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Abstract 

The fusion of synthetic aperture radar (SAR) and optical satellite data is widely used for 
deep learning based scene classification. Counter-intuitively such neural networks are 
still sensitive to changes in single data sources, which can lead to unexpected behav-
ior and a significant drop in performance when individual sensors fail or when clouds 
obscure the optical image. In this paper we incorporate source-wise out-of-distribution 
(OOD) detection into the fusion process at test time in order to not consider unuse-
ful or even harmful information for the prediction. As a result, we propose a modi-
fied training procedure together with an adaptive fusion approach that weights the 
extracted information based on the source-wise in-distribution probabilities. We evalu-
ate the proposed approach on the BigEarthNet multilabel scene classification data set 
and several additional OOD test cases as missing or damaged data, clouds, unknown 
classes, and coverage by snow and ice. The results show a significant improvement 
in robustness to different types of OOD data affecting only individual data sources. At 
the same time the approach maintains the classification performance of the baseline 
approaches compared. The code for the experiments of this paper is available on 
GitHub: https:// github. com/ Jakob Code/ OOD_ DataF usion

Keywords: Data fusion, Out-of-distribution, Missing modality, Robustness, Remote 
sensing

1 Introduction
Out-of-distribution detection and uncertainty quantification are two important research 
topics in the machine learning community [1–3] and have also gained attention in the 
remote sensing community recently[4, 5]. In particular, out-of-distribution examples are 
caused by a shift in the data distribution between training and test time and are very 
common in remote sensing data. Such OOD examples can have unpredictable effects 
on the behaviour of a neural network as this neural network has never seen such shifted 
data before and was not trained on how to handle such data. Following, such data leads 
to epistemic (or model) uncertainty affecting the prediction [1, 2, 6].
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Such distribution shifts can be caused for example by geographical differences, chang-
ing illumination, clouds or other causes. While shifts as regional distribution shifts can 
still lead to a valid prediction and are part of domain adaptation cross-domain learning 
works [7, 8], stronger distribution shifts often lead to very confident but false predictions 
[9, 10]. For stronger shifts as the appearance of unknown classes (which hence cannot be 
predicted correctly) specific OOD detection approaches maximize the aleatoric uncer-
tainty expressed in the soft-max output [1].

In remote sensing, the fusion of optical data and Synthetic Aperture Radar (SAR) is a 
commonly used technique to benefit from complementary information caused by very 
different physical properties [11, 12]. Due to this complementarity the fusion in gen-
eral improves the predictive performance compared to corresponding single-source 
approaches. Considering SAR-optical data fusion, potentially not only the effects of 
clouds in the optical images on a prediction could be softened, but also the effect of cor-
rupted or unavailable data caused for example by a broken sensor or a disturbed data 
transmission as long as one data source is unaffected by the shift. While this is a com-
monly given motivation for the fusion of optical and SAR data, most approaches do only 
train with all data sources available in an undisturbed way and hence the network is 
not necessarily robust against changes in individual data sources [13–15]. This means, 
that in general common data fusion networks are trained on a joint data distribution 
over the optical and SAR data. Following, a strong shift on the individual distributions 
also strongly affects the joint distribution which the network learned as the in-distribu-
tion. This holds even though most bi-sensor fusion methods use a two-stream network 
to process two inputs independently [14, 16–18]. The independently processed input 
modalities are then fused at a fusion layer, followed by a combined part, which com-
putes the network prediction based on the fused information [19, 20]. Theoretically, the 
distribution shifts in single data sources could be detected in the feature space of the 
individual branches and the fusion step can then be realized adaptively and based on the 
in-distribution probability.

Despite the relevance of the topic, there has been little research on distributional 
uncertainty assessment in the context of remote sensing data fusion.

In this work, we propose a training and testing procedure that not only works on the 
joint data distribution, but also on the individual data distributions. We test the pro-
posed approach on a SAR-optical multi-label scene classification task and different out-
of-distribution test cases affecting the SAR source as well as the optical data source.

