
Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Vijayaram and Vasudevan
EURASIP Journal on Advances in Signal Processing (2022) 2022:126
https://doi.org/10.1186/s13634-022-00965-1

EURASIP Journal on Advances
in Signal Processing

Wireless edge device intelligent task
offloading in mobile edge computing using
hyper-heuristics
B. Vijayaram* and V. Vasudevan

Abstract

To overcome with the computation limitation of resource-constrained wireless IoT
edge devices, providing an efficient task computation offloading and resource alloca-
tion in distributed mobile edge computing environment is consider as a challenging
and promising solution. Hyper-heuristic in recent times is gaining popularity due to
its general applicability of same solution to solve different types of problems. Hyper-
heuristic is generally a heuristic method or framework which iteratively evaluates and
chooses the best low-level heuristic, to solve different types of problems. In this paper,
we try to solve wireless device task offloading in mobile edge computing, which is a
non-convex and NP-Hard problem by using a proposed novel Hyper-Heuristic Frame-
work using Stochastic Heuristic Selection (HHFSHS) using Contextual Multi-Armed
Bandit (CMAB) with Epsilon-Decreasing strategy, considering two key Quality of Service
(QoS) objectives computation time and energy consumption. These multiobjective
criteria are modeled as single-objective optimization problem with the goal to mini-
mize latency and energy consumption of wireless devices without losing the pareto
optimality. Finally, evaluate its performance by comparing with other individual meta-
heuristic algorithms.

Keywords: Mobile edge computing, Hyper-heuristics, Meta-heuristics, Task offloading,
Optimization

1 Introduction
In the past decades, we have witnessed many revolutionary wireless mobile devices,
wearables, IOT sensors, all these small resource constraint devices need an innovative
way of doing effective computation outside its hardware resource and get the results
back faster for decision making, with the introduction of 5G, this can be achieved by
utilizing mobile edge computing infrastructure. With the adoption of 5G network,
the expectation for faster network is inevitable to achieve fast speed, low end-to-end
latency, and high reliability. Large-scale applications like high-definition video, vir-
tual reality (VR), augmented reality (AR), IOT wireless sensor-based industrial appli-
cation, UAV and autonomous vehicles will all eventually generate a large amount of
data. This not only puts a strain on the system, but also backhaul. In order to provide

*Correspondence:
vijayaramb@gmail.com

Kalasalingam Academy
of Research and Education,
Kalasalingam University,
Krishnankoil, Srivilliputhur,
Tamilnadu, India

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-022-00965-1&domain=pdf
http://orcid.org/0000-0003-0166-459X

Page 2 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

better service to the end users for latency-sensitive computational operations, the
core network ’Users’ devices are placed closer to the network’s edge. This will lessen
the burden on the server while lowering the delay in the network and processing as
computations are done at the mobile edge server placed at proximity to the edge
devices.

To address the issues of low-processing capacity and restricted resources in wire-
less edge devices, the concept of Mobile edge computing (MEC) computation off-
loading has been presented by the industry. Computation offloading is the process of
allocating computationally heavy jobs to a nearby Mobile Edge Server (MES) which
has appropriate processing and computing resources. MES is then queried for the
derived results. Figure 1 shows a typical Mobile edge computing environment where
Wireless Devices (WD) {WD1, WD2,…,WDn} connect to the nearest MES {MES1,
 MES2,…,MESn}, all these MES are interconnected through fiber optics or high band-
width wireless channels. Further all MES have fiber optics connection with Central-
ized Cloud Data Center (CCDC). WDs take stochastic intelligent decision to connect
to least utilized nearby MES for task offloading and getting the results back either
through the same MES or through the CCDC, it depends on the mobility of the WD.
For example, if WD1 which initially in range of MES1 starts the offloading to MES1
and being in mobility, it comes to the range of MES3 and retrieves the results from
MES3 due to MES collaboration with CCDC.

More research are carried out to intelligently offload the task to mobile edge serv-
ers using meta-heuristics, but that does not bring in some generality to the solution
space and applicability of algorithm to wide variety of problems, this motivates to

Fig. 1 Mobile edge computing environment

Page 3 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

bring in hyper-heuristics [1] to achieve the generality for solving wide variety of prob-
lems from different domains. However, the major challenge is in generating heuristics
or selecting heuristics automatically.

A hyper-heuristic is an interesting methodology of selecting or generating heuristics to
solve different hard computational search problems in an automated way using the same
solution in hand. According to the author Burke [2] in his book, he categorized hyper-
heuristics into two broad categories as heuristic selection and heuristic generation (refer
Fig. 2 – adapted from [2]), this is the first level in our first dimension (the nature of the
search space). The second level in this dimension corresponds to the distinction between
constructive and local search hyper-heuristics. This categorization deals with the nature
of the low-level heuristics used in the hyper-heuristic framework. Construction and per-
turbation are the terms used to refer these low-level heuristics classes.

Almost all existing hyper-heuristics search contains two stages: heuristics selection
and its move acceptance. Figure 3 (adapted from [2]) depicts the high-level element
blocks and its interaction of hyper-heuristic using perturbative heuristic selection and
Acceptance Criteria move acceptance.

2 Related works
Task computation offloading and resource allocation strategies are interesting problems
to be solved in mobile edge computing and vehicular edge network. Several interesting
research has been done in this field using Meta-Heuristic, Neural Networks and Fuzzy
Logics. Task offloading can be thought as completely offload to MES, or partially offload
only memory-intensive processing to the MES and remaining processing is done locally,
or entire task is locally computed without offloading to the MES. Most of the task which
depends on external data or needs aggregated data from different sources are offloaded
to the MES, because of its nature to download lot of data from external sources and do
data aggregation which is memory-intensive processing. It is reasonable to offload such
tasks to MES completely.

