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Abstract 

To overcome with the computation limitation of resource-constrained wireless IoT 
edge devices, providing an efficient task computation offloading and resource alloca-
tion in distributed mobile edge computing environment is consider as a challenging 
and promising solution. Hyper-heuristic in recent times is gaining popularity due to 
its general applicability of same solution to solve different types of problems. Hyper-
heuristic is generally a heuristic method or framework which iteratively evaluates and 
chooses the best low-level heuristic, to solve different types of problems. In this paper, 
we try to solve wireless device task offloading in mobile edge computing, which is a 
non-convex and NP-Hard problem by using a proposed novel Hyper-Heuristic Frame-
work using Stochastic Heuristic Selection (HHFSHS) using Contextual Multi-Armed 
Bandit (CMAB) with Epsilon-Decreasing strategy, considering two key Quality of Service 
(QoS) objectives computation time and energy consumption. These multiobjective 
criteria are modeled as single-objective optimization problem with the goal to mini-
mize latency and energy consumption of wireless devices without losing the pareto 
optimality. Finally, evaluate its performance by comparing with other individual meta-
heuristic algorithms.

Keywords: Mobile edge computing, Hyper-heuristics, Meta-heuristics, Task offloading, 
Optimization

1 Introduction
In the past decades, we have witnessed many revolutionary wireless mobile devices, 
wearables, IOT sensors, all these small resource constraint devices need an innovative 
way of doing effective computation outside its hardware resource and get the results 
back faster for decision making, with the introduction of 5G, this can be achieved by 
utilizing mobile edge computing infrastructure. With the adoption of 5G network, 
the expectation for faster network is inevitable to achieve fast speed, low end-to-end 
latency, and high reliability. Large-scale applications like high-definition video, vir-
tual reality (VR), augmented reality (AR), IOT wireless sensor-based industrial appli-
cation, UAV and autonomous vehicles will all eventually generate a large amount of 
data. This not only puts a strain on the system, but also backhaul. In order to provide 
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better service to the end users for latency-sensitive computational operations, the 
core network ’Users’ devices are placed closer to the network’s edge. This will lessen 
the burden on the server while lowering the delay in the network and processing as 
computations are done at the mobile edge server placed at proximity to the edge 
devices.

To address the issues of low-processing capacity and restricted resources in wire-
less edge devices, the concept of Mobile edge computing (MEC) computation off-
loading has been presented by the industry. Computation offloading is the process of 
allocating computationally heavy jobs to a nearby Mobile Edge Server (MES) which 
has appropriate processing and computing resources. MES is then queried for the 
derived results. Figure 1 shows a typical Mobile edge computing environment where 
Wireless Devices (WD) {WD1,  WD2,…,WDn} connect to the nearest MES {MES1, 
 MES2,…,MESn}, all these MES are interconnected through fiber optics or high band-
width wireless channels. Further all MES have fiber optics connection with Central-
ized Cloud Data Center (CCDC). WDs take stochastic intelligent decision to connect 
to least utilized nearby MES for task offloading and getting the results back either 
through the same MES or through the CCDC, it depends on the mobility of the WD. 
For example, if  WD1 which initially in range of  MES1 starts the offloading to MES1 
and being in mobility, it comes to the range of MES3 and retrieves the results from 
MES3 due to MES collaboration with CCDC.

More research are carried out to intelligently offload the task to mobile edge serv-
ers using meta-heuristics, but that does not bring in some generality to the solution 
space and applicability of algorithm to wide variety of problems, this motivates to 

Fig. 1 Mobile edge computing environment
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bring in hyper-heuristics [1] to achieve the generality for solving wide variety of prob-
lems from different domains. However, the major challenge is in generating heuristics 
or selecting heuristics automatically.

A hyper-heuristic is an interesting methodology of selecting or generating heuristics to 
solve different hard computational search problems in an automated way using the same 
solution in hand. According to the author Burke [2] in his book, he categorized hyper-
heuristics into two broad categories as heuristic selection and heuristic generation (refer 
Fig. 2 – adapted from [2]), this is the first level in our first dimension (the nature of the 
search space). The second level in this dimension corresponds to the distinction between 
constructive and local search hyper-heuristics. This categorization deals with the nature 
of the low-level heuristics used in the hyper-heuristic framework. Construction and per-
turbation are the terms used to refer these low-level heuristics classes.