As visualized in Fig. 1, the adaptive fusion predicts the in-distribution probability for 
each modality before realizing the fusion step. Following, we propagate the resulting 
estimated distributional uncertainty to the fused prediction which is given as a individu-
ally predicted probability for each class. Further, we introduce a training strategy for the 
network [21], where a classifier is trained to give a prediction for each kind of modality 
combination (i.e., in our case, SAR and optical input, masked-out SAR input, masked-
out optical input, no input). As we consider a multi-label classification problem in this 
paper, the case with no inputs leads to the full weights given on the prior probability 
p(y|0, 0) = 0.5 for each class. Building up on the trained fusion networks, we train one 
OOD detector network for each modality to detect distribution shifts on the extracted 
features of the single modalities. This implies that the OOD detectors take the output 
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of the single modality streams as input. We combine the components in such a way that 
the final approach is aware of the existence of uncertainty caused by distribution shifts 
affecting the individual sensors. The contributions of this work are as follows: 

1 We introduce out-of-distribution detection in a data fusion setting on individual 
sources before the fusion step.

2 We propose a training and evaluation strategy for the adaptive fusion of data sources, 
based on the predicted in-distribution probabilities.

3 We show the improved robustness to distribution shifts in single sources and 
advanced OOD detection performances in comparison to baseline and state-of-the-
art approaches.

Fig. 1 A sketch of the adaptive data fusion as proposed in this work. The distributional uncertainty is 
determined by modality-wise out-of-distribution detectors and is considered within the adaptive fusion 
component. As a result, distribution shifts as for example caused by clouds have a less significant effect on 
the prediction. Even though the in-distribution probability for the SAR data is predicted as only 86%, the 
prediction is correct and significantly better than the non-adaptive model. Here, the non-adaptive model is 
given by a model trained equivalently as the baseline reported in [13]
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The overall approach is not problem-agnostic and applicability to different tasks such 
as regression or classification can be considered. In this work, we apply and evaluate it 
on multi-label classification tasks. In contrast to a generic multi-class classification sce-
nario, where each sample is predicted as exactly one out of multiple classes, multi-label 
classification gives a prediction for each class.

The rest of this paper is organized as follows. Related works are discussed in Sect. 2. 
We briefly discuss the proposed approach in Sect. 4. Experimental validation is detailed 
in Sect. 6 and discussed in Sect. 7. The paper is concluded in Sect. 8.

2  Related work
Despite its importance, not many works can be found in the literature that focus on the 
combination of robust data fusion approaches and strong distribution shifts leading to 
unusable data in single data sources. Considering the relevance to our work, we discuss 
multi-sensor and multi-modality data fusion in earth observation (Sec. 2.1), distribution 
shifts and out-of-distribution detection (Sec. 2.2)Julia, and the only few works that have 
worked towards combining strong distribution shifts and data fusion in the literature 
(Sec. 2.3).

2.1  Data fusion approaches for earth observation

With an increasing number of Earth observation data sources, data fusion has become a 
commonly used technique to benefit from the complementary, competitive or coopera-
tive information [11, 22, 23]. While traditional methods are mainly based on statistics 
and strategies especially designed for the fusion process [24, 25], deep learning offers the 
possibility to stack the (pre-processed) data sources together and derive a correspond-
ing fusion strategy in a data-driven manner [11]. In the field of Earth observation deep 
learning based data fusion approaches have delivered significant contributions over the 
last years [20, 26–29].

Many contributions focus on the design of fusion strategies. These contributions 
cover a variety of data sources as well as applications. For example in [30] social media 
data and satellite imagery are combined in order to determine building types. Others 
designed fusion strategy for disaster management based on satellite and social media 
data [31, 32] or on the spoken language and images [33]. Multi-sensor time series data 
has been applied for tasks as general change detection [20, 21], or crop classification 
[34–36]. Gao et al. [37] and Meraner et al. [38] make use of the fact that in contrast to 
optical data, SAR data is not affected by clouds and propose cloud removal approaches 
for optical images. In [39] a Bayesian modelling is used in order to improve spatial 
details and reduce spectral distortions within multispectral and hyperspectral based pan 
sharpening.

