
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH

Ye and Zhang ﻿
EURASIP Journal on Advances in Signal Processing         (2023) 2023:49  
https://doi.org/10.1186/s13634-023-00999-z

EURASIP Journal on Advances
in Signal Processing

A dynamic few‑shot learning framework 
for medical image stream mining based 
on self‑training
Zhengqiang Ye1 and Wei Zhang2* 

Abstract 

Few-shot semantic segmentation (FSS) has been widely used in the field of informa-
tion medicine and intelligent diagnosis. Due to the high cost of medical data collection 
and the privacy protection of patients, labeled medical images are difficult to obtain. 
Compared with other semantic segmentation dataset which can be automatically gen-
erated in a large scale, the medical image data tend to be continually generated. Most 
of the existing FSS techniques require abundant annotated semantic classes for pre-
training and cannot deal with its dynamic nature of medical data stream. To deal with 
this issue, we propose a dynamic few-shot learning framework for medical semantic 
segmentation, which can fully utilize the features of newly-collected/generated data 
stream. We introduce a new pseudo-label generation strategy for continuously gen-
erating pseudo-labels and avoiding model collapse during self-training. Furthermore, 
an efficient consistency regularization strategy is proposed to fully utilize the limited 
data. The proposed framework is iteratively trained on three tasks: abdominal organ 
segmentation for CT and MRI, and cardiac segmentation for MRI. Experiments results 
demonstrate significant performance gain on medical data stream mining compared 
with the baseline method.

Keywords:  Information medicine, Few-shot learning, Semantic segmentation, Data 
steam mining

1  Introduction
Medical image segmentation is envisioned as a promising technique for future informa-
tion medicine, as it has great potential in computer-assisted diagnosis, improving diag-
nostic accuracy and efficiency. One of the critical targets of medical image segmentation 
is to isolate the necessary areas, such as the brain or the lung, from raw image data, 
and then remove unuseful regions, such as the air. The images tend to be multi-modal, 
such as computerized tomography (CT), magnetic resonance imaging (MRI) and other 
scanned images. These identified/extracted regions of interest can be further used for a 
particular research or diagnosis, providing a more precise analysis of anatomical data as 
well as helping clinicians make an accurate diagnosis.
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Early medical image segmentation researches mainly focus on model-driven 
approaches, such as template matching techniques, edge detection and statistical shape 
models. An edge detection algorithm based on mathematical morphology was proposed 
in  [1], which achieved an initial segmentation on lung CT images. Machine learning 
techniques, such as support vector machines (SVMs) and Markov random fields (MRF), 
were also applied in this field, as the research works in  [2] that focused on brain MRI 
and  [3] that segmented body data.

In recent years, the development of deep learning and convolutional neural networks 
(CNN) has drawn researchers’ attention due to their strong ability to extract and rep-
resent image features. With the help of deep learning, medical image segmentation 
has made great progress and also becomes a hot topic in the field of computer vision. 
These methods can be categorized into supervised learning, semi-supervised learning, 
and unsupervised learning on the basis of the proportion of labeled data. Among these 
methods, supervised learning methods gain the most popularity. The widely-imple-
mented framework includes fully convolution network (FCN) [4], U-Net [5], ResNet [6] 
combined with some useful techniques such as skip connection and model cascade. 
Although supervised learning achieves high accuracy, it has a huge demand for a large 
amount of labeled data and high-quality labels. However, in the field of medical image 
segmentation, it is usually difficult and expensive to build a large-scale dataset.

Few-shot learning (FSL), compared with fully supervised learning, is able to carry on 
the segmentation of incomplete or imperfect datasets. In the field of medical image seg-
mentation, FSL, or one-shot learning is viewed as an important technique to compen-
sate for the lack of large-scale high-quality labels [7]. Among these types of methods, 
self-training strategies with pseudo-labels have received lots of interest in FSL areas. 
Pseudo-label method leverage models trained by labeled data to predict pseudo-labels 
for unlabeled data, and then retrain the models on pseudo-labeled and labeled datasets. 
The common strategies such as data augmentation [8, 9] have also achieved a significant 
performance improvement. Nevertheless, these methods still require large amount of 
data for pre-training and generate high-quality pseudo-labels. Most importantly, these 
models are designed for pre-generated static datasets. When the labels are dynamically 
generated in the form of the data stream, these methods failed to leverage the features 
of newly-generated data. However, in the field of information medicine, both the new 
image and labels tend to be continuously generated. Taking the small number of high-
quality labels into consideration, it’s important for the models to dynamically adjust and 
learn the features from the data stream.