Almost all existing hyper-heuristics search contains two stages: heuristics selection 
and its move acceptance. Figure  3 (adapted from [2]) depicts the high-level element 
blocks and its interaction of hyper-heuristic using perturbative heuristic selection and 
Acceptance Criteria move acceptance.

2  Related works
Task computation offloading and resource allocation strategies are interesting problems 
to be solved in mobile edge computing and vehicular edge network. Several interesting 
research has been done in this field using Meta-Heuristic, Neural Networks and Fuzzy 
Logics. Task offloading can be thought as completely offload to MES, or partially offload 
only memory-intensive processing to the MES and remaining processing is done locally, 
or entire task is locally computed without offloading to the MES. Most of the task which 
depends on external data or needs aggregated data from different sources are offloaded 
to the MES, because of its nature to download lot of data from external sources and do 
data aggregation which is memory-intensive processing. It is reasonable to offload such 
tasks to MES completely.

Fig. 2 Hyper-heuristic classification based on feedback and heuristic search space
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Mareli et al. [3] used bio-inspired meta-heuristic algorithm cuckoo search to optimize 
task offloading by tweaking the switching parameter. Miao et  al. [4] proposed a new 
intelligent computation offloading-based MEC architecture in combination with arti-
ficial intelligence (AI) technology. Their methodology effectively reduces the total task 
delay with the increasing data and subtasks. Li and Wang et al. [5] solved multiobjec-
tive optimization problem by using particle swarm optimization (PSO) with energy con-
straint MES placement algorithm to arrive at the optimal solution. Huang et al. [6] used 
whale optimization algorithm (WOA) meta-heuristic to solve the multi-target problem 
targeting two criteria like task energy consumption and task processing time. Coronel 
et  al. [7] used Meta-Heuristic algorithms with multiple objectives for placement opti-
mization of wireless switches in Electrical Power distribution system. Zakaryia et al. [8] 
used Queuing network and evolutionary Genetic Algorithm to offload task effectively 
focusing on minimizing the task response time. Feng et  al. [9] used hybrid algorithm 
GWO-WOA for solving task offloading problem of IOT devices in mobile edge comput-
ing environment while considering three optimization criteria. Khan et al. [10] in their 
paper proposed a task scheduling method based on a hybrid optimization algorithm is 
presented, which effectively schedules jobs with the least amount of waiting time. Ani-
setti et al. [11] in their paper proposed an energy-efficient task offloading and transmis-
sion power allocation scheme that reduces completion time and energy consumption. 

Fig. 3 Hyper-heuristic using perturbative heuristic selection
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You et  al. [12] in their paper proposed a PSO algorithm for task offloading from a 
resource-constrained wireless edge devices to MES considering energy and low latency 
multiobjective criteria. Pham et al. [13] in their paper tried to solve resource allocation 
in wireless network using WOA. Li et al. [14] in their paper tried to fill the gap of task 
deadline constraints which other existing offloading algorithm failed to do so.

Zhuang et al. [15] in their paper proposed hyper-heuristic algorithm for fog comput-
ing to achieve QoS requirements. Alshareef et al. [16] in their paper used multiobjective 
hyper-heuristic approach to solve multiobjective software module clustering optimiza-
tion problem by combining and controling three genetic and evolutionary algorithms 
namely multiobjective genetic algorithm (MOGA), non-dominated sorting genetic algo-
rithm (NSGAII) and strength pareto evolutionary algorithm (SPEA2). Huang et all [17] 
in their paper explored meta-heuristics energy-efficient computation offloading (EE-CO) 
approach to minimize energy consumption focusing on delay and security constraints.

