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Abstract 

In bearings-only localization, clustering-based methods have been widely used to 
remove spurious intersections by fusing multiple bearing measurements from differ-
ent observation stations. Existing clustering methods, including fuzzy C-mean (FCM) 
clustering and density-based spatial clustering of applications with noise (DBSCAN), 
must specify the number of clusters and the threshold for defining the neighborhood 
density, respectively, which are always unknown and difficult to estimate. Moreover, 
in dense radiation source scenes, existing clustering methods for removal of spurious 
intersections all deteriorate significantly. Therefore, we propose a novel density-based 
clustering method called K-M-DBSCAN, which combines the minimum K distance 
algorithm with Mahalanobis distance-based DBSCAN clustering. Firstly, K-M-DBSCAN 
uses minimum K distance algorithm for preprocessing to remove most of the spurious 
intersections and reduce the computational complexity of clustering. Mahalanobis dis-
tance-based DBSCAN is used for clustering and spurious intersections recognition. In 
order to adapt the large variations of sample density in clustering, we use Mahalanobis 
distance to define an explicit neighborhood of DBSCAN instead of traditional Euclidean 
distance. Simulation results show that the proposed K-M-DBSCAN performs better than 
FCM and DBSCAN in removing of spurious intersections.

Keywords:  Passive positioning, Mahalanobis distance, Density clustering

1  Introduction
Radar radiation source localization technology based on artificial intelligence and data 
mining has attracted more and more attentions [1–4]. Bearing only localization (BOL) is 
the earliest and most mature localization method in passive localization. It estimates the 
position of radar target by fusing multiple bearing measurements from different obser-
vation stations [5]. In passive localization system, due to the lack of distance information, 
BOL plays an important role in both military and civil applications, such as underwa-
ter surveillance [6–8], 3-D passive target tracking [9–11] and unmanned aerial vehicle 
path planning [12–15]. For multiple radar targets within the surveillance area and two or 
more observation stations involved in BOL, different bearing intersections without cor-
rect data association will cause serious spurious intersections problem [16–18], and the 
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number of spurious intersections will exponentially grow with the number of the obser-
vation stations and radar radiation sources. Recent advances have demonstrated that the 
clustering method can be utilized to remove the spurious target in BOL system.

Existing approaches for removal of the spurious intersections can be mainly divided 
into two kinds, including data association and clustering-based approaches. One of the 
most widely used data association approaches is using m-best assignment formulation 
[19] to solve a S dimension (S-D) assignment problem. By making appropriate modifica-
tions to the cost matrix and solving a series of modified copies of the initial problem, this 
method can be used to find the m-best (ranked) solutions to the data association prob-
lem [20, 21]. Michael Beard et al. [22] proposed two data association algorithms: Classi-
cal Bayesian Thread Association (CBTA) and Monte Carlo Thread Association (MCTA) 
to solve the problem of thread association in bearings-only tracking of multiple targets. 
These algorithms used single target bearings-only state estimators to calculate measure-
ment likelihood. Simulation results showed that MCTA algorithm is superior to CBTA 
algorithm. Some researchers proposed joint probabilistic data association method and 
multiple hypothesis tracking method, Kirubarajan et al. [23] combined probabilistic data 
association (PDA) and maximum likelihood method to estimate target motion param-
eters through batch processing to track low observable targets in passive sonar meas-
urement. However, this method requires a lot of calculation and is only suitable for a 
small number of radiation sources. Therefore, data association methods [24–26] are not 
robust and efficient in dealing with complex environments containing multiple targets in 
real time. They always suffer from the NP-hard problem and are unsuitable for real-time 
applications.

Another approach for removal of the spurious intersections is the clustering-based 
method. Two classical clustering methods including FCM clustering and DBSCAN clus-
tering are mostly widely used. Recent related research shows that FCM method combing 
with a correlation objective function performs well in removal of spurious intersec-
tions [27], which allows for class overlaps based on the objective functions. A correla-
tion-based FCM method assigns each sample with degrees of membership to multiple 
clusters. In order to circumvent the very high complexity of a brute-force solution to 
the data association problem of multiple-source localization, Reed et  al. [28] used the 
clustering of line of bearing (LOB) to estimate target position estimates and recursively 
updated the position estimates by matching the LOB measurements between sensors 
corresponding to the same target. Campello et al. [29] proposed an improved density-
based hierarchical clustering method for obtaining a “flat” partition consisting of only 
the most significant clusters (possibly corresponding to different density thresholds). 
The method provided a hierarchy of clusters from which can construct a simplified tree 
of significant clusters The main drawback of FCM is the number of clusters should be 
specified as a priori. In order to overcome the drawback of FCM, some researchers have 
proposed some density-based clustering methods, such as DBSCAN. Duan et  al. [30] 
proposed a local density-based clustering algorithm to overcome the serious defects of 
DBSCAN in processing the cluster with different local densities. The algorithm took the 
advantages of local outlier factor (LOF) to detect noise. Experiments showed that their 
method had better results than Ordering Points To Identify The Clustering Structure 
(OPTICS). Tran et al. [31] proposed an improved algorithm to overcome the problem 
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that the DBSCAN algorithm became unstable when detecting border objects of adjacent 
clusters. The improved DBSCAN has better robustness to data sets with connected clus-
ters, and its clustering results have nothing to do with the order of processing objects. 
In density-based clustering, Euclidean distance is widely used as a measure of correla-
tion between different samples. DBSCAN is capable of handling and identifying noise, 
finding clusters with arbitrary shapes, and automatically discovering the number of 
clusters. However, there are also drawbacks for DBSCAN to remove spurious intersec-
tions. Firstly, if the spurious intersections are not preprocessed before DBSCAN, it will 
increase the computational complexity and introduce much interference. More impor-
tantly, the performance may degrade significantly when large variations in sample den-
sity occur in real applications.