To deal with this issue, we propose a dynamic FSL framework for medical semantic 
segmentation, which can fully utilize the features of the newly-generated data stream. 
The medical image data is continuously collected from the medical information system, 
based on which the labels are dynamically generated. Then, we propose a few-shot self-
training framework to utilize unlabeled data, increasing the generalization performance 
of the semantic segmentation model. The common training objective of the self-training 
method is the cross-entropy loss, which is calculated on generated pseudo-labels and 
softmax probabilities of unlabeled data. By iteratively generating pseudo-labels for the 
unlabeled sequences and retraining the network with pseudo-labels, the model can 
gradually learn the feature expressions of unlabeled data without additional annotation. 
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However, both the pseudo-label generation and the predictions of unlabeled data rely on 
the accuracy of softmax probability scores. When the scores are not accurate enough, 
they may lead to wrong pseudo-labels and wrong predictions. The negative feedback of 
both even brings about training collapse.

To overcome the limitations of conventional few-shot self-training methods, we 
decouple the pseudo-label generation and unlabeled data predictions to alleviate mutual 
interference. First, we introduce a novel pseudo-label generation strategy that utilizes the 
proxy-based distance instead of the softmax probability. We project the features into an 
embedding space to generate more accurate pseudo-labels as well as avoid negative feed-
back to the model. Second, to capture the temporal correlations in unlabeled sequences, 
we augment the unlabeled data by several different operations and then recombine them 
before prediction output. The proposed augmentation-and-recombination strategy 
not only improves the stability of the framework but also alleviates over-segmentation 
errors.1 The major novelties of this article can be summarized as follows.

•	 We propose a dynamic FSL framework for medical semantic segmentation. The pro-
posed framework is specially designed for medical data stream mining where medi-
cal images are continuously generated for model training and intelligent diagnosis.

•	 We propose a novel self-learning algorithm in order to eliminate the requirement for 
large-scale annotations. We devise a proxy-based pseudo-label generation strategy 
that generates pseudo-labels in the embedding and presents an efficient consistency 
regularization strategy, augmentation-and-recombination, to exploit pixel-wise cor-
relations on unlabeled images.

•	 The proposed framework is iteratively trained and evaluated on three tasks: abdomi-
nal organ segmentation for CT, abdominal organ segmentation for MRI and cardiac 
segmentation for MRI. Experiments results demonstrate significant performance 
gain on the medical data stream for semantic segmentation compared with the base-
line methods.

This paper is organized as follows: Sect.  briefly introduces the background and related 
works. In Sect.  , the proposed dynamic medical image stream mining framework is 
introduced and analyzed. Section  further proposes the few-shot medical image segmen-
tation algorithm based on self-training. Experiments and discussion are shown in Sect. . 
Section  presents conclusions.

2 � Related work
2.1 � Medical semantic segmentation

With the rapid development of deep learning, semantic segmentation has made a break-
through. Segmentation is an important processing step in natural image scene understand-
ing and medical image analysis, image-guided intervention, radiotherapy or improved 
radiology diagnosis. A large number of depth learning methods have been introduced in the 