Fig. 2 Hyper-heuristic classification based on feedback and heuristic search space

Page 4 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Mareli et al. [3] used bio-inspired meta-heuristic algorithm cuckoo search to optimize
task offloading by tweaking the switching parameter. Miao et al. [4] proposed a new
intelligent computation offloading-based MEC architecture in combination with arti-
ficial intelligence (AI) technology. Their methodology effectively reduces the total task
delay with the increasing data and subtasks. Li and Wang et al. [5] solved multiobjec-
tive optimization problem by using particle swarm optimization (PSO) with energy con-
straint MES placement algorithm to arrive at the optimal solution. Huang et al. [6] used
whale optimization algorithm (WOA) meta-heuristic to solve the multi-target problem
targeting two criteria like task energy consumption and task processing time. Coronel
et al. [7] used Meta-Heuristic algorithms with multiple objectives for placement opti-
mization of wireless switches in Electrical Power distribution system. Zakaryia et al. [8]
used Queuing network and evolutionary Genetic Algorithm to offload task effectively
focusing on minimizing the task response time. Feng et al. [9] used hybrid algorithm
GWO-WOA for solving task offloading problem of IOT devices in mobile edge comput-
ing environment while considering three optimization criteria. Khan et al. [10] in their
paper proposed a task scheduling method based on a hybrid optimization algorithm is
presented, which effectively schedules jobs with the least amount of waiting time. Ani-
setti et al. [11] in their paper proposed an energy-efficient task offloading and transmis-
sion power allocation scheme that reduces completion time and energy consumption.

Fig. 3 Hyper-heuristic using perturbative heuristic selection

Page 5 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

You et al. [12] in their paper proposed a PSO algorithm for task offloading from a
resource-constrained wireless edge devices to MES considering energy and low latency
multiobjective criteria. Pham et al. [13] in their paper tried to solve resource allocation
in wireless network using WOA. Li et al. [14] in their paper tried to fill the gap of task
deadline constraints which other existing offloading algorithm failed to do so.

Zhuang et al. [15] in their paper proposed hyper-heuristic algorithm for fog comput-
ing to achieve QoS requirements. Alshareef et al. [16] in their paper used multiobjective
hyper-heuristic approach to solve multiobjective software module clustering optimiza-
tion problem by combining and controling three genetic and evolutionary algorithms
namely multiobjective genetic algorithm (MOGA), non-dominated sorting genetic algo-
rithm (NSGAII) and strength pareto evolutionary algorithm (SPEA2). Huang et all [17]
in their paper explored meta-heuristics energy-efficient computation offloading (EE-CO)
approach to minimize energy consumption focusing on delay and security constraints.

3 System method
In this paper, we will discuss about the case of Wireless Devices (WDs) offloading their
tasks to nearby MES based on their computation data size. The collection of WDs is
represented as N = {1, 2,…, n}. Task computation time needed to finish the task is rep-
resented as TC = {tc1, tc2, ‥, tcn}, and task data size is represented as TS = {ts1, ts2, ‥,
 tsn}, where ‘i’ is a particular wireless device in the collection N. Each wireless device’s
task is considered as the combination of TC and TS, which can be represented as
taski = {tci, tsi} . Network Access points or Wifi Routers is used for communication and
data transfer between wireless devices and MES. For task computation, wireless device
can completely do it locally or completely offload to MES or partially do locally and par-
tially at edge server. This can be represented as a offloading decision set Y = {y1, y2, ‥, yn},
where yi ranges between [1, 0], both inclusive. If yi = 1, then WDi completely offload its
task to MES and if yi = 0, then WDi does the full task computation within itself. If yi > 0
and yi < 1, then WDi offloads yi × 100% of tasks to the MES and remaining (1 − yi) × 100%
of tasks done locally. For offloading decision on edge server, edge server’s available pro-
cessing capacity is considered, and the system method is a combined minimization of
overall task processing time / completion time and amount of energy consumed for com-
pleting that task. We assert that by employing the hyper-heuristics approach to identify
the optimal task offloading decision to do local computing or mobile edge computing or
combination of both and thereby latency and energy can be greatly reduced.

3.1 Local computation model

Here we will formulate the model for task execution locally at wireless device. Let us
consider tdloci as the local processing time or time delay and ecloci as the energy consumed
for processing that task locally. Floc

i is denoted as the maximum available CPU cycles of
 WDi.

Let f loci represent the current available CPU cycles for the computation task at that
moment of the WDi and tci represent the task-required computation time, then the local

Page 6 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

task processing time or time delay tdloci to process the task locally by the WDi is repre-
sented as:

The energy consumption for local task processing is represented as:

where C is the effective switched capacitance of the device based on its chip architecture.