Another important task where data fusion is commonly used is the scene classification 
[13, 40–44]. For the scene classification on a pixel level Hong et al. intrdocuce X-Modal-
Net [28] which propagates labels and features between hyperspectral, multispectral 
and SAR data. In [45] an approach to align multi- and hyperspectral images and real-
ize semi-supervised cross-modality learning for the task of pixel-wise scene classifica-
tion. Other works approached the same task by second order attention based methods 
applied after the fusion process [46] and by including explicite domain knowledge [47]. 
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Cross-modality learning aims to learn a joint feature space and exchange information 
between different data sources in order to improve the training process, as for example 
done in [28] or [48] for the multi-spectral and hyper-spectral image fusion. Especially in 
the field of multispectral and hyperspectral image fusion many approaches aim at learn-
ing a common feature representation for both sources, often in form of a dictionary [28, 
45]. Further, it was shown that including (partially) cloudy images into the training pro-
cess improves the classification performance for SAR-optical fusion approaches [49] or 
multi-temporal fusion [50]. Other works as [51] explicitely focus on evaluating different 
fusion strategies of multispectral and SAR data.

2.2  Distribution shifts

Data distribution shifts caused by geographic or illumination differences are highly 
present in the field of remote sensing [7, 52]. They are also discussed in some of the 
approaches discussed above. Other single sources approaches are for example the 
method in [53], where the authors use an augmented linear mixing model to address 
spectral variability of hyperspectral images, or the work of [54] where the features 
extracted from a convolutional and a graph neural network are fused. The problem 
of distribution shifts can also be tackled from the field of domain adaptation, where 
approaches are specifically designed to adapt to new distributions [7, 8]. Approaches 
in this field often focus on single data sources, like in [55] where multiple classifi-
ers are combined to handle the distribution shift between different domains. But also 
data fusion approaches can be found as for example in [29] where a semi-supervised 
approach based on Sentinel-1 SAR and Sentinel-2 multispectral data is proposed for 
across-region generalization for built-up area mapping.

Such relatively small shifts in the data distribution can usually be tackled by elaborat-
ing domain-invariant features, which can be seen as learning the features which are not 
(or less) affected by the distribution shift. Following, methods approaching this problem 
in general do not consider possible (strong) distribution shifts, as for example, corrupted 
sensor measurements, a strong cloud coverage only at test time or unknown classes.

For a uni-modal setup, distribution shifts and out-of-distribution detection have been 
widely studied in the field of machine learning [1, 56, 57]. Considering the detection of 
out-of-distribution examples where the shift is such significant that a prediction is not 
possible anymore, the detection of unknown classes and input from different senors 
have been evaluated based on a Dirichlet prior network [58]. In such scenarios and the 
single source case, the best a model can do is to express its uncertainty about the true 
prediction or give a prediction purely based on prior knowledge [57, 59].

2.3  Distribution shifts and data fusion

In contrast to this, multi-source approaches offer additional opportunities when only a 
subset of the available data sources is affected by distribution shifts. Such a scenario is 
for example given when working with optical and SAR data. While optical data has been 
shown to lead to a better performance in land cover classification tasks [12], it is also 
sensitive to illumination and clouds [20, 21]. While this fact is a very common motiva-
tion for the fusion of optical and SAR data [11, 12], these fusion methods are generally 
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designed to work with non-cloudy and well-illuminated data samples and with all data 
sources available.

In the field of deep learning based data fusion, only a few approaches tackle the prob-
lem of distribution shifts in single of multiple available data sources. In [60], at most one 
out of at least three modalities is assumed to experience a distribution shift caused by 
an adversarial attack, and a network was trained to identify which modality does not 
fit to the others. In [61] the authors propose EmbraceNet, focusing on missing modali-
ties at test time and using a feature sampling based fusion strategy to be able to replace 
the features from one modality by the extracted features from another modality at test 
time. In [62], a meta learning procedure is introduced where missing input modalities 
are reconstructed from the available modalities. Based on this, missing modalities at 
training and test time can be simulated. For the latter two, the missing data can be inter-
preted as a type of distribution shift, but no actual detection of this shift is needed as it 
is for other distribution shifts. For the fusion of optical and SAR data, only the Embrace-
Net approach seems promising since the generation of optical data from SAR images is 
a very challenging task [38] and the fusion procedure only consists of two modalities, i.e. 
no majority voting for excluding non-fitting modalities can be realized.

In the following, we propose an alternative training procedure and introduce addi-
tional OOD-detectors for the detection of distribution shifts at test time.