3  System method
In this paper, we will discuss about the case of Wireless Devices (WDs) offloading their 
tasks to nearby MES based on their computation data size. The collection of WDs is 
represented as N = {1, 2,…, n}. Task computation time needed to finish the task is rep-
resented as TC = {tc1,  tc2, ‥,  tcn}, and task data size is represented as TS = {ts1,  ts2, ‥, 
 tsn}, where ‘i’ is a particular wireless device in the collection N. Each wireless device’s 
task is considered as the combination of TC and TS, which can be represented as 
taski = {tci, tsi} . Network Access points or Wifi Routers is used for communication and 
data transfer between wireless devices and MES. For task computation, wireless device 
can completely do it locally or completely offload to MES or partially do locally and par-
tially at edge server. This can be represented as a offloading decision set Y = {y1,  y2, ‥,  yn}, 
where  yi ranges between [1, 0], both inclusive. If  yi = 1, then  WDi completely offload its 
task to MES and if  yi = 0, then  WDi does the full task computation within itself. If  yi > 0 
and  yi < 1, then  WDi offloads  yi × 100% of tasks to the MES and remaining (1 −  yi) × 100% 
of tasks done locally. For offloading decision on edge server, edge server’s available pro-
cessing capacity is considered, and the system method is a combined minimization of 
overall task processing time / completion time and amount of energy consumed for com-
pleting that task. We assert that by employing the hyper-heuristics approach to identify 
the optimal task offloading decision to do local computing or mobile edge computing or 
combination of both and thereby latency and energy can be greatly reduced.

3.1  Local computation model

Here we will formulate the model for task execution locally at wireless device. Let us 
consider tdloci  as the local processing time or time delay and ecloci  as the energy consumed 
for processing that task locally. Floc

i  is denoted as the maximum available CPU cycles of 
 WDi.

Let f loci  represent the current available CPU cycles for the computation task at that 
moment of the  WDi and tci represent the task-required computation time, then the local 
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task processing time or time delay tdloci  to process the task locally by the  WDi is repre-
sented as:

The energy consumption for local task processing is represented as:

where C is the effective switched capacitance of the device based on its chip architecture.

3.2  Edge computation model

Here we will formulate the model for task execution remotely at MES in this section. 
Communication rate is considered based on the assumption that mobile devices are 
connected through the wireless channel. Let B represent the bandwidth of the wireless 
channel, and let’s assume that the bandwidths for WDs are equally allocated for task 
offloading. Let θi is the bandwidth allocated to wireless channel for  WDi. Based on Shan-
non formula (ri-channel capacity in bits per sec), the  WDi communication rate (Ri) is 
represented as [18]:

where tpi is transmission power of  WDi and cgi is channel gain of  WDi, and N0 denotes 
the background channel noise. Now, the total task processing time delay has two parts, 
one is task transmission time and other is task processing time. transTo

i  is the task trans-
mission time, and it is calculated as:

Let F denote the entire available edge server computing resources and f edgei  is the CPU 
cycles allocated to the  WDi to complete its task at the MES and procTedge

i  represent the 
 WDi task computation time needed at the MES and it is calculated as:

The time required for sending back the result or response from MES can be neglected 
because the size of the output of the computed data is less. The total time for the  WDi to 
process the offloaded task completely using the MES is calculated as:

The overall energy consumption ecpi  is calculated as:
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where transPo
i  is transmission power required to upload the data from  WDi to the MES 

through the wireless channel, and transPe
i  is the power required for the  WDi to wait for 

the result from MES.

3.3  Problem formulation

While formulating this problem, we considered N wireless devices with varying task 
computation workloads and tasks dependencies. The decision Y is made based on TC 
and TS. Here we consider both task processing time delay and task energy consumption. 
There are several ways to solve multiobjective problems, one way is to optimize the first 
objective function and try to optimize the second objective function while maintaining 
the first objective function value intact. The second way is to optimize both objective 
functions simultaneously. Since these two target constraints are a measure of different 
metrics, they must be normalized for calculation to avoid biasing.

So, the equation for calculating total time delay becomes:

where Tmin is the minimum task processing time delay in the set N, and Tmax is the maxi-
mum task processing time delay in the set N.

And the equation for calculating total energy consumption becomes:

where Emin is the minimum task energy consumption in the set N, and Emax is the maxi-
mum task energy consumption in the set N.