3.2 Edge computation model

Here we will formulate the model for task execution remotely at MES in this section.
Communication rate is considered based on the assumption that mobile devices are
connected through the wireless channel. Let B represent the bandwidth of the wireless
channel, and let’s assume that the bandwidths for WDs are equally allocated for task
offloading. Let θi is the bandwidth allocated to wireless channel for WDi. Based on Shan-
non formula (ri-channel capacity in bits per sec), the WDi communication rate (Ri) is
represented as [18]:

where tpi is transmission power of WDi and cgi is channel gain of WDi, and N0 denotes
the background channel noise. Now, the total task processing time delay has two parts,
one is task transmission time and other is task processing time. transTo

i is the task trans-
mission time, and it is calculated as:

Let F denote the entire available edge server computing resources and f edgei is the CPU
cycles allocated to the WDi to complete its task at the MES and procTedge

i represent the
 WDi task computation time needed at the MES and it is calculated as:

The time required for sending back the result or response from MES can be neglected
because the size of the output of the computed data is less. The total time for the WDi to
process the offloaded task completely using the MES is calculated as:

The overall energy consumption ecpi is calculated as:

(1)tdloci =
tci

f loci

(2)ecloci = C f loci

2
tci

(3)Ri = riθi = B log

(

1+
tpicgi

BN0

)

θi

(4)transTo
i =

tsi

Ri

(5)procT
edge
i =

tci

f
edge
i

(6)totalT
p
i = transTo

i + procT
edge
i

(7)ec
p
i = transPo

i transT
o
i + transPe

i procT
edge
i

Page 7 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

where transPo
i is transmission power required to upload the data from WDi to the MES

through the wireless channel, and transPe
i is the power required for the WDi to wait for

the result from MES.

3.3 Problem formulation

While formulating this problem, we considered N wireless devices with varying task
computation workloads and tasks dependencies. The decision Y is made based on TC
and TS. Here we consider both task processing time delay and task energy consumption.
There are several ways to solve multiobjective problems, one way is to optimize the first
objective function and try to optimize the second objective function while maintaining
the first objective function value intact. The second way is to optimize both objective
functions simultaneously. Since these two target constraints are a measure of different
metrics, they must be normalized for calculation to avoid biasing.

So, the equation for calculating total time delay becomes:

where Tmin is the minimum task processing time delay in the set N, and Tmax is the maxi-
mum task processing time delay in the set N.

And the equation for calculating total energy consumption becomes:

where Emin is the minimum task energy consumption in the set N, and Emax is the maxi-
mum task energy consumption in the set N.

Combining both objectives, an improved mathematical formula is arrived to minimize
the impact of dimensions and makes the formula controllable using different decision
variables. Finally, the target minimization objective function is formulated as:

The coefficient η is used as weight to adjust the optimization objective function results.
Here we consider the total time latency target as baseline with coefficient value as 1. The
coefficient η of the total energy consumption which ranges from 0.001 to 1 is adjusted
based on careful pareto optimality study to get the required weighted normalization for
the two targets.

Finally, this optimization problem can be solved using a single target minimization
equation given as:

(8)TT =

n
∑

i=1

[

(

1− yi
)

totalT l
i + yitotalT

p
i

]

− Tmin

Tmax − Tmin

(9)EC =

n
∑

i=1

[

(

1− yi
)

ecli + yiec
p
i

]

− Emin

Emax − Emin

(10)

Z = TT + ηEC

=

n
∑

i=1

[

(

1− yi
)

totalT l
i + yitotalT

p
i

]

− Tmin

Tmax − Tmin
+ η

n
∑

i=1

[

(

1− yi
)

ecli + yiec
p
i

]

− Emin

Emax − Emin

Page 8 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

The aim of the problem is to minimize the objective function Z, considering the two
target constraints namely low energy consumption and low-processing time without los-
ing the pareto optimality.

4 Problem solutions
In this research, three meta-heuristics Grey Wolf Optimizer (GWO), Tabu Search (TS)
and Cuckoo Search (CS) are modified and used in low-level hyper-heuristic selection in
the proposed technique and tested, let discuss those meta-heuristics overview and their
modifications for using it in the proposed algorithm.

4.1 Grey wolf optimizer

Grey wolf optimizer (GWO) is one of nature inspired meta-heuristic swarm intelli-
gence algorithm. This algorithm is unique from other algorithms due to its methodol-
ogy of adopting social hierarchy and hunting behavior of grey wolves. Seyedali Mirjali
proposed GWO [19] in 2014 and proposed multiobjective (MOGWO) [20] in 2016.
In recent times, GWO is used in many optimization research aspects. In fact, Xu et al.
[21] proposed a fusioned Cuckoo Search with the Improved GWO algorithm to achieve
better result. Grey wolves usually dwell in packs with some dominant social hierarchy
as shown in Fig. 4 (adapted from [19]). These wolves are represented as 4 main groups
namely alpha wolves (α), beta wolves (β), delta wolves (δ), and omega wolves (ω). Wolves
which usually lead in prey hunting are called alpha wolves; wolves which supports

(11)

min
y,θi f

edge
i

Z

s.t.0 ≤ f
edge
i ≤ yiF , ∀i ∈ N

n
∑

i=1

f
edge
i ≤ F , ∀i ∈ N

0 ≤ θi ≤ yiB, ∀i ∈ N
n

∑

i=1

θi ≤ B, ∀i ∈ N

yi ∈ [0, 1], ∀i ∈ N

Fig. 4 Social Hierarchy of Grey Wolfs

Page 9 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

helping alpha wolves are called beta wolves; wolves which helps in guarding the terri-
tory boundaries and does the whistle blowing job are called delta wolves; and wolves
which are lazy and does not actively take part in hunting but only interested in eating the
leftover food are called omega wolves, which is usually dominated by other top category
wolves.