1  Note that semantic segmentation focus on the pixel-level classification that assigns a corresponding category to each 
pixel in an image. Compared to semantic segmentation, instance segmentation not only needs to achieve pixel-level 
classification but also needs to distinguish instances on the basis of specific categories. In this paper, we only focus on 
semantic segmentation.
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literature, including X-ray, visible light imaging (such as color dermatoscopy images), mag-
netic resonance imaging (MRI), positron emission tomography (PET), computer tomog-
raphy (CT) and ultrasound (such as echocardiography). However, due to the low contrast 
and insufficient semantic information of medical images, many methods are still difficult 
to achieve good segmentation results in medical images. In the field of medical image seg-
mentation, algorithms can generally be divided into two categories: fully supervised learn-
ing methods  [10–12] and semi-supervised learning methods  [13–16]. The former makes 
the model form the memory of features by using the labeled data to train the model [17]. 
For semi-supervised medical image segmentation, FSS is an important category as it only 
requires a limited number of labeled samples [14–16]. However, the existing FSS methods 
are incapable of exploiting the data stream or treating small-scale labels.

2.2 � Few‑shot learning

Few-shot learning (FSL) is of great significance and challenge in the field of machine learn-
ing and deep learning. As humans, we can build knowledge of a new object from just one or 
more images and identify it in other images. In contrast, most advanced machine learning 
or deep learning algorithms rely on a large amount of data training to achieve better perfor-
mance. However, due to a range of factors such as privacy, security, or the high labeling cost 
of data, many real-world scenarios (such as medicine, military, and finance) do not have 
the conditions to obtain enough tagged training samples. Therefore, the implementation 
of FSL becomes an important task in the field of machine learning or deep learning [18]. 
With the booming development of in-depth learning, especially the great success of CNN 
[6, 19] in visual tasks, many FSL researchers began to shift their attention from non-depth 
models to depth models. In 2015, by proposing a twin convolution network, [20] took the 
lead in incorporating deep learning into the solution of FSL problems by learning category-
independent similarity measures in paired samples, which also means a new era for FSL. 
Subsequent FSL methods take full advantage of the deep neural networks in feature rep-
resentation and end-to-end model optimization to solve FSL problems from different per-
spectives, including data enhancement [21], metric learning [22] and meta-learning [23, 
24].

2.3 � Data stream mining

The requirement of mining stream data becomes essential to obtain valuable knowledge. 
Data stream mining refers to mining the data in real-time by storing, processing, and 
extracting feasible knowledge that can help in decision-making and understanding some 
phenomenal events  [25]. Many data analysis techniques can help with studying stream 
data, such as data clustering [26] and classification [27]. Compared with conventional data 
processing, these methods applied on data stream mining processes and updates data as it 
comes one by one based on their updating features [28–30].

3 � Proposed dynamic medical image stream mining framework
Figure  1 demonstrates our proposed framework, aiming to dynamically exploit and 
explore the collected medical data stream to achieve semantic segmentation. The frame-
work consists of three layers: the data layer, the model layer and the application layer, 
respectively.
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The main function of the data layer is to collect raw data, store the data stream and inte-
grate the corresponding labels. Note that the labels are from both model generation (pseudo 
labels) and manual annotation (real labels). Compared with other segmentation tasks where 
a big batch of labels can be automatically generated, the medical labels are gradually gener-
ated and keep dynamic in the framework. The data stream is continuous and multi-modal, 
thus requiring the data layer dynamically integrate the labels with the images.

In the model layer, semantic segmentation models are implemented based on FSL, where 
various techniques, such as pre-training and self-training, can be utilized. The model also 
outputs pseudo labels and transmits them to the data layer. The newly-annotated or newly-
collected data can also be utilized by the model with a continuous training process. The 
segmentation results outputted by the model layer are then delivered to the application 
layer for various uses.

The application layer takes the segmentation results as the input, and then utilizes the 
results for corresponding applications designed for specific tasks, such as segmentation as 
a straightforward usage, intelligent diagnosis and medical case management. The different 
usage of the tasks raise different requests for the model, thus the model is also optimized 
and advanced according to the feedback of the application layer. In this paper, we focus on 
the task of semantic segmentation, which is often an initial task of various further tasks.