Combining both objectives, an improved mathematical formula is arrived to minimize 
the impact of dimensions and makes the formula controllable using different decision 
variables. Finally, the target minimization objective function is formulated as:

The coefficient η is used as weight to adjust the optimization objective function results. 
Here we consider the total time latency target as baseline with coefficient value as 1. The 
coefficient η of the total energy consumption which ranges from 0.001 to 1 is adjusted 
based on careful pareto optimality study to get the required weighted normalization for 
the two targets.

Finally, this optimization problem can be solved using a single target minimization 
equation given as:

(8)TT =

n
∑
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(
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)

totalT l
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]
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The aim of the problem is to minimize the objective function Z, considering the two 
target constraints namely low energy consumption and low-processing time without los-
ing the pareto optimality.

4  Problem solutions
In this research, three meta-heuristics Grey Wolf Optimizer (GWO), Tabu Search (TS) 
and Cuckoo Search (CS) are modified and used in low-level hyper-heuristic selection in 
the proposed technique and tested, let discuss those meta-heuristics overview and their 
modifications for using it in the proposed algorithm.

4.1  Grey wolf optimizer

Grey wolf optimizer (GWO) is one of nature inspired meta-heuristic swarm intelli-
gence algorithm. This algorithm is unique from other algorithms due to its methodol-
ogy of adopting social hierarchy and hunting behavior of grey wolves. Seyedali Mirjali 
proposed GWO [19] in 2014 and proposed multiobjective (MOGWO) [20] in 2016. 
In recent times, GWO is used in many optimization research aspects. In fact, Xu et al. 
[21] proposed a fusioned Cuckoo Search with the Improved GWO algorithm to achieve 
better result. Grey wolves usually dwell in packs with some dominant social hierarchy 
as shown in Fig. 4 (adapted from [19]). These wolves are represented as 4 main groups 
namely alpha wolves (α), beta wolves (β), delta wolves (δ), and omega wolves (ω). Wolves 
which usually lead in prey hunting are called alpha wolves; wolves which supports 

(11)

min
y,θi f

edge
i

Z

s.t.0 ≤ f
edge
i ≤ yiF , ∀i ∈ N

n
∑

i=1

f
edge
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n

∑

i=1

θi ≤ B, ∀i ∈ N

yi ∈ [0, 1], ∀i ∈ N

Fig. 4 Social Hierarchy of Grey Wolfs
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helping alpha wolves are called beta wolves; wolves which helps in guarding the terri-
tory boundaries and does the whistle blowing job are called delta wolves; and wolves 
which are lazy and does not actively take part in hunting but only interested in eating the 
leftover food are called omega wolves, which is usually dominated by other top category 
wolves.

In GWO algorithm, the final optimized fit solution is represented as alpha, then the 
second less optimized fit solution is represented as beta and the third least optimized 
fit solution is represented as delta. All the left-over trivial solutions are represented 
as omega. GWO has 3 stages in the algorithm: encircling, hunting, or attacking, and 
searching. The positions of the wolves during the encircling stage, is updated by [19]:

where ‘i’ is the iteration index, 
−→
X p represent the position vector of prey, and −→X  represent 

the position vector of wolves. −→A  and 
−→
C  are coefficient vectors, calculated by the below 

equations:

Here the variable −→a   is nonlinearly decreased for ¾ of the iteration and linearly 
decreased from 2 to 0 for remaining iterations. This is done to support better explora-
tion and exploitation, respectively, and variables −→r 1 and −→r2  are random absolute vectors 
in range [ 0, 1].

During the hunting stage, additional weight coefficient 0.01 is considered for alpha 
position as alpha wolfs are closer to the prey, this value can be tweaked based on the 
convergence behavior and final positions of the wolves are updated by equation [17]:

GWO has good exploitation and exploration ability, which helps in avoiding local min-
imum trap.