In order to overcome the drawbacks of DBSCAN method, we propose K-M-DBSCAN 
method for removal of spurious intersections. The K-M-DBSCAN has two advantages 
over DBSCAN. Firstly, we deploy the minimum K distance preprocessing method to 
reduce the interference caused by spurious intersections and also reduce the compu-
tation complexity of clustering. Secondly, M-DBSCAN uses Mahalanobis distance to 
define density of intersections instead of the traditional Euclidean distance. More spe-
cifically, two main parameters, including neighborhood radius and minimum number of 
neighborhood points, are determined based on Mahalanobis distance. Since Mahalano-
bis distance considers the probability distribution of intersections, M-DBSCAN has the 
ability to adapt large variations in intersection sample density, which is critical for effec-
tive removal of spurious intersections in a dense radiation source environment.

The remainder of this paper is organized as following. Section  2 gives the princi-
ple of BOL and problem formulation for the removal of spurious intersections and 
then describes the proposed clustering method, called K-M-DBSCAN. Section 3 gives 
the results and discussion to verify the effectiveness of the proposed method. Sec-
tion  4 introduces the time complexity of the three algorithms. Section  5 includes the 
conclusions.

2 � Methods
An overview of the proposed K-M-DBSCAN method is shown in Fig.  1. Solutions for 
the removal of spurious intersections using K-M-DBSCAN method can be divided into 
five steps after the intersections are generated. We first propose the minimum K distance 

Fig. 1  Overview of the proposed K-M-DBSCAN method for removal of spurious intersections
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algorithm to filter out some spurious intersections and thus reduce the interference and the 
computational complexity of clustering. The second step is to define neighborhood radius 
(eps) and calculate the density of each intersection based on Mahalanobis distance. Besides, 
we discuss another important parameter, minimum number of neighbor points ( minpts ) 
required. Thirdly, determine the core and accessibility of the given intersections. The core 
intersections are obtained if there are at least minpts intersections within its eps neighbor-
hood. Intersection accessibility is defined as being within an observed eps range, or through 
some dense intersections chains that are within eps distance from each other. In the fourth 
step, we regard the clusters formed by the core intersections and accessible intersections as 
the real target clusters, and the rest intersections as spurious clusters. Finally, use the meas-
urement error of angle to update the cluster center, and achieve the real target localization.

In this section, we first formulate the removal of spurious intersections problem in two-
dimensional BOL and then describe the details of the proposed K-M-DBSCAN method.

2.1 � Problem formulation

For simplicity, we describe target in two-dimensional plane with the bearing measurements 
received by two observing stations, as shown in Fig. 2.

The position of the radiation target is described by its two-dimensional Cartesian coor-
dinates. The bearing angles measured by observation stations Si

(

xi, yi
)

 and Sj xj , yj  cor-
responding to the target are θ(i)n  and θ(j)n , respectively, which can determine the n-th 
intersection 

(

xn, yn
)

 . The target localization [32, 33] can be given as

(1)tan θ(i)n =
yn − yi

xn − xi

Fig. 2  Geometry of BOL
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 Equations (3) and (4) can be obtained through simplification:

In fact, the actual BOL system involves multiple observation stations, whose bearing 
measurements will produce a large number of spurious intersections, as shown in Fig. 3. 
Assuming that there are s observing stations and t radiation sources, there are a total 
number of C2

s ∗ t2 intersections ( C2
s = s ∗ (s − 1)/2 ), of which C2

s ∗ t intersections are 
real targets and the rest are spurious intersections. It clearly shows that the density of 
real intersections near the real target is higher than those of the spurious targets. There-
fore, the method based on density clustering is feasible to remove spurious intersections.