4 � Proposed few‑shot medical image segmentation algorithm based 
on self‑training

4.1 � Preliminaries

In the case of fully-supervised (FS) medical semantic segmentation, a batch of medical 
images I = {It}

k
t=1 are fully annotated with annotated labels Y = {Yt}

k
t=1 , where It and Yt 

denotes the tth image and its mask, respectively. Training on the FS action segmentation 
models can be formulated as minimizing the following loss function:

where N indicates the number of images. f (·) represents the feature extraction proce-
dure. H(·) denotes the cross-entropy loss function, calculated by the ground truth yt and 

(1)LFS =
1

N

k

t=1

H(c(f (It)),Yt)

Fig. 1  Overview of the proposed dynamic medical image stream mining framework
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the predicted probabilities that are inferred by c(·) . Note that the cross-entropy loss is 
calculated on pixel-wise on each image.

To exploit unlabeled data to improve generalization performance, we consider few-shot 
semantic segmentation with self-training. Accordingly, the loss function can be reformu-
lated as follows:

where Il and Iu refer to the batch of the labeled and unlabeled data, respectively. Ŷu indi-
cates the pseudo-labels of the uth unlabeled image.

In this work, we develop a self-training framework to exploit the unlabeled data, as shown 
in Fig. 2. It includes two important parts: a proxy-based pseudo-label generator for generat-
ing pseudo-labels, and the other is an augmentation-and-recombination module (ARM) for 
learning unlabeled data. The former is used to generate higher-quality self-training pseudo-
labels Ŷu by projecting the output features of the segmentation network into the embedding 
space. The latter can be regarded as a novel data augmentation method for unlabeled data 
and a stable self-training framework. We introduce the two components in detail in the fol-
lowing sections.

(2)LSS =
1

Nl

∑

It∈Il

H(c(f (Il)),Yl)+
1

Nu

∑

It∈Iu

H(c(f (Iu)), Ŷu)

Fig. 2  Overview of the proposed self-training method for medical semantic segmentation. It mainly 
contains two parts. (1) Proxy-based pseudo-label generator (top half ): we input the unlabeled frames into a 
momentum model, project the features into embedding space by e(·) , and then generate pseudo-labels ŶU 
according to its distance to each proxy. (2) Augmentation-Recombination Module (bottom half ): we split the 
unlabeled sequences into augmented images by different augmentation methods, such as cropped, rotate, 
and color jittering, and then input them to the model. Through the classifier c(·) and recombination, we 
obtain the prediction. Finally, we calculate the cross-entropy loss on Ŷt and pt . Note that the proxy
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4.2 � Proxy‑based pseudo‑label generator

It is crucial to obtain the appropriately selected pseudo-labels to exploit the unlabeled 
data the self-training process. Typical self-training strategies suggest the unlabeled 
data with higher softmax probability scores according to a fixed confidence threshold:

where pt = c(f (It)) is the softmax probability of It belonging to the mask, given by

 where G(·) denotes the operation of selecting the pixel with the highest score as the 
pseudo-label. However, the predicted pt is not necessarily accurate, especially on the 
medical semantic segmentation task where the predicted accuracy is relatively low, 
which causes excessive noise in pseudo-labels. On the other hand, the wrong pseudo-
labels will lead to a worse model since the model is optimized based on the cross-
entropy loss H(pt , Ŷt) , which in turn, leads to worse pseudo-labels. The high correlations 
between pt and Ŷt result in that small errors can be easily amplified. Such malignant neg-
ative feedback brings about instability in self-training, even making the training collapse.

Embedding space. To address the above issues, we try to decouple the inputs of 
cross-entropy loss, pt and G(pt) , to alleviate the mutual interference. Specifically, 
we input the feature map f (It) before the final prediction layer of the segmentation 
network into an additional projection branch e(·) , and generate an embedding vec-
tor e(f (It))) through two-layer convolution to project the feature into an embedding 
space, as illustrated in Fig. 2. This projection branch stops back-propagation during 
training, so as to avoid affecting the parameters of the original model. In the embed-
ding space, each class will generate a corresponding proxy embedding, which is used 
to approximate the position of this class in the embedding space. Therefore, we pro-
pose to utilize a proxy-based distance score to replace the softmax probabilities score:

where ρt is the proxy-based distance score of the mask, calculated according to the dis-
tance between e(f (It)) and the proxy µc . This is based on the practical assumption that 
similar input data always have similar feature representations. In the embedding space of 
the mask, we calculate an anchor point as the proxy which can be used as a representa-
tive of all samples. If the distance between e(f (It)) and µc is close, it’s more likely that 
they belong to the same class. More concretely, we adopt cosine distance to measure the 
embedding distance:

To simplify the notation, we drop the full e(f (It)) notation and use et to denote the 
embedding of It.