In GWO algorithm, the final optimized fit solution is represented as alpha, then the
second less optimized fit solution is represented as beta and the third least optimized
fit solution is represented as delta. All the left-over trivial solutions are represented
as omega. GWO has 3 stages in the algorithm: encircling, hunting, or attacking, and
searching. The positions of the wolves during the encircling stage, is updated by [19]:

where ‘i’ is the iteration index,
−→
X p represent the position vector of prey, and −→X represent

the position vector of wolves. −→A and
−→
C are coefficient vectors, calculated by the below

equations:

Here the variable −→a is nonlinearly decreased for ¾ of the iteration and linearly
decreased from 2 to 0 for remaining iterations. This is done to support better explora-
tion and exploitation, respectively, and variables −→r 1 and −→r2 are random absolute vectors
in range [0, 1].

During the hunting stage, additional weight coefficient 0.01 is considered for alpha
position as alpha wolfs are closer to the prey, this value can be tweaked based on the
convergence behavior and final positions of the wolves are updated by equation [17]:

GWO has good exploitation and exploration ability, which helps in avoiding local min-
imum trap.

4.2 Tabu search

Tabu Search (TS) is one of meta-heuristic local search algorithm specialized in optimiz-
ing the heuristics model parameters. Some of the local search heuristic methods have

(12)�D =
∣

∣

∣

�C · �Xp(i)− �X(i)
∣

∣

∣

(13)�A = 2 · �a · �r1 − �a

(14)�C = 2 · −→r2

(15)
−→
Dα =

∣

∣

∣

�C1 ·
−→
Xα − �X

∣

∣

∣
,
−→
Dβ =

∣

∣

∣

�C2 ·
−→
Xβ − �X

∣

∣

∣
,
−→
Dδ =

∣

∣

∣

−→
C3 ·

−→
Xδ − �X

∣

∣

∣

(16)�X1 = �Xα −
−→
A1 ·

−→
Dα ,

−→
X2 =

−→
Xβ −

−→
A2 ·

−→
Dβ ,

−→
X3 =

−→
Xδ −

−→
A3 ·

−→
Dδ

(17)�X(t + 1) =

−→
(X1 ∗ 0.01)+

−→
X2 +

−→
X3

3

Page 10 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

the pitfall to stuck in local minima. TS helps to overcome this problem by enhancing
the local search exploration phase by prohibiting already visited solutions also known as
Tabu. TS does sometimes deterministically accept trivial solutions to avoid local minima
convergence. The steps involved in TS algorithm are given below,

Algorithm: Step 1: Start with any random best acceptable solution, say bS = S0.

Step 2: Generate neighboring random solutions N(bS) based on the current best solu-
tion bS. From N(bS), the solutions that are in the Tabu List are removed except for the
solutions that fit the Aspiration Criteria. This solution will become the new N(bS).

Step 3: Choose the best solution out of N (bS) and label this new solution bS
′
 . If the solu-

tion bS
′
 is better than the current best solution, update the current best solution. After,

regardless of if bS
′
 is better than bS , we update bS to be bS

′
.

Step 4: Update the Tabu List T (bS) by removing all moves that are expired past the Tabu
Tenure and add the new move s’ to the Tabu List. Additionally, update the set of solu-
tions that fit the Aspiration Criteria A(bS).

Step 5: Search stops if the termination criteria is met or else it will move onto the next
iteration. Termination Criteria is used here is max number of iterations.

4.3 Cuckoo search

Cuckoo Search (CS) algorithm is one of bio-inspired meta-heuristic algorithm devel-
oped based on reproduction behavior of cuckoo birds [14]. Potential solutions are asso-
ciated with cuckoo eggs in CS. Cuckoos birds usually lay their eggs in other’s nests with
the hope of their off springs being raised by other. On a random probability say 25%,
when the host cuckoos discover those foreign eggs in their nests, some of the foreign
eggs are thrown out of the nest or cuckoos will completely discard that entire nest. The
CS algorithm consist of three basic rules as follows:

• Eggs are laid in random nests by cuckoo bird.
• Best nests which contain best quality eggs are selected and carried forward to next

generation.
• Host cuckoo will identify a foreign egg with a probability pa є [0,1] from a set of ran-

dom nests. If foreign egg is found, the host cuckoo can either throw the foreign egg
away or completely abandon the whole nest and build a new nest elsewhere.

During the iteration, based on the above three rules, the new position of cuckoo nests
is updated by.

(18)bS′ ∈ N (bS) =
{

N (bS)− T (bS)
}

+ A(bS)

Page 11 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Here the product ⊕ representative entry-wise multiplication. xj(t + 1) denotes new
solutions for cuckoo ‘i’, xj(t) denotes the current solutions. The step size is controlled
by α > 0, Let’s assume its value as 1. The levy-flight is provided by following Mantegna’s
algorithm.

In Mantegna’s algorithm, the step length s is calculated by

where u and v values are arrived based on normal distributions. That is

were,

This distribution obeys the expected Levy’s distribution for |s|> =|s0| where s0 is the
smallest step. Its value can be carefully chosen between 0.01 and 1.

4.4 Proposed hyper‑heuristic framework using stochastic heuristic selection (HHFSHS)

Based on the Heuristic framework depicted in Fig. 3, a novel stochastic heuristic selec-
tion based on online learning acceptance criteria feedback is proposed which uses cou-
ple of well-known meta-heuristics like GWO, CS, TS as part of the low-level heuristic
search with certain careful parameter tweaks to improve exploration and exploitation
behaviors. The reason behind choosing these three meta-heuristics is based on the per-
formance and behavior to tackle local minima trap and achieve optimum convergence
in most of the problem space. Let’s discuss about those modification on meta-heuristics
below.