2.2 � Minimum K distance algorithm for preprocessing

In order to delete some spurious intersections initially and reduce the computational 
complexity of clustering, we deploy the minimum K distance algorithm before density-
based clustering. The minimum K distance algorithm is inspired by the baseline least 
distance method [34]. The baseline least distance is a popular method to remove spuri-
ous intersections, which has low computational complexity and is insensitive to meas-
urement error of angle. However, the baseline least distance method only keeps one 
intersection pair for each bearing based on the minimum Euclidean distance. Though 
a large number of spurious intersections are deleted, it also deletes many real intersec-
tions. In contrast, the minimum K distance algorithm used in proposed K-M-DBSCAN 

(2)tan θ
(j)
n =

yn − yj

xn − xj

(3)xn =
yj − yi + xi tan θ

(i)
n − xj tan θ

(j)
n

tan θ
(i)
n − tan θ

(j)
n

(4)ŷn =

(

xi − xj
)

tan θ
(i)
n tan θ

(j)
n + yj tan θ

(i)
n − yi tan θ

(j)
n

tan θ
(i)
n − tan θ

(j)
n

.

Fig. 3  Distribution of intersections for three observation stations and two radiation sources
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algorithm retains K pairs of intersections with the least distance for each bearing. As a 
result, the minimum K distance algorithm filters out a considerable proportion of spuri-
ous intersections, while little real intersections are deleted.

The bearing line of the i-th observation station to the j-th target is recorded as Lij , and 
the bearing line of the m-th observation station to the n-th target is recorded as Lmn , and 
the intersection of Lij and Lmn is recorded as Xmn,ij.

Randomly choose a bearing line Lij as the reference line, all intersections on the Lij 
form a set �ij . The intersections of all bearing lines of the m-th ( m  = i ) observation 
station and Lij form a set Smn,ij

(

Smn,ij ⊆ �ij

)

 , with fixed i,  j, m and n = 1, 2, . . . ,NT  . 
Then traverse all intersections Xmn,ij(n = 1, 2, . . . ,NT ) in the set Smn,ij , and calcu-
late the minimum distance between Xmn,ij and the remaining points X in the set 
�ij

(

X ∈ �ij ,X /∈ Smn,ij

)

 . Each Xmn,ij will generate a minimum distance. Next sort all the 
minimum distances generated by Smn,ij , and select K minimum distance intersections to 
join the set P. After traversing all bearing lines, repeating above steps, and removing the 
repeated intersections, the generated P is the set of intersections after preprocessing. 
Implementation details of minimum K distance algorithm are given in Table 1.

2.3 � M‑DBSCAN for removal of spurious intersections

2.3.1 � Defining neighborhood radius based on Mahalanobis distance

There are two main parameters for density-based clustering method, including 
neighborhood radius and minimum number of neighborhood points. The former 
represents the area of the neighborhood elliptic region, while the latter determines 
the density of the intersections. For density-based clustering, setting of neighbor-
hood radius eps is critical for ultimate clustering results. If the value is too small, 

Table 1  Minimum K distance algorithm

Algorithm 1: Minimum K Distance Algorithm

Input: Number of observation stations NS; Number of targets NT; Bearing line 
Lij(i = 1, 2, . . . ,NS; j = 1, 2, . . . ,NT ) . Intersections set without preprocessing; Interested intersections pair K.

Output: Set of intersections after preprocessing P.

1 Mark all bearing lines as unprocessed

2 Randomly select an unprocessed bearing line Lij as the reference line, all intersections on Lij
 form a set, which is record as �ij

3 Mark Lij as processed

4 for all m,m = 1, 2, . . . ,NS,m �= i do

5 The set Smn,ij =
(

Xm1,ij , Xm2,ij · · ·
)

 of intersections formed by Lij and

 Lmn(n = 1, 2, . . . ,NT )

6 for all Xmn,ij ∈ Smn,ij do
7 Calculate the distance dmn,ij between point Xmn,ij and all other intersections X

 ( X ∈ �ij , X /∈ Smn,ij ), dmn,ij = min
{∥

∥Xmn,ij − X
∥

∥

}

8 end
9 Each loop in step 6 will generate a dmn,ij , sort all dmn,ij generated in step 6, then select

 the first K pairs of intersections with the smallest distance dmn,ij to add to P

10 end
11 Repeat steps 2-10, until there are no unprocessed bearings

12 Remove the repeated intersections in P

13 Output P
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intersections of the same cluster will be divided into multiple clusters, while too large 
value will make multiple clusters merged into one.