4.2  Tabu search

Tabu Search (TS) is one of meta-heuristic local search algorithm specialized in optimiz-
ing the heuristics model parameters. Some of the local search heuristic methods have 
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the pitfall to stuck in local minima. TS helps to overcome this problem by enhancing 
the local search exploration phase by prohibiting already visited solutions also known as 
Tabu. TS does sometimes deterministically accept trivial solutions to avoid local minima 
convergence. The steps involved in TS algorithm are given below,

Algorithm: Step 1: Start with any random best acceptable solution, say bS =  S0.

Step 2: Generate neighboring random solutions N(bS) based on the current best solu-
tion bS. From N(bS), the solutions that are in the Tabu List are removed except for the 
solutions that fit the Aspiration Criteria. This solution will become the new N(bS).

Step 3: Choose the best solution out of N (bS) and label this new solution bS
′
 . If the solu-

tion bS
′
 is better than the current best solution, update the current best solution. After, 

regardless of if bS
′
 is better than bS , we update bS to be bS

′
.

Step 4: Update the Tabu List T (bS) by removing all moves that are expired past the Tabu 
Tenure and add the new move s’ to the Tabu List. Additionally, update the set of solu-
tions that fit the Aspiration Criteria A(bS).

Step 5: Search stops if the termination criteria is met or else it will move onto the next 
iteration. Termination Criteria is used here is max number of iterations.

4.3  Cuckoo search

Cuckoo Search (CS) algorithm is one of bio-inspired meta-heuristic algorithm devel-
oped based on reproduction behavior of cuckoo birds [14]. Potential solutions are asso-
ciated with cuckoo eggs in CS. Cuckoos birds usually lay their eggs in other’s nests with 
the hope of their off springs being raised by other. On a random probability say 25%, 
when the host cuckoos discover those foreign eggs in their nests, some of the foreign 
eggs are thrown out of the nest or cuckoos will completely discard that entire nest. The 
CS algorithm consist of three basic rules as follows:

• Eggs are laid in random nests by cuckoo bird.
• Best nests which contain best quality eggs are selected and carried forward to next 

generation.
• Host cuckoo will identify a foreign egg with a probability pa є [0,1] from a set of ran-

dom nests. If foreign egg is found, the host cuckoo can either throw the foreign egg 
away or completely abandon the whole nest and build a new nest elsewhere.

During the iteration, based on the above three rules, the new position of cuckoo nests 
is updated by.

(18)bS′ ∈ N (bS) =
{

N (bS)− T (bS)
}

+ A(bS)
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Here the product ⊕ representative entry-wise multiplication. xj(t + 1) denotes new 
solutions for cuckoo ‘i’, xj(t) denotes the current solutions. The step size is controlled 
by α > 0, Let’s assume its value as 1. The levy-flight is provided by following Mantegna’s 
algorithm.

In Mantegna’s algorithm, the step length s is calculated by

where u and v values are arrived based on normal distributions. That is

were,

This distribution obeys the expected Levy’s distribution for |s|> =|s0| where  s0 is the 
smallest step. Its value can be carefully chosen between 0.01 and 1.

4.4  Proposed hyper‑heuristic framework using stochastic heuristic selection (HHFSHS)

Based on the Heuristic framework depicted in Fig. 3, a novel stochastic heuristic selec-
tion based on online learning acceptance criteria feedback is proposed which uses cou-
ple of well-known meta-heuristics like GWO, CS, TS as part of the low-level heuristic 
search with certain careful parameter tweaks to improve exploration and exploitation 
behaviors. The reason behind choosing these three meta-heuristics is based on the per-
formance and behavior to tackle local minima trap and achieve optimum convergence 
in most of the problem space. Let’s discuss about those modification on meta-heuristics 
below.

The GWO algorithm updates the wolve position just by averaging out the alpha, beta 
and delta positions during each iteration using Eq. (17), this may lead to local minimum 
trap or slow convergence as alpha position progress slows down due average calculation. 
This is clearly seen in the convergence comparison in Fig. 5. To mitigate this, the equa-
tion is modified to add a fixed weight to alpha wolve position to emphasis the impor-
tance of alpha wolves leading the group. The encircling and attacking phases of iteration 
is called as exploration and exploitation phases, respectively, instead of having the lin-
early decreasing value, this algorithm is modified to use nonlinear function for ¾ of the 
max iteration and linear function for ¼ of the max iteration to support exploration and 
exploitation stochastically.