The GWO algorithm updates the wolve position just by averaging out the alpha, beta
and delta positions during each iteration using Eq. (17), this may lead to local minimum
trap or slow convergence as alpha position progress slows down due average calculation.
This is clearly seen in the convergence comparison in Fig. 5. To mitigate this, the equa-
tion is modified to add a fixed weight to alpha wolve position to emphasis the impor-
tance of alpha wolves leading the group. The encircling and attacking phases of iteration
is called as exploration and exploitation phases, respectively, instead of having the lin-
early decreasing value, this algorithm is modified to use nonlinear function for ¾ of the
max iteration and linear function for ¼ of the max iteration to support exploration and
exploitation stochastically.

The TS algorithm is used to store all previous search best positions and avoids the
search agents to search again in previously searched position, thereby improving the
performance.

(19)xj(t + 1) = xj(t)+ α ⊕ Levy(�), i = 1, 2, . . . , n

(20)s =
u

|v|1/β

(21)u ∼ N
(

0, σ 2
u

)

, v ∼ N
(

0, σ 2
v

)

(22)σu =

{

Ŵ(1+ β) sin (πβ/2)

Ŵ[(1+ β)/2]β2(β−1)/2

}1/β

, σv = 1

Page 12 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Fig. 5 HHFSHS algorithm Convergence comparison with other meta-heuristics

Page 13 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Fig. 5 continued

Page 14 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Fig. 5 continued

Page 15 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

The CS algorithm uses cuckoo random walk and levy-flights to update its nest posi-
tion using a fixed probability index say 0.25. Random walk is usually walking straight
for a while and take 90 degrees turn and continue walking, this will bring high ran-
domness which will support in local minima avoidance and boost better exploration
capability.

Using these modified meta-heuristic algorithms in low-level heuristic search as
part of the hyper-heuristic framework, a novel hyper-heuristic based on perturba-
tion low-level heuristic selection using Contextual Multi-Armed Bandit (CMAB)
Epsilon-Decreasing strategy is formulated with move acceptance criteria formulated
as depicted in Eq. (23), where 0 represent criteria not satisfied or loss and 1 represent
criteria satisfied or high profit. Epsilon-Decreasing strategy is used to favor explora-
tion initially and gradually favor exploitation later by starting with higher ∈ value and
decrease over time. Consideration is given such that the rate of decrease shouldn’t be
too quick.

During the algorithm iteration, last best convergence is compared with n last conver-
gences, if there is improvement in the best convergence value, then the chosen low-level
heuristic from heuristic Bag is continued for further iterations, in case there is no improve-
ment in the best convergence value, then a stochastic heuristic selection is picked using
CMAB with Epsilon-Decreasing strategy with an additional penalization on iteration count
for which there is no improvement and continued for further iteration. This process is
repeated till the end of the iteration.

where Cl is last best convergence, Cl−n is last ‘n’ convergences, Ct is convergence toler-
ance (1e−5).

Based on the above hyper-heuristic framework and formulation (refer Fig. 3), a
novel Hyper-Heuristic Framework using Stochastic Heuristic Selection (HHFSHS) is
proposed as below algorithm.

(23)Acceptance Criteria (AC) = {0, 1}, s.t,Cl − Cl−n < Ct

Fig. 5 continued

Page 16 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Table 1 Uni-model test functions

S. No Function Dim Range fmin

1
f1(x) =

n
∑

a−1

x21
30 [− 100,100] 0

2
F2(x) =

n
∑

i=1

|xi | +
n
∏

i=1

|xi |
30 [− 10,10] 0

3
F(x) =

n
∑

i=1

(

i
∑

j=1

x2i

)2 30 [− 100,100] 0

4 F4(x) = max
i

{|xi |, 1 ≤ i ≤ n} 30 [− 100,100] 0

5
F5(x) =

n
∑

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
] 30 [− 30,30] 0

6
F6(x) =

n
∑

i=1

(xi + 0.5)2
30 [− 100,100] 0

7
F7(x) =

n
∑

i=1

ix4i + random[0, 1)
30 [− 1.28,1.28] 0

Page 17 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Ta
bl

e
2

M
ul

ti-
m

od
el

 te
st

 fu
nc

tio
ns

S.
 N

o
Fu

nc
tio

n
D

im
Ra

ng
e

f m
in

1
F 8
(x
)
=

n
∑ i=
1

−
x i
si
n
(
√
| x
i|
)

30
[−

 5
00

,5
00

]
−

 4
18

.9
82

9
×

 D
im

2
F 9
(x
)
=

−
n
∑ I=
1

[

x2 i
−

1
0
co
s
(2
π
x i
)
+

1
0
]

30
[−

 5
.1

2,
5.

12
]

0

3
F 1

0
(x
)
=

−
2
0
e
xp

(

−
0
.2

√

1 n

n
∑ i=
1

x2 i

)

−
e
xp

(

1 n

n
∑ i=
1

co
s
(2
π
x i
))

+
2
0
+

e
30

[−
 3

2,
32

]
0

4
F 1

1
(x
)
=

1
4
0
0
0

n
∑ i=
1

x2 i
−

n
∏ i=
1

co
s
(

x i √
i)

+
1

30
[−

 6
00

,6
00

]
0

5
F 1

2
(x
)
=

� � � � �

π n

�

1
0
si
n
(π

y 1
)
+

n
�

i=
1

(x
i
−

1
)2
�

1
+

si
n
2
(3
π
x i
+

1
)�

+
(x

n
−

1
)2
�

1
+

si
n
2
(2
π
x n
)�

�

+

� � � � � �

+
y i
=

1
+

x i
+

1

4
u
(x

i,
a
,k
,m

)
=

(x
i
−

a
)m

x i
x i

(−
x i
−

a
)m

x i

30
[−

 5
0,

50
]