Then, the proxy-based distance score can be calculated as:

(3)Ŷt = G(pt),

(4)pt =
exp c(f (It))

exp
∑

It∈I
c(f (It))

,

(5)Ŷt = G(ρt),

(6)d(et , ek) = 1−
et · ek

||et || · ||ek ||
.
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Proxy calculation. Instead of manually setting the proxies, we regard µc as a learnable 
parameter. The network automatically updates it during the training process without our 
manual calculations. Motivated by [31], we try to make the proxy µc more similar to 
the pixel belonging to the masks than other pixels, which is achieved by optimizing loss 
function LPro:

where µ′
c denotes the proxies except µc , and τ denotes the scale factor to accelerate con-

vergence. We set τ = 2 in all experiments of this work. Our LPro is aimed to make µc 
closer to et than any other proxies to et . In the training process, we first train the mask 
proxies by the labeled data and then fine-tune them with a lower learning rate during 
the self-training process. Note that the proxies are dynamically updated with the newly-
generated labeled data and pseudo-labels.

4.3 � Augmentation‑and‑recombination module

In Sect. , we have discussed generating more stable pseudo-labels by using proxy-based 
distance score ρ to alleviate collapse caused by noise. In this section, we introduce con-
sistency regularization into self-training. By adopting a novel data augmentation strat-
egy on c(f (Iu)) , we try to force the model to better exploit the temporal correlations in 
unlabeled data.

Consistency regularization is an efficient component of semi-supervised methods, 
which is based on the assumption that the model should output similar predictions even 
with perturbed versions of the same input. For semantic segmentation, the model should 
make similar predictions for the transformed images and the original images. In self-
training, we can approximately regard the pseudo-labels as the prediction of original 
frames. Thus, the pseudo-labels should be similar with the predictions of transformed 
frames, which can be described by the cross-entropy function. Let I ′t be the transformed 
input. The cross-entropy loss for the unlabeled data can be formulated as:

where Ŷt is the generated pseudo-labels for the original input. While Eq. (9) is similar to 
the pseudo-labeling loss in Eq. (2), it is crucially different in that the loss is computed on 
the model’s output for a augmented image I ′t . By minimizing Eq. (9), we introduce a form 
of consistency regularization into the network.

However, the simple cropping operation on image-wise randomly drops an image 
clip, as shown in Fig. 3a. This kind of drop-based augmentation is regarded as strong 
data augmentation [32, 33], which forces the network to reduce the number of pixel 
correlations in input data and to restore the information loss according to context 
information, improving the ability to capture wide-range pixel correlations. Never-
theless, the basic assumption that this kind of information loss can be recovered is 

(7)ρ
(c)
t = exp (−d(et ,µc)),

(8)LPro(It ,µc) = − log

(

exp (−d(et ,µc)/τ )
∑

µ′
c
exp (−d(et ,µ′

c)/τ )

)

,

(9)L′
u =

1

Nl

∑

It∈Iu

H(c(f (I ′t)), Ŷt),
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that there is information correlation in its context. Otherwise, the information gap 
caused by strong enhancement will damage the performance. The simple cropping 
may cause overmuch losses on pixel correlations since the cropped part may con-
tain several useful parts. To address this issue, a natural idea is that if we can pro-
vide the cropped parts for the input, then the problem of the information gap may 
be alleviated. Thus, we propose a data augmentation strategy as augmentation-and-
recombination, which adopts a complementary structure where the input sequence 
is splitted into several symmetrical sub-images to ensure the integrity of the origi-
nal information, as illustrated in Fig.  3c. We recombine the four symmetrical sub-
images to make predictions of unlabeled videos. As shown in Fig 2, denoted as x′(1)t , 
x′(2)t , x′(3)t and x′(4)t , respectively. Then, the output predictions is denoted by 
p′ =

c(f (x′(1)t ))+c(f (x′(2)t )+c(f (x′(3)t )+c(f (x′(4)t )
4 .