For neighborhood radius setting, the distance measurement criterion is a key affect-
ing factor. Mahalanobis distance criterion is effective to measure the similarity of two 
unknown sample sets and it can eliminate the interference of correlation between 
variables. Compared with traditional Euclidean distance criterion, we construct 
Mahalanobis distance criterion based on the probability distribution of intersections, 
which adapt the large variations in sample density. Since the measurement error of 
angle, positions of the observation stations and radiation sources are all considered, 
so the constructed Mahalanobis distance to calculate eps is more robust and effective 
to adapt the variations in the environment and measurement error of angle.

In order to define the neighborhood radius, we firstly give the derivation of the 
covariance matrix of localization error. Secondly, we use the covariance matrix to 
calculate the Mahalanobis distance and define an explicit neighborhood. Finally, we 
derive neighborhood radius based on the spatial probability density distribution of 
the intersections.

In passive localization systems, the localization error covariance matrix is an impor-
tant indicator of localization accuracy. Assuming that the measurement error of angle 
following a Gaussian distribution with zero mean, the localization error equation can be 
derived from Equations (1) and (2),

 Among them, θ(i)n  and θ(j)n  are the bearings of the observation station Si
(

xi, yi
)

 and sta-
tion Sj

(

xj , yj
)

 to the n target, respectively, and dθ(i)n  , dθ(j)n  represent the angle measure-
ment error of the observation station Si and Sj , respectively. In addition,

 The localization error equation is further expressed as

 where dV= [dθ
(i)
n , dθ

(j)
n ]T is the observation error vector, dXt = [dxn, dyn]

T is the tar-
get localization error vector, and dXs= [k

θ
(i)
n
, k

θ
(j)
n
]T is the site error vector. The coeffi-

cient matrix C can be expressed as

The covariance matrix of localization error is

(5)

�

dθ
(i)
n

dθ
(j)
n

�

=





− sin2 θ
(i)
n

yn−yi

cos2 θ
(i)
n

xn−xi

− sin2 θ
(j)
n

yn−yj

cos2 θ
(j)
n

xn−xj





�

dxn
dyn

�

+

�

k
θ
(i)
n

k
θ
(j)
n

�

(6)k
θ
(i)
n

=
sin2 θ

(i)
n

yn − yi
dxi −

cos2 θ
(i)
n

xn − xi
dyi

(7)k
θ
(j)
n

=
sin2 θ

(j)
n

yn − yj
dxj −

cos2 θ
(j)
n

xn − xj
dyj

(8)dV = CdXt + dXs

(9)C =





− sin2 θ
(i)
n

yn−yi

cos2 θ
(i)
n

xn−xi

− sin2 θ
(j)
n

yn−yj

cos2 θ
(j)
n

xn−xj




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 Among them,

where es represents the standard deviation of the site error. The covariance matrix of 
localization error is

The Mahalanobis distance is defined according to the covariance matrix of localization 
error, which can be expressed as the following formula:

where v represents two-dimensional coordination vector of a certain intersection, the 
mean vector µ is the coordination vector of the assumed real intersection, and � repre-
sents the covariance matrix of the localization error.

Assuming that a certain intersection is the real target, Mahalanobis distance can define 
an elliptical neighborhood of the intersection. We construct the spatial probability density 
distribution function of intersections by Mahalanobis distance. The distribution function of 
spatial probability density can be expressed as

where D is the Gaussian distribution dimension, the two-dimensional vector D = 2 . And 
the probability density distribution function can be rewritten as

Then, we can define the neighborhood radius by the probability density function. If the 
probability that a certain intersection falls outside the ellipse neighborhood is β , the 
neighborhood radius r0 can be calculated through the spatial probability distribution. 
According to the distribution function of probability density, the probability P is equiva-
lent to doing a double integral in the ellipse neighborhood ( x

2

a2
+

y2

b2
= r2),

where the neighborhood radius is r0 =
√

−2 log (1− β) when β(0 < β < 1) is fixed.

(10)� = E
[

dXt dX
T
t

]

= C
−1

{

E
[

dV dVT
]

+ E
[

dXs dX
T
s

]}

C
−T

(11)E
[

dV dVT
]

= diag
[

e2
θ
(i)
n
, e2

θ
(j)
n

]

(12)E
�

dXs dX
T
s

�

= diag





e2s
�

(xn − xi)
2 +

�

yn − yi
�2

e2s
�

�

xn − xj
�2

+
�

yn − yj
�2





(13)� =

[

e2x exy
exy e2y

]

(14)r =

√

[v − µ]T�−1[v − µ]

(15)p(x) = (2π)−D/2|�|−1/2 exp

{

−
1

2[v − µ]T�−1[v − µ]

}

(16)p(r) =
1

2π
|�|−1/2 exp

{

−
1

2r2

}

(17)P =

∫ 2π

0

∫ r0

0

1

2π
|�|−1/2 exp

{

−
1

2r2

}

(abr)dθdr
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Minimum number of neighborhood points minpts is another crucial parameter of den-
sity clustering, which has a great influence on clustering results. We deploy the math-
ematical expectation based on self-decay term [35, 36] to automatically determine the 
minpts parameter, and the expression is given as

where �(0 ≤ � ≤ 1) is the self-attenuation coefficient. In this paper, the value of � is 
between 0.1 and 0.3, n is the total number of intersections (including all real and spuri-
ous intersections remained after preprocessing), and Pi is the number of intersections in 
ellipse neighborhood.