0

6
F 1

3
(x
)
=

0
.1

{

si
n
2
(3
π
x 1
)
+

n
∑ i=
1

(x
i
−

1
)2
[

1
+

si
n
2
(2
π
x i
+

1
)]

}

+
n
∑ i=
1

u
(x

i,
5
,1
0
0
,4
)

30
[−

 5
0,

50
]

0

7
F 1

4
(x
)
=

(

1
5
0
0
+

2
5

∑ j=
1

1

j+
∑

2 i=
1
(x

i−
a
ij
)6

)

−
1

2
[−

 6
5,

65
]

1

8
F 1

5
(x
)
=

1
1

∑ i=
1

[

a
i
−

x i
(

b
2 i
+
b
ix
2

)

b
2 i
+
b
ix
3
+
x 4

]

2
4

[−
 5

,5
]

0.
00

03
0

9
F 1

6
(x
)
=

4
x2 1

−
2
.1
x4 1

+
1 3
x6 1

+
x 1
x 2

−
4
x2 2

+
4
x4 2

2
[−

 5
,5

]
−

 1
.0

31
6

Page 18 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

5 Experimental analysis and results
5.1 Simulation setup

Bio Inspired Heuristic algorithms like PSOGWO, EGWO, Augmented GWOCS
(AGWOCS), GWO, BAT, Improved GWO (IGWO), WOA, PSO, GWOWOA were
compared with HHFSHS and investigated in MATLAB version R2021b. The test envi-
ronment was Dell laptop with the following specifications: RAM of 10 GB, CPU is Intel®
Core™ i5-2540 M CPU @ 2.60 GHz and 64-bit windows 10 Pro operating system.

5.2 Test functions

The unimodal and multi-model benchmark test functions used to validate the perfor-
mance of each Optimization algorithm are tabulated in Tables 1 and 2.

These optimization test functions complexity quality is defined by the number of peaks
encountered in the function landscape. These peaks can negatively impact the optimiza-
tion process when the optimization algorithm gets stuck in between the peaks. Couple
of test function results are shown below for discussion on performance of the proposed
algorithm.

5.3 Results and discussion

Performance evaluation scenarios is setup considering couple of MES in the wire-
less access area and couple of WDs (N = 30) are distributed around the MES cov-
erage region. Each WD, with its own computation task, task’s data size and task’s
required CPU cycles are randomly generated, specifically tsi ∼ N (0,20) MB and tci
∼ N (500, 100) cycles/bit. The total available CPU cycles of the mobile edge servers
is F = 30 GHz, and the allocated CPU cycles of the WDi is set to {0.5,0.6, …1.0} GHz
randomly. The transmission power transPo

i is set as 100 mW, and the power required
to wait for the result transPe

i is set as 10 mW. With these setting, simulation experi-
ment is done to evaluate the proposed algorithm. The aim of the proposed algorithm
is to get faster and better convergence and thereby reducing the overall processing
time and energy consumption in offloading tasks. As the multiobjective problem
(MOP) is normalized and devised as a single objective minimization problem, we will
consider the performance from the perspectives of convergence and stability. Also,
couple of standard meta-heuristic methods also included as comparisons. In our
experiment, nine other meta-heuristics are evaluated and compared with HHFSHH

Fig. 6 Result comparison

Page 19 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

technique with 3 low-level heuristics GWO, CS, TS tweaked and used in heuristic bag
of our proposed heuristic framework. There is no restriction on choice of low-level
heuristics for using in this framework. Some of the key parameters chosen for evalu-
ation are.

• Optimization target function Z. Algorithm is effective if it can arrive at the lowest
minimum value of Z function.

• Overall task processing time. Computation task offloading in mobile edge envi-
ronment is delay sensitive and offloading decisions should be taken quickly, other-
wise it will fail in its purpose.

• Overall task energy consumption, as wireless devices typically IoT devices have
less power resource, so it must be effectively used.

• Stability of results in multiple iterations with the same inputs. Meta-heuris-
tic algorithms have uncertainty due to the facts of its techniques to arrive at
the global minimum, which sometimes stuck at the local optima. The results so
obtained is also affected by this kind of uncertainty. However, these uncertainty in
the results should be minimized as low as possible. The algorithm result may vary

Fig. 7 Performance of HHFSHS algorithm with relative percentage tasks

Table 3 Statistical analysis on latency and energy consumption

Method Latency (s) Energy consumption (mJ)

Mean SD SE of Mean
(SEM)

Mean SD SE of Mean (SEM)

HHFSHS 0.386 0.392 0.131 417.629 368.285 122.761

AGWOCS 0.431 0.414 0.138 476.381 401.383 133.794

IGWO 0.488 0.446 0.138 576.840 468.111 156.037

WOA 0.584 0.522 0.174 692.115 543.136 181.045

Page 20 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

for each iteration with same input, as the stochastic selection of low-level heuris-
tic is based on the CMAB Epsilon-Decreasing strategy and move acceptance using
acceptance criteria evaluation

• Finally, the convergence curves of different heuristics methodology are investi-
gated. The values of the Z function obtained considering four different character-
istics of applications like Argument Reality, HealthCare, Compute Intensive and
Infotainment, with 3 different workload distributions.