We discuss the implementation of data augmentation as illustrated in Fig.  3. Fig-
ure  3a shows only a single augmentation is implemented. In Fig.  3b, we adopt sev-
eral different augmentation strategies while we calculate the cross-entropy loss on the 
pseudo-labels of the outputs separately. By contrast, strategies in Fig. 3c can not only 
improve the network’s ability to recover the information gap but also make the aug-
mented images complement each other to avoid information losses. Finally, the cross-
entropy loss can be formulated as:

(10)

LSPM =
1

|Iu|

∑

It∈Iu

H

(

c(f (x′(1)t))+ c(f (x′(2)t)+ c(f (x′(3)t)+ c(f (x′(4)t)

4
, Ŷt

)

.

Fig. 3  Illustration of different implementations of data augmentation. a Single augmentation, taking 
cropping as an example; b multiple augmentation without recombination; c augmentation-and-recombina
tion
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5 � Experiments and discussion
5.1 � Datasets and evaluation indicators

We test the segmentation performance of our proposed method on three medical image 
segmentation datasets, which is the CT and MRI images for medical semantic segmenta-
tion task, respectively (Dataset-Abdomen-MRI, Dataset-Abdomen-CT and Card-MRI). 
The proposed method is used to segment medical images on three different datasets to 
verify the universal applicability of the proposed method in different situations.

Dataset-Abdomen-MRI is from ISBI 2019 Combined Healthy Abdominal Organ Seg-
mentation Challenge which includes 20 3D MRI scans for train task and 20 3D MRI 
scans for test task [34]. Dataset-Abdomen-CT is from MICCAI 2015 Multi-Atlas Abdo-
men Labeling challenge, with 20 clinical CT scans [35]. Card-MRI is from MICCAI 2019 
Multi-sequence Cardiac MRI Segmentation Challenge (bSSFP fold)  [36]. This dataset 
is divided into two parts, a training set containing 83 images of 3D abdominal scan-
ning and the corresponding labels, and a test set containing 72 3D abdominal scanning 
images. It should be noted that this dataset stems from patients with clinical pathologi-
cal characteristics.

5.2 � Implementation details

In order to realize the universal use of the proposed method, it is necessary to convert 
the image into a unified format in the data preprocessing stage. All image data will be 
converted into 2D axial (Dataset-Abdomen-MRI and Dataset-Abdomen-CT) or 2D 
short-axis (Card-MRI) slices.2 To improve the accuracy of the image segmentation algo-
rithm, we use the gray transformation method in image enhancement to increase the 
dynamic range and contrast of the image, we process the image into 256× 256 pixels. 
Additionally, it’s also worth noting that gray transformation is widely used in medical 
image segmentation, as using grayscale can make it easier to identify fine details and 
subtle patterns in the image, which can be lost when using a full-color representation.

2  The initial data format is dcm format. First, we convert it to nii format through shell command line to facilitate obser-
vation. All image data will be converted into 2D axial (Dataset-Abdomen- MRI and Dataset-Abdomen- CT) or 2D 
short-axis (Card-MRI). The axial refers to the cross-section perpendicular to the human body from foot to head.
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For the datasets of two abdomens, in order to enable our model to distinguish between 
normal organs and organs with pathological characteristics, and to compare the differ-
ences between MRI images and CT images, we use these two datasets to jointly build a 
shared data set containing the left kidney, the right kidney, the spleen, and the liver. As 
for Card MRI, as it contains a scanning image of the heart, we can create a separate label 
set for this dataset, The label set includes three categories: left ventricular blood pool 
(LV-BP), left ventricular myocardium (LV-MYO), and right ventricle (RV).