2.3.2 � Implementation of M‑DBSCAN

M-DBSCAN algorithm does not require prior information about the number of clus-
ters. Moreover, two important parameters including minpts and eps can be well obtained 
according to the algorithm mentioned above. We construct the Mahalanobis distance 
criterion to measure the distance between intersections, which enables the adaption of 
large variations in cluster density and measurement error of angle.

M-DBSCAN can be described with respect to the directed eps neighborhood graph, 
which is designed to discover clusters of arbitrary shape with a fixed eps and a density 
threshold minpts . Some concepts and terms to explain M-DBSCAN can be defined as 
follows:

Definition 1  An intersection p is a core intersection which is defined as intersections 
whose eps neighborhood size is greater than or equal to minpts.

Definition 2  An intersection p is accessible intersection which is defined as being 
within an observed eps range, or through some dense intersections chains that are 
within eps distance from each other.

Definition 3  An intersection p is noise if it is neither a core intersection nor an acces-
sible intersection. This means that noise is not part of any clusters.

Implementation of proposed M-DBSCAN algorithm is given in Table 2. First, we ran-
domly choose an intersection p and traverse all points in its eps neighborhood. If p is a 
core intersections, it will be marked as a new cluster. This cluster is extended by retriev-
ing all accessible intersections corresponding to p and further merges these intersections 
into the same cluster. This process is repeated until no clusters are found which means 
all intersections are observed. Another possibility is that p is an accessible intersection 
grouped into other clusters. If the density of p is less than minpts , it will be marked as 
noise.

2.4 � Target localization

Based on the previous section, we can distinguish real target clusters and spurious 
target clusters. Target localization estimation is based on real target clusters. We first 

(18)MinPts =

[

1− �

n

] n
∑

i=1

Pi
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calculate the cluster center, but it cannot be directly used as the localization result 
due to some intersections with large errors. Hence, the measurement error of angle is 
used to update the cluster center and achieve the real target localization.

Suppose that there are a total of w real target clusters. That is, the M intersections 
are divided into w categories {C1,C2, . . . ,Cw} , and each type Ci contains a lot of inter-
sections. The cluster center can be given as follows [37, 38]

where card(Ci ) represents the total number of samples in the cluster, and uie is used to 
represent whether the intersection 

(

xe, ye
)

 is in Ci . And uie is given by

However, cluster Ci may contain noisy intersections with large errors. Measurement 
error of angle is used to eliminate the noisy intersections and then update the cluster 
center. The implementation process is given as follows.

First, according to the localization equation, the angle θ̃ between the estimated 
localization 

(

xi, yi
)

 and the observation station 
(

x̃i, ỹi
)

 can be calculated with

So θie between the intersection 
(

xie, yie
)

 and the observation station 
(

x̃i, ỹi
)

 in the cluster 
can be expressed as

(19)
(

x̃i, ỹi
)

= 1/card(Ci)

M
∑

e=1

uie
(

xe, ye
)

, i = 1, 2, . . . ,w

(20)uie =

{

1,
(

xe, ye
)

∈ Ci

0,
(

xe, ye
)

/∈ Ci

(21)θ̃ = arctan

(

ỹi − y

x̃i − x

)

Table 2  M-DBSCAN algorithm

Algorithm 2:M-DBSCAN algorithm

Input: A data set X containing n intersections, neighborhood radius eps, minimum number minpts , Mahalano-
bis distance matrix D.

Output: Clustering set C, noise parameter is noise.

1 Mark all intersections as untraversed

2 Randomly select an unobserved intersection p

3 Mark point p is processed

4 If the eps neighborhood of p has at least minpts intersections (core intersections) based on D

5 Create a new cluster C and add p to C

6 Create a set N that contains all intersections in the eps neighborhood of p

7 for all q ∈ N do
8 If q is unprocessed

9 Mark q as processed

10 If the eps neighborhood of q has at least minpts points, add these intersections to N

11 If q is not yet a member of any cluster, add q to C

12 end
13 Output C

14 Otherwise, mark p as noise (spurious target cluster)

15 Until there are no unobserved intersection
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Secondly, compare the calculated θ̃ with θie , if the absolute value of the difference is 
greater than the measurement error of angle σ , then remove 

(

xie, yie
)

 from this cluster. 
We can use the formula to express as

Finally, update the intersections in the cluster, and calculate the cluster center again 
according to formula (17), and use it as the target localization result. This algorithm can 
recognize and delete the noisy intersection samples of the cluster and improve the local-
ization accuracy.