From the result (refer Fig. 5), specifically in Fig. 5a-d, it is evident that none of the
heuristic converged properly to global minima, but the proposed HHFSHS heuristic
has managed to avoid local minima and converged faster to global minima with lesser
processing time. It also seen in most of the multi-model test functions the proposed
algorithm HHFSHS has converged well compared to other heuristics due to the fact
the hyper-heuristic scholastically selects the lower-level search heuristic according to
the CMAB Epsilon-Decreasing strategy and move acceptance using acceptance criteria
evaluation. HHFSHS is performed well in terms of convergence in uncertain problem
space due to its adaptable low-level heuristic selection dynamically based on the CMAB
Epsilon-Decreasing strategy. AGWOCS a hybrid meta-heuristic algorithm relatively
performed well close to the proposed algorithm HHFSHS and performed well than
IGWO and WOA as it overcomes the disadvantage of GWO local minima trap behavior
with the advantage of CS to improve global search and avoid local minima. It also can be
derived from result that the lowest function values of the different heuristics are in the
order HHFSHS < AGWOCS < IGWO < WOA.

Based on the simulation result (refer Fig. 6), it is evidence that the completion time
of offloading task increases with the size of the data increases and energy consumption
increases with the size of the data increases, as more data need to be transferred from
wireless device to edge server and get the processed data back which obviously increase
the waiting time thereby consuming more energy in the wireless device. Our method
HHFSHS is the suboptimal completion time and is suboptimal in energy consumption
when the wireless device count is 30. Other algorithms like AGWOCS and IGWO and
WOA relatively performed well when compared to HHFSHS, while other heuristics
like PSO and BAT algorithms has not performed well so not considered for comparison
here. From the result, it is evident that the task processing completion time and energy
consumption is less for HHFSHS, due to its faster convergence to find the optimal solu-
tion in problem space compared to other Heuristics.

Experiment is done considering four different characteristics of applications like
Argument Reality, HealthCare, Compute Intensive and Infotainment, with 3 differ-
ent workload distribution (i) 80% task offloaded to edge and 20% task in local com-
putation; (ii) 50% task offloaded to edge and 50% in local computation; and finally,
(iii) 20% task offloaded to edge and 80% task in local computation. Results based
on this setup is shown in Fig. 7. It is very clear that as more percentage of tasks are
computed locally, it takes less processing time as there is no involvement of data
transfer in the network to MES and no wait time. It also very clear that as more per-
centage of tasks are computed locally, it takes more energy, and it takes less energy
when it offloads major percentage of task to edge server and get the job done.

Page 21 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Based on Statistical Analysis (ref Table 3), it is evidence that proposed HHFSHS
has low latency and energy consumption compared other meta-heuristics. Standard
Error of Mean (SEM) is less for HHFSHS compared to other methods, which means
it has smoother and consistent behavior in task offloading for different population
samples. All these experimental result analyses provide evidence that hyper-heuris-
tic-based technique has overcome the disadvantage of individual heuristic by adap-
tively switching to better lower-level heuristic and adapting generically for different
problem domains. By having a better convergence, the proposed HHFSHS algorithm
able to performance better with reduced energy consumption and faster processing
compared to other individual meta-heuristics algorithms.

6 Conclusion and future work
In this work, we analyzed a Hyper-Heuristic Framework using Stochastic Heuristic
Selection (HHFSHS) for computation task offloading model with the goal to mini-
mize the latency and energy consumption optimization in MEC. Then, the formulated
model is normalized to aid in improving the model even for multi-dimensions. The
goal of the formulated model is to arrive at the minimum value. The proposed HHF-
SHS algorithm has been applied to solve the optimization problem. The experiment
shows better results of HHFSHS approach compared to other heuristics algorithms.
However, the algorithm proposed still can have better feedback for selection of low-
level heuristics. Since different lower-level heuristic are selected stochastically using
CMAB Epsilon-Decreasing strategy, the results may vary based on the Epsilon value
selection, Epsilon decreasing rate and acceptance criteria resulting in slightly varying
result for each run.

Future work will be based on the proposed algorithm going to experiment with other
Heuristic local search algorithms with online feedback mechanism using Deep Rein-
forcement Learning (DRL) and evaluate in Vehicular Edge Computing consider mobility
as an additional parameter, since mobility is one of the key features affecting the task
offloading and resource allocation in Vehicular Edge Network.

Abbreviations
MEC Mobile edge computing
MES Mobile edge server
WD Wireless device
DRL Deep reinforcement learning
QoS Quality of service
AR Augment reality
VR Virtual reality
GWO Grey wolf optimizer
CS Cuckoo search
TS Tabu search
WOA Whale optimization algorithm
AGWOCS Augmented whale optimization cuckoo search
IGWO Improved grey wolf optimizer
AC Acceptance criteria
HHFSHS Hyper-heuristic framework using stochastic heuristic selection
CMAB Contextual multi-armed bandit

Acknowledgements
The authors appreciate the support from guide and professors at Kalasalingam Academy of Research and Education,
Kalasalingam University, Krishnan Koil, TN, India.

Page 22 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

Author contributions
Conceptualization: B. Vijayaram; Formal Analysis: B. Vijayaram; Methodology: B. Vijayaram; Investigation: V. Vasudevan;
Supervision: V. Vasudevan. All authors read and approved the final manuscript.