To measure the overlapping between prediction and ground truth, we employ Dice 
score (0–100, 0: mismatch; 100: perfectly match), which is commonly used in medical 
image segmentation researches. To evaluate the quality of 3D volume image after seg-
mentation into 2D, we follow the evaluation protocol established by  [37].

In our experimental setup, the number of slices in each 3D scan is selected as 3, and 
for all slices to be segmented, the slices in the middle of adjacent slices are used as the 
reference for segmentation. It should be noted that the training set and set use data from 
different patients.

So as to test the generalization ability of the model to the test categories that have not 
been touched, in addition to the setting (setting 1)  [37] of medical image segmentation 
with few samples for the experiment, we also use another setting(setting 2.) [15]. In set-
ting 2, we implement the model segmentation test for the image of the training category 
by deleting the data of the same category in the test set and the training set.

In order to simulate the situation where the labeled clinical data are scarce in most 
cases in the real world, our experiments are conducted under the condition of one-way 
one-shot, that is, one category of data is used for training each time and one sample is 
used for each category.

The details of this experiment are described as follows. The network is implemented 
with PyTorch based on official PANet implementation [38]. In the feature map, we use 
fully-convolution to improve the resolution of features. It takes a 3× 256× 256 image as 
input and produces a 256× 32× 32 feature map. Pooling windows ( LH , LW  ) for train-
ing and testing are set to 4 × 4 and 2× 2 respectively.

5.3 � Quantitative and qualitative results

Tables 4 and 6 show the comparison of image segmentation accuracy measured by Dice 
score between the algorithm we proposed and the existing algorithms, PANet [38] and 
SE-Net [37]. Both the two networks were efficient and widely used in the semantic seg-
mentation tasks. PANet [38] enhances the entire feature hierarchy in lower layers by bot-
tom-up path augmentation and adopts adaptive feature pooling. SE-Net [37] adaptively 
adjusts the feature responses of each channel by taking into account the interdependen-
cies between channels. In the absence of manual annotation, the average Dice score of 
our proposed method always exceeds that of other methods. The results in Table 5 show 
that for unknown categories, our model can also achieve good segmentation and has 
strong generalization ability. This implies that the proposed superpixel-based self-super-
vised learning has successfully trained the network to learn more diverse and generaliz-
able image representations from unlabeled images.

For qualitative comparison, we demonstrate the results as shown in Fig. 4. Our method 
has achieved good segmentation results on different types of data. We can observe that 
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the segmentation effect of MRI images is better than that of the CT images because the 
part to be segmented in the MRI images has a more obvious contrast with the surround-
ing background, which is conducive to making the boundary clear so that the segmenta-
tion accuracy is higher.

5.4 � Ablation study

To fully demonstrate the impact of each component of our model on the final perfor-
mance of the model, we conducted ablation experiments on current MRI and CT images. 
As shown in Table 1, the self-training method can learn unlabeled data. To explore the 

Fig. 4  The quantitative segmentation results of our proposed segmentation method on three different data 
sets. It can be seen that the segmentation effect achieved by our method is very close to the real situation. In 
order to demonstrate the good generalization ability of the proposed method, the segmentation of Abd CT 
and Abd MRI images in the figure is based on setting 2, that is, the training data does not contain the same 
category as the test set data
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impact of ARM, we applied this method to the basic self-training framework. In addi-
tion, our research shows that the method “PDS” and the method “ARM” have a common 
effect on improving the model performance. The results also show that the accuracy of 
using both methods achieves about 1 % higher than that of the “ARM” method, and the 
effect of the basic self-training method is significantly improved.

Figure 5 shows the different results of different score indicators in dealing with neg-
ative feedback problems in the process of self-training. When using softmax as the 
confidence score, we can observe that the training accuracy rate crashes after a short 
increase. This is because the negative feedback of pseudo tags leads to the continuous 
deterioration of the model performance. In contrast, the proposed proxy-based distance 
score significantly alleviates the problem of the model crash and improves performance. 
However, there is still a downward trend in accuracy. Using our method, the segmenta-
tion accuracy of the model increases with the number of training epochs and converges 
to a stable value. Through the above experimental verification, our method solves the 
problem of model collapse caused by self-training negative feedback.