3 � Results and discussion
In this section, performance of the proposed K-M-DBSCAN is compared with DBSCAN 
and FCM algorithm via Monte Carlo (MC) simulations. The localization precision 
threshold mentioned in this section is defined as a localization error distance threshold. 
The localization error distance is defined as Euclidean distance between the estimated 
target localization results and the true target positions. We consider target localiza-
tion result of a cluster is a real intersection if localization error distance is less than the 
localization precision threshold. Otherwise, the target localization result of a cluster is 
a spurious intersection. We adopt the recall and precision as the performance metrics. 
Precision is the fraction of relevant instances among the retrieved instances, while recall 
is the fraction of relevant instances that were retrieved. When clustering returns Ni clus-
ters that we estimate via i th MC simulation, only Ri of which are relevant, while failing 
to return Ti additional relevant clusters. We can define the recall and precision obtained 
from M = 10000 MC simulations as follows:

Four scenarios are carried and discussed to demonstrate the superiority of the proposed 
algorithm. Scenario 1 discusses dense radiation source; Scenario 2 proves that our algo-
rithm adapts variations in sample density caused by coexistence of far and near radiation 
sources due to the contribution of Mahalanobis distance criterion. Variation in measure-
ment error of angle is also taken into account in scenario 3. In scenario 4, variation in 
observation station layout is discussed to prove the robustness and adaptability of the 
proposed algorithm.

3.1 � Scenario 1: dense radiation source

The distribution of radiation sources and observation stations on the two-dimensional 
plane is shown in Fig.  4. The coordinates of five radiation source are (86,74), (83,77), 
(80,80), (77,83), (74,86) with the unit km. The coordinates of three observation stations 

(22)θie = arctan

(

ỹi − yie

x̃i − xie

)

, i = 1, 2, . . . , k; e = 1, 2, . . . ,M

(23)


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�

�

�
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�

�

�
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�
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�

�

�
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�

�

�
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i=1 Ri
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are (15,0), (30,0), (45,0), and assume that each station measure five bearing samples each 
time.

Figure  5 compares recall and precision performance obtained by K-M-DBSCAN, 
DBSCAN and FCM, respectively. When the measurement error of angle is 0.2 degrees, 
the recall and precision of spurious intersections in K-M-DBSCAN can still reach more 

Fig. 4  Coordinates of observation stations and radiation sources

Fig. 5  Comparison of recall and precision versus the measurement error of angle
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than 98.5%, while recall and precision of real intersections can reach more than 95%. 
In contrast, the precision of real intersections in DBSCAN is less than 70%, while FCM 
is less than 75%. When the measurement error of angle is 0.14 degrees, the proposed 
algorithm can delete all spurious intersections and identify all real targets. In contrast, 
the precision in K-M-DBSCAN of real intersections is 0.5% and 15% higher than those 
of DBSCAN and FCM, respectively. The performance of the K-M-DBSCAN in removal 
of spurious intersections is significantly better than the other two compared algorithms.

Figure 6 compares localization precision threshold of different clustering when meas-
urement error of angle is 0.15 degrees. As the localization precision threshold decreases, 
the performance of all the three algorithms gradually increases. When the localization 
precision threshold is 0.6 km, the four performance indicators of the K-M-DBSCAN are 
all close to 100%. Taking precision of real intersections as an example, precision of K-M-
DBSCAN is higher than DBSCAN by nearly 10% and higher than FCM by about 30%.

In order to evaluate effects of the radiation source spacing on the removal of spuri-
ous intersections and localization performance, we set the coordinates of five radiation 
source to (80+ 2 ∗ d, 80− 2 ∗ d) , (80+ d, 80− d) , (80− d, 80+ d) and (80, 80), respec-
tively, with d = 1.6 : 0.2 : 3 (km). Figure 7 plots four performance indicators of the pro-
posed K-M-DBSCAN. When d=2.2 km, both the recall and precision can reach more 
than 90%; when d=2.6 km, both the recall and precision can reach more than 96%. It is 
worth mentioning that the distance between the observation station and the radiation 
source is about 100 km. When d=2.2 km, the proposed algorithm can perform well. We 
can find that, although the radiation source is relatively dense, the proposed algorithm 
can still have superior performance.

