights for better understanding and utilization of the spectrum 
of the HFM waveform. The speed spectrum method is derived subsequently, and the 
performance analyses are presented, including the main lobe width and the robustness 
in the underwater environment. With the theoretical derivation and the comparison 
between the numerical simulation results and the experimental result, we confirm that 
this method is effective in a multipath propagation environment, which provides a theo-
retical explanation for the success in underwater experiments in the previous literature.

Abbreviations
HFM		�  Hyperbolic-Frequency-Modulated
UMD-HFM		�  Up-mute-down Hyperbolic-Frequency-Modulated
dual-HFM		�  Dual-Hyperbolic-Frequency-Modulated
UWA​		�  The underwater acoustic
DI		�  Doppler invariant
CPM		�  Correlation peak matching
DOA		�  Direction of arrival

Fig. 5  Speed spectrum from experimental data, compared with the ideal theoretical result
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