The TS algorithm is used to store all previous search best positions and avoids the 
search agents to search again in previously searched position, thereby improving the 
performance.

(19)xj(t + 1) = xj(t)+ α ⊕ Levy(�), i = 1, 2, . . . , n

(20)s =
u

|v|1/β

(21)u ∼ N
(

0, σ 2
u

)

, v ∼ N
(

0, σ 2
v

)

(22)σu =

{

Ŵ(1+ β) sin (πβ/2)

Ŵ[(1+ β)/2]β2(β−1)/2

}1/β

, σv = 1
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Fig. 5 HHFSHS algorithm Convergence comparison with other meta-heuristics
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Fig. 5 continued
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Fig. 5 continued
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The CS algorithm uses cuckoo random walk and levy-flights to update its nest posi-
tion using a fixed probability index say 0.25. Random walk is usually walking straight 
for a while and take 90 degrees turn and continue walking, this will bring high ran-
domness which will support in local minima avoidance and boost better exploration 
capability.

Using these modified meta-heuristic algorithms in low-level heuristic search as 
part of the hyper-heuristic framework, a novel hyper-heuristic based on perturba-
tion low-level heuristic selection using Contextual Multi-Armed Bandit (CMAB) 
Epsilon-Decreasing strategy is formulated with move acceptance criteria formulated 
as depicted in Eq. (23), where 0 represent criteria not satisfied or loss and 1 represent 
criteria satisfied or high profit. Epsilon-Decreasing strategy is used to favor explora-
tion initially and gradually favor exploitation later by starting with higher ∈ value and 
decrease over time. Consideration is given such that the rate of decrease shouldn’t be 
too quick.

During the algorithm iteration, last best convergence is compared with n last conver-
gences, if there is improvement in the best convergence value, then the chosen low-level 
heuristic from heuristic Bag is continued for further iterations, in case there is no improve-
ment in the best convergence value, then a stochastic heuristic selection is picked using 
CMAB with Epsilon-Decreasing strategy with an additional penalization on iteration count 
for which there is no improvement and continued for further iteration. This process is 
repeated till the end of the iteration.

where Cl is last best convergence, Cl−n is last ‘n’ convergences, Ct is convergence toler-
ance  (1e−5).

Based on the above hyper-heuristic framework and formulation (refer Fig.  3), a 
novel Hyper-Heuristic Framework using Stochastic Heuristic Selection (HHFSHS) is 
proposed as below algorithm. 

(23)Acceptance Criteria (AC) = {0, 1}, s.t,Cl − Cl−n < Ct

Fig. 5 continued
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Table 1 Uni-model test functions

S. No Function Dim Range fmin

1
f1(x) =

n
∑

a−1

x21
30 [− 100,100] 0

2
F2(x) =

n
∑

i=1

|xi | +
n
∏

i=1

|xi |
30 [− 10,10] 0

3
F(x) =

n
∑

i=1

(

i
∑

j=1

x2i

)2 30 [− 100,100] 0

4 F4(x) = max
i

{|xi |, 1 ≤ i ≤ n} 30 [− 100,100] 0

5
F5(x) =

n
∑

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
] 30 [− 30,30] 0

6
F6(x) =

n
∑

i=1

(xi + 0.5)2
30 [− 100,100] 0

7
F7(x) =

n
∑

i=1

ix4i + random[0, 1)
30 [− 1.28,1.28] 0
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5  Experimental analysis and results
5.1  Simulation setup

Bio Inspired Heuristic algorithms like PSOGWO, EGWO, Augmented GWOCS 
(AGWOCS), GWO, BAT, Improved GWO (IGWO), WOA, PSO, GWOWOA were 
compared with HHFSHS and investigated in MATLAB version R2021b. The test envi-
ronment was Dell laptop with the following specifications: RAM of 10 GB, CPU is Intel® 
Core™ i5-2540 M CPU @ 2.60 GHz and 64-bit windows 10 Pro operating system.