Authors’ Information
Mr. B. Vijayaram—Correspondence Author (Primary Author) is a Research Scholar in Kalasalingam Academy of Research
and Education, Krishnan koil, Tamilnadu, India. Has more than 15 years of product-based industry experience in security,
industrial automation and medical radiology domain.
Sr. Prof Dr V. Vasudevan—Secondary Author is working as Registrar in Kalasalingam Academy of Research and Education,
Krishnan koil, Tamilnadu, India. Has a Maths PhD, headed MCA dept of Kalasalingam University from 1997 to 2003. Then
headed the IT dept for over ten years. During the same period, was the chief superintend of university exams for 6 years,
Dean hostels for four years, Dean admissions & dean placements for three years from 2011 to 2014. Then currently work-
ing as a Registrar from 2013. So for 25 students completed PhD under my guidance and has the credit 67 international
publications. I have 25 years of experience in teaching and research experience.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Consent for Publication
No individual human details, images or videos are used during the current study.

Competing Interests
The authors declare that they have no competing interests.

Received: 12 August 2022 Accepted: 16 December 2022

References
 1. E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, S. Schulenburg, Hyper-heuristics: an emerging direction in modern

search technology, in Handbook of metaheuristics. ed. by F. Glover, G.A. Kochenberger (Springer, Boston, 2003),
pp.457–474

 2. E. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Özcan, A classification of hyper-heuristic approaches, pp. 449–468 (2010)
 3. M. Mareli, B. Twala, An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform. 14, 107–115

(2018)
 4. Y. Miao, G. Wu, M. Li, A. Ghoneim, M. Al-Rakhami, M.S. Hossain, Intelligent task prediction and computation offload-

ing based on mobile-edge cloud computing. Futur. Gener. Comput. Syst. 102, 925–931 (2020)
 5. Y. Li and S. Wang, An energy-aware edge server placement algorithm in mobile edge computing, San Francisco, CA,

USA, (2018)
 6. M. Huang, Q. Zhai, Y. Chen, S. Feng, F. Shu, Multi-objective whale optimization algorithm for computation offloading

optimization in mobile edge computing. Sensors 21 (2021)
 7. E. Coronel, B. Baran, P. Gardel, Optimal placement of remote controlled switches in electric power distribution

systems with a meta-heuristic approach. IEEE Latin Am. Trans. 20(4), 590–598 (2022)
 8. S.A. Zakaryia, S.A. Ahmed, M.K. Hussein, Evolutionary offloading in an edge environment. Egypt. Inf. J. 22, 257–267

(2021)
 9. S. Feng, Y. Chen, Q. Zhai, M. Huang, F. Shu, Optimizing computation offloading strategy in mobile edge computing

based on swarm intelligence algorithms. EURASIP J. Adv. Signal Process. 2021, 36 (2021)
 10. M.S.A. Khan, R. Santhosh, Task scheduling in cloud computing using hybrid optimization algorithm. Soft Comput.

(2021)
 11. M. Anisetti, X. Gu, L. Jin, N. Zhao, G. Zhang, Energy-efficient computation offloading and transmit power allocation

scheme for mobile edge computing. Mob. Inf. Syst. 2019, 3613250 (2019)
 12. Q. You, B. Tang, Efficient task offloading using particle swarm optimization algorithm in edge computing for indus-

trial internet of things. J. Cloud Comput. 10, 41 (2021)
 13. Q.-V. Pham, S. Mirjalili, N. Kumar, M. Alazab, W.-J. Hwang, Whale optimization algorithm with applications to resource

allocation in wireless networks. IEEE Trans. Veh. Technol. 69, 4285–4297 (2020)
 14. Z. Li, V. Chang, J. Ge, L. Pan, H. Hu, B. Huang, Energy-aware task offloading with deadline constraint in mobile edge

computing. EURASIP J. Wirel. Commun. Netw. 2021, 56 (2021)
 15. Y. Zhuang, H. Zhou, A Hyper-Heuristic resource allocation algorithm for fog computing. In Proceedings of the 2020

the 4th International Conference on Innovation in Artificial Intelligence, (2020)
 16. H. Alshareef and M. Maashi, Application of Multi-Objective Hyper-Heuristics to Solve The Multi-Objective Software

Module Clustering Problem. Appl. Sci. 12 (2022).
 17. X. Huang, Y. Yang and X. Wu, A Meta-Heuristic Computation Offloading Strategy for IoT Applications in an Edge-

Cloud Framework, in Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control,
New York (2019).

Page 23 of 23Vijayaram and Vasudevan EURASIP Journal on Advances in Signal Processing (2022) 2022:126

 18. X. Deng, Z. Sun, D. Li, J. Luo, S. Wan, User-centric computation offloading for edge computing. IEEE Int. Things J. 8,
12559–12568 (2021)

 19. S.M. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
 20. S. Mirjalili, S. Saremi, S.M. Mirjalili, L.S. Coelho, Multi-objective grey wolf optimizer. Exp. Syst. Appl. 47, 106–119 (2016)
 21. H. Xu, X. Liu, J. Su, An improved grey wolf optimizer algorithm integrated with Cuckoo Search, in 2017 9th IEEE

International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS) (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Wireless edge device intelligent task offloading in mobile edge computing using hyper-heuristics
	Abstract
	1 Introduction
	2 Related works
	3 System method
	3.1 Local computation model
	3.2 Edge computation model
	3.3 Problem formulation

	4 Problem solutions
	4.1 Grey wolf optimizer
	4.2 Tabu search
	4.3 Cuckoo search
	4.4 Proposed hyper-heuristic framework using stochastic heuristic selection (HHFSHS)

	5 Experimental analysis and results
	5.1 Simulation setup
	5.2 Test functions
	5.3 Results and discussion

	6 Conclusion and future work
	Acknowledgements
	References