Table  2 compares the results of various data enhancement methods for the basic 
self-training model. The three types of data enhancement methods we compared have 

Table 1  Ablation study of the proposed method

PDS and ARM represent the proxy-based distance score and augmentation-and-recombination module, respectively

Dataset Method Left kidney Right kidney Spleen Liver Mean

Abdomen-MRI Self-training 71.33 76.52 66.02 71.63 71.38

+PDS 72.02 76.78 66.54 72.25 71.90

+ARM 72.98 76.53 68.15 72.46 72.53

+PDS and ARM 74.57 78.74 68.01 73.84 73.79

Abdomen-CT Self-training 59.68 51.24 58.23 70.23 59.85

+PDS 61.22 51.96 60.37 71.88 61.36

+ARM 61.68 55.49 60.13 70.94 62.06

+PDS and ARM 64.59 55.57 61.11 74.56 63.95

Fig. 5  The final results of various methods to deal with the negative feedback during self-training
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improved compared with the original model. Interestingly, the accuracy of a single 
method of clipping the data image is not much better than that of the original model. 
We analyze that such methods lose some of the original data characteristics while 
enhancing data. This results in a small final performance improvement. Compared 
with the original model, the ARM algorithm has better performance in both MRI 
and CT datasets. The results in Table 2 show that our algorithm has a performance 
improvement of more than 1 % compared with the original algorithm, which proves 
the superiority of our method in medical impact recognition tasks.

We further study the effect of the real label proportion on the model effect in the 
process of model self-training. Our basic experiment uses 10% of the true label ratio. 
For comparison, we also use 5 % , 20% , and 50% of the true labels to observe the final 
results. The experiment shows that although the model effect will decrease with the 
decrease in the proportion of real tags, our method reduces these gaps to a certain 
extent. Table 3 shows that the accuracy rate obtained by the proportion of 10% and 
20% is roughly the same, and there is only a decrease of about 1 % compared with 50% . 
The results show that our method achieves good performance in the case of low pro-
portion of real tags (Tables 4, 5, 6).

The effect on τ is given in Table 7 and the results are measured by Dice score. We 
can note that the Dice score achieves the highest value on average when τ equals to 2. 
It can also be noted that there is an improvement when increasing τ from 1 to 2 and 
that the Dice score decreases when increase τ to 2.

Table 2  Influence of different data enhancement methods on model effect

Dataset Method Left kidney Right kidney Spleen Liver Mean

Abdomen-MRI w/o augmentation 70.82 76.52 66.02 71.63 71.25

Clip 70.99 77.15 67.22 71.96 71.83

Augmentation Only 71.49 76.53 67.35 72.07 71.86

ARM 72.98 76.53 68.15 72.46 72.53

Abdomen-CT w/o augmentation 57.74 54.78 58.36 69.12 60.01

Clip 58.27 54.03 58.69 70.05 60.26

Augmentation only 61.64 55.81 58.95 70.66 61.77

ARM 61.68 55.49 60.13 70.94 62.06

Table 3  Influence of different label scales on model effects

Dataset Label proportion (%) Mean

Abdomen-MRI 5 72.26

10 72.53

20 72.61

50 74.28

Abdomen-CT 5 61.55

10 62.06

20 62.93

50 63.42
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6 � Conclusion
In this paper, we proposed a dynamic FSL framework for medical semantic segmenta-
tion aiming at image stream mining. Compared with the conventional static frame-
works, the proposed framework can learn from the continuously generated data 
streams. To compensate for the lack of large-scale high-quality labels, we proposed a 
proxy-based pseudo-label generation strategy, which proved to be effective in learn-
ing feature representation and avoiding model collapse. We further integrated an aug-
mentation-and-recombination strategy to improve consistency regularization. The 
experiments on three widely used medical semantic segmentation datasets demon-
strated significant performance gain compared with the baselines.
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