5.2  Test functions

The unimodal and multi-model benchmark test functions used to validate the perfor-
mance of each Optimization algorithm are tabulated in Tables 1 and 2.

These optimization test functions complexity quality is defined by the number of peaks 
encountered in the function landscape. These peaks can negatively impact the optimiza-
tion process when the optimization algorithm gets stuck in between the peaks. Couple 
of test function results are shown below for discussion on performance of the proposed 
algorithm.

5.3  Results and discussion

Performance evaluation scenarios is setup considering couple of MES in the wire-
less access area and couple of WDs (N = 30) are distributed around the MES cov-
erage region. Each WD, with its own computation task, task’s data size and task’s 
required CPU cycles are randomly generated, specifically  tsi ∼ N (0,20) MB and  tci 
∼ N (500, 100) cycles/bit. The total available CPU cycles of the mobile edge servers 
is F = 30 GHz, and the allocated CPU cycles of the  WDi is set to {0.5,0.6, …1.0} GHz 
randomly. The transmission power transPo

i  is set as 100 mW, and the power required 
to wait for the result transPe

i  is set as 10 mW. With these setting, simulation experi-
ment is done to evaluate the proposed algorithm. The aim of the proposed algorithm 
is to get faster and better convergence and thereby reducing the overall processing 
time and energy consumption in offloading tasks. As the multiobjective problem 
(MOP) is normalized and devised as a single objective minimization problem, we will 
consider the performance from the perspectives of convergence and stability. Also, 
couple of standard meta-heuristic methods also included as comparisons. In our 
experiment, nine other meta-heuristics are evaluated and compared with HHFSHH 

Fig. 6 Result comparison
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technique with 3 low-level heuristics GWO, CS, TS tweaked and used in heuristic bag 
of our proposed heuristic framework. There is no restriction on choice of low-level 
heuristics for using in this framework. Some of the key parameters chosen for evalu-
ation are.

• Optimization target function Z. Algorithm is effective if it can arrive at the lowest 
minimum value of Z function.

• Overall task processing time. Computation task offloading in mobile edge envi-
ronment is delay sensitive and offloading decisions should be taken quickly, other-
wise it will fail in its purpose.

• Overall task energy consumption, as wireless devices typically IoT devices have 
less power resource, so it must be effectively used.

• Stability of results in multiple iterations with the same inputs. Meta-heuris-
tic algorithms have uncertainty due to the facts of its techniques to arrive at 
the global minimum, which sometimes stuck at the local optima. The results so 
obtained is also affected by this kind of uncertainty. However, these uncertainty in 
the results should be minimized as low as possible. The algorithm result may vary 

Fig. 7 Performance of HHFSHS algorithm with relative percentage tasks

Table 3 Statistical analysis on latency and energy consumption

Method Latency (s) Energy consumption (mJ)

Mean SD SE of Mean 
(SEM)

Mean SD SE of Mean (SEM)

HHFSHS 0.386 0.392 0.131 417.629 368.285 122.761

AGWOCS 0.431 0.414 0.138 476.381 401.383 133.794

IGWO 0.488 0.446 0.138 576.840 468.111 156.037

WOA 0.584 0.522 0.174 692.115 543.136 181.045
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for each iteration with same input, as the stochastic selection of low-level heuris-
tic is based on the CMAB Epsilon-Decreasing strategy and move acceptance using 
acceptance criteria evaluation

• Finally, the convergence curves of different heuristics methodology are investi-
gated. The values of the Z function obtained considering four different character-
istics of applications like Argument Reality, HealthCare, Compute Intensive and 
Infotainment, with 3 different workload distributions.