Fig. 6  Comparison of recall and precision versus the localization precision threshold
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3.2 � Scenario 2: coexistence of far and near radiation sources

Change the position of radiation sources and observing stations, and the coexist-
ence of far and near radiation sources is shown in Fig. 8a. In this scenario, the iden-
tification of distant targets is more difficult than nearby targets due to the scattered 

Fig. 7  Comparison of recall and precision versus radiation source spacing

Fig. 8  a Distribution of observation stations and radiation sources; b clustering results of K-M-DBSCAN; c 
clustering results of DBSCAN; d clustering results of FCM
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intersections. The intersections of nearby targets are densely distributed, which 
makes spurious clusters to be confused with each other. According to the clustering 
results in Fig. 8b–d, the K-M-DBSCAN can correctly identify all five target clusters 
including almost all real intersections. Although the DBSCAN algorithm also recog-
nizes five targets, each target cluster only contains part of the real intersections, such 
as target 4 and target 5. Obviously, the performance of DBSCAN and FCM becomes 
worse when near and far radiation sources coexist, but the proposed K-M-DBSCAN 
almost avoids this problem. Because Mahalanobis distance takes into account the 
probability distribution of real intersections, the clusters generated by K-M-DBSCAN 
are elliptic and adaptively include almost all true intersections. In contrast, the clus-
ters of DBSCAN are circular based on Euclidean distance and cannot adapt well the 
density variations caused by coexistence of far and near radiation sources.

The recall and precision of the three algorithms are given in Fig. 9. When the locali-
zation precision threshold is 0.5 km, the recall and precision of spurious intersections 
in the K-M-DBSCAN can reach more than 99%, while DBSCAN is lower than 97%. 
The recall and precision of real intersections in the K-M-DBSCAN reach about 97%, 
while those of DBSCAN can only reach about 87%. The performance of FCM is signif-
icantly worse than that of DBSCAN algorithm. Simulations verify that the proposed 
algorithm has superior performance in an environment where far and near radiation 
sources coexist. This can be contributed that the constructed Mahalanobis Distance-
based neighborhood radius definition adapts variation in intersections density, which 
is caused by the coexistence of far and near radiation sources.

Fig. 9  Comparison of recall and precision versus the localization precision threshold
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3.3 � Scenario 3: variation in measurement error of angle

In this subsection, we deploy the radiation source and observation station according 
to Fig. 4, and the measurement errors of three observation stations are 0.25, 0.10 and 
0.10 degrees, respectively. Variation in measurement error of observation stations will 
result in different intersection densities in different directions. According to the previ-
ous statement, Mahalanobis distance is more suitable for dealing with density variations 
by following the probability distribution of intersections. As shown in Fig. 10, when the 
localization precision threshold is 0.5 km, the recall and precision of spurious intersec-
tions in the K-M-DBSCAN can reach more than 98%, and the recall and precision of 
real intersections can reach 95%; for FCM, when the localization precision threshold is 
0.5 km, the recall and precision of spurious intersections are lower than 95%, and the 
recall and precision of real intersections are lower than 80%. These prove the superiority 
of Mahalanobis distance in K-M-DBSCAN, which can better deal with large variations 
in cluster density. With the increase in localization precision threshold, K-M-DBSCAN 
curve and DBSCAN curve become close to each other, while FCM curve is different 
from them. It can be seen that the increase in localization precision threshold can hardly 
overcome the defect of FCM, whose clustering number needs to be estimated and cor-
rected. Compared with the DBSCAN and the FCM, our algorithm overcomes large vari-
ations in cluster density caused by different measurement error of angle.

3.4 � Scenario 4: variation in observation station layout

The Cartesian coordinates of the observation stations in the first three scenarios remain 
fixed. In order to better verify the robustness and adaptability of our algorithm, three 

Fig. 10  Comparison of recall and precision versus the localization precision threshold
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different observation station layouts are given and compared, as shown in Fig. 11. For 
layout 1, the coordinates of the observation station are (15,0), (30,0) and (45,0); for lay-
out 2, the coordinates of the observation station are (30,15), (30,0) and (45,0); for layout 
3, the coordinates of the observation station are (15,15), (30,0) and (45,0), respectively.

The shape of the intersection distribution is different for different layouts, and this 
is a phenomenon of large variations in cluster density. The K-M-DBSCAN algorithm 
is still effective in solving this problem as shown in Fig. 12. When the measurement 
error of angle is 0.15 degrees and the localization precision threshold is 0.5  km for 
K-M-DBSCAN, the precision of the three station layouts can reach more than 96%, 
and the difference between them is less than 5%; when the localization precision 
threshold is 0.4 km, the precision of layout 3 is close to 98%, and the other two layouts 
also exceed 93%. When the localization precision threshold of DBSCAN is 0.5  km, 
only the layout 3 has a precision of more than 96%, and the other two algorithms are 
less than 90%. The difference between layout 1 and layout 2 is close to 10%; when the 
localization precision threshold is 0.4 km, the precision of layout 3 is about 96%, and 
the other two layouts are both less than 80%. When localization precision threshold 

Fig. 11  Distribution of observation stations in three ways

Fig. 12  Change of the precision of real intersections with localization precision threshold
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of FCM is 0.5  km, the precision is all less than 80%. These results suggest that the 
performance of the proposed algorithm is better than the FCM and DBSCAN in the 
same layout. Moreover, K-M-DBSCAN can better adapt to the variations in the layout 
of observation stations.

4 � Time complexity analysis
In Sect.  3, we compared the localization performance of three algorithms: K-M-
DBSCAN, DBSCAN and FCM. The following is a comparison of the calculation time 
of a single location estimation of the three positioning algorithms.

Let the number of observation stations is NS and the number of targets is NT. 
The number of bearing lines is NS ∗ NT  . The total number of intersections is 
C2
NS ∗ NT

2 = NS(NS−1)
2 NT 2.

First analyze the minimum K distance algorithm. From Table 1, we can get that the 
number of cycles in step 4 is NS − 1 . The maximum cycles in step 6 is NT, and the 
number of cycles in step 11 is NS ∗ NT  , so the time complexity of the algorithm is 
about O[(NS− 1) ∗NT ∗NS ∗NT] = O

[

NS(NS− 1)NT2
]

.
Preprocess retains K pairs of intersections for each bearing. Therefore, there are at 

most K ∗ NS ∗ NT  intersections in the input of M-DBSCAN algorithm. From Table 2, 
we can get the number of cycles in step 7 is at least Minpts (Minimum neighbor points 
of the cluster). And the number of cycles in step 15 is K ∗ NS ∗ NT  . The time com-
plexity of the M-DBSCAN is about O

(

K∗NS∗NT∗Minpts
)

.
The input of DBSCAN has NS(NS−1)

2 NT 2 intersections. And the time complexity of 
M-DBSCAN and DBSCAN can be regarded as the same. So the time complexity of 
the DBSCAN is about O

(

NS(NS−1)
2 NT2Minpts

)

.

The input of FCM has NS(NS−1)
2 NT 2 intersections. The clusters number of FCM is 

NT, the minimum number is Minpts , the maximum number of iterations is NI [39]. 
The time complexity of the FCM is about O

(

NS(NS−1)
2 NT3NI

)

.

The summary of algorithm time complexity is in Table 3.
In Sect.  3, NS=3, NT=5, repeat measurement 50 times for each bearing line. Set 

K=3 in the minimum K distance algorithm. Minpts can be calculated by the Mahalano-
bis distance criterion in the M-DBSCAN algorithm. Set Minpts=125 in the DBSCAN 
algorithm. Set the number of iterations NI to 15 under the premise of ensuring that 
Jm can converge in the FCM of algorithm. The simulation computer configuration is 
as follows: Intel Core i7-12700F 2.1 GHz, 48.0 GB of DDR5 RAM, Windows 10 OS. 
Average time required for each position estimation is shown in Table 4.

Table 3  The time complexity of algorithm

Algorithm Time complexity

Minimum K distance O
[

NS(NS− 1)NT2
]

M-DBSCAN O
(

K∗NS∗NT∗Minpts
)

DBSCAN O
(

NS(NS−1)
2

NT2Minpts

)

FCM O
(

NS(NS−1)
2

NT3NI
)
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Preprocessing by the minimum K distance algorithm reduces the number of inter-
sections, so the consumption time of the M-DBSCAN algorithm is less than that of 
DBSCAN.

5 � Conclusion
To handle the spurious intersections problem in BOL, this paper proposes a novel 
clustering method called K-M-DBSCAN. Compared with existing FCM and DBSCAN 
clustering methods, the proposed K-M-DBSCAN performs much better for removal 
of spurious intersections. The proposed method can not only adapt to the distribu-
tion of dense radiation source and the coexistence of far and near radiation sources, 
but also solve the problem of large variations in cluster density caused by different 
measurement error of angle. There are two reasons for this improvement. The first 
one is we construct Mahalanobis Distance-based density clustering, which follows the 
spatial probability distribution of intersections and enables to adapt the variations in 
cluster sample density. The second reason is that the deployed minimum K distance 
algorithm for preprocessing to filter out some spurious intersections, which reduce 
the interference and calculation complexity to clustering to a certain extent. Simula-
tion results show that K-M-DBSCAN can effectively remove spurious intersections 
and still has a high recognition for the target when the localization precision thresh-
old is 0.5 km. The precision of spurious intersections can reach more than 98%, and 
the precision of real intersections can reach more than 95%. Simulation results also 
verify the robustness of K-M-DBSCAN with different layout of observation stations.
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