From the result (refer Fig.  5), specifically  in Fig.  5a-d, it is evident that none of the 
heuristic converged properly to global minima, but the proposed HHFSHS heuristic 
has managed to avoid local minima and converged faster to global minima with lesser 
processing time. It also seen in most of the multi-model test functions the proposed 
algorithm HHFSHS has converged well compared to other heuristics due to the fact 
the hyper-heuristic scholastically selects the lower-level search heuristic according to 
the CMAB Epsilon-Decreasing strategy and move acceptance using acceptance criteria 
evaluation. HHFSHS is performed well in terms of convergence in uncertain problem 
space due to its adaptable low-level heuristic selection dynamically based on the CMAB 
Epsilon-Decreasing strategy. AGWOCS a hybrid meta-heuristic algorithm relatively 
performed well close to the proposed algorithm HHFSHS and performed well than 
IGWO and WOA as it overcomes the disadvantage of GWO local minima trap behavior 
with the advantage of CS to improve global search and avoid local minima. It also can be 
derived from result that the lowest function values of the different heuristics are in the 
order HHFSHS < AGWOCS < IGWO < WOA.

Based on the simulation result (refer Fig. 6), it is evidence that the completion time 
of offloading task increases with the size of the data increases and energy consumption 
increases with the size of the data increases, as more data need to be transferred from 
wireless device to edge server and get the processed data back which obviously increase 
the waiting time thereby consuming more energy in the wireless device. Our method 
HHFSHS is the suboptimal completion time and is suboptimal in energy consumption 
when the wireless device count is 30. Other algorithms like AGWOCS and IGWO and 
WOA relatively performed well when compared to HHFSHS, while other heuristics 
like PSO and BAT algorithms has not performed well so not considered for comparison 
here. From the result, it is evident that the task processing completion time and energy 
consumption is less for HHFSHS, due to its faster convergence to find the optimal solu-
tion in problem space compared to other Heuristics.

Experiment is done considering four different characteristics of applications like 
Argument Reality, HealthCare, Compute Intensive and Infotainment, with 3 differ-
ent workload distribution (i) 80% task offloaded to edge and 20% task in local com-
putation; (ii) 50% task offloaded to edge and 50% in local computation; and finally, 
(iii) 20% task offloaded to edge and 80% task in local computation. Results based 
on this setup is shown in Fig. 7. It is very clear that as more percentage of tasks are 
computed locally, it takes less processing time as there is no involvement of data 
transfer in the network to MES and no wait time. It also very clear that as more per-
centage of tasks are computed locally, it takes more energy, and it takes less energy 
when it offloads major percentage of task to edge server and get the job done.
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Based on Statistical Analysis (ref Table  3), it is evidence that proposed HHFSHS 
has low latency and energy consumption compared other meta-heuristics. Standard 
Error of Mean (SEM) is less for HHFSHS compared to other methods, which means 
it has smoother and consistent behavior in task offloading for different population 
samples. All these experimental result analyses provide evidence that hyper-heuris-
tic-based technique has overcome the disadvantage of individual heuristic by adap-
tively switching to better lower-level heuristic and adapting generically for different 
problem domains. By having a better convergence, the proposed HHFSHS algorithm 
able to performance better with reduced energy consumption and faster processing 
compared to other individual meta-heuristics algorithms.

6  Conclusion and future work
In this work, we analyzed a Hyper-Heuristic Framework using Stochastic Heuristic 
Selection (HHFSHS) for computation task offloading model with the goal to mini-
mize the latency and energy consumption optimization in MEC. Then, the formulated 
model is normalized to aid in improving the model even for multi-dimensions. The 
goal of the formulated model is to arrive at the minimum value. The proposed HHF-
SHS algorithm has been applied to solve the optimization problem. The experiment 
shows better results of HHFSHS approach compared to other heuristics algorithms. 
However, the algorithm proposed still can have better feedback for selection of low-
level heuristics. Since different lower-level heuristic are selected stochastically using 
CMAB Epsilon-Decreasing strategy, the results may vary based on the Epsilon value 
selection, Epsilon decreasing rate and acceptance criteria resulting in slightly varying 
result for each run.

Future work will be based on the proposed algorithm going to experiment with other 
Heuristic local search algorithms with online feedback mechanism using Deep Rein-
forcement Learning (DRL) and evaluate in Vehicular Edge Computing consider mobility 
as an additional parameter, since mobility is one of the key features affecting the task 
offloading and resource allocation in Vehicular Edge Network.
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