3  Uncertainty in neural networks
Consider a neural network fθ : RI → R

C , parameterized by parameters θ and cor-
responding outputs µ ∈ R

C . For a multi-label classification task with C classes and 
a training data set D , the predictive uncertainty for an input sample x∗ ∈ R

I having a 
corresponding label y is stated as p(y|x∗,D) . In practice, the transformation of the 
neural network logits µ into a probability distribution parameterization, by applying 
the soft-max function for classification tasks and the sigmoid function for multi-label 
classification tasks, aims to represent this uncertainty. But the predictive uncertainty 
is a composition of multiple types of uncertainties, stemming from different sources. 
Uncertainty quantification in neural networks is a vast field of research and multi-
ple approaches have been proposed in order to quantify these uncertainties and give a 
proper predictive uncertainty. In general, uncertainties are split into two main types of 
uncertainty, namely data (or aleatoric) uncertainty and model (or epistemic) uncertainty 
[59]. The former one is caused by shortcomings in the data itself and hence cannot be 
reduced. The latter one is caused by shortcomings in the modeling and the training of 
the neural network. The epistemic uncertainty is reducible by adjusting the model and 
training procedure. Several works [56, 63] represent the model uncertainty in a predic-
tion by explicitly representing it as a probability distribution over the model parameters 
θ:

In this notation p(θ |D) can now be interpreted as model uncertainty and p(y|x∗, θ) as 
data uncertainty.

(1)p(y|x∗,D) = p(y|x∗, θ) · p(θ |D) dθ .
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A special case of the model uncertainty is distributional uncertainty, which is caused 
by a shift between the training and the testing data distribution. Popular examples of dis-
tributional uncertainty are the occurrence of new classes unseen during the training or 
noise in the data. In the field of remote sensing, data distribution shifts have been evalu-
ated for the cases of sensor change, spatial change, and unseen classes [58]. In the litera-
ture, several works seek to identify out-of-distribution samples by Bayesian or ensemble 
based approaches which quantify distributional uncertainty as a part of the epistemic 
uncertainty [56, 63]. As done in [1, 2] the distributional uncertainty can be extracted 
from the model uncertainty and is explicitly modeled as an additional distribution over 
the network’s logits µ,

Here, p(y|µ) represents the data uncertainty, while p(µ|x∗, θ) represents the distribu-
tional uncertainty, and p(θ |D) the model uncertainty. The distributional uncertainty 
depends on the network parameters only for the case that the network explicitly predicts 
the parameters of this distribution [1]. Approaches that quantify distributional uncer-
tainty often target at learning a boundary around the in-distribution samples by includ-
ing explicit out-of-distribution samples as a part of the training procedure [1–3].

4  Methodology
The goal of the proposed approach is to be able to quantify distributional uncertainty 
stemming from individual data sources and use this information to weight the input 
from the available sources. For this, the following components are needed and will be 
introduced in the following: 

(1) Fusion neural network:

 A deep learning structure that can be trained to give a prediction based on a SAR 
and an optical sample.

(2) Training strategy:
 A training strategy that enables the network to give good predictions when individ-

ual data sources are excluded from the fusion step.
(3) Out-of-distribution detection:
 Out-of-distribution detectors to evaluate the in-distribution probability for each data 

source.
(4) Fusion Strategy at Test Time:
 A scheme to detect distributional uncertainty in individual data sources and also 

propagate it onto the final prediction.
The proposed training and testing procedure is also visualized in Fig. 2.

4.1  Underlying fusion neural network

Consider input samples of the form x = (xs, xo) . As a basic network structure we use a 
fusion network consisting of two input branches, fs(xs) = µs and fo(xo) = µo , for the indi-
vidual feature extraction from the SAR and optical data, respectively. The extracted features 

(2)p(y|x∗,D) =

∫

p(y|µ) · p(µ|x∗, θ) · p(θ |D) dµdθ .
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are fused by a concatenation operation, [µs,µo] , and fed into a combined neural network 
part, fc([µs,µo]) = ŷf  , which outputs a prediction for the multi-label classification prob-
lem. In order to balance the extracted features, we scale the features to the range of [−1, 1] 
by rescaling the sigmoid function.

At test time, we want to be able to exclude individual sources from the propagation 
through the combined part. Hence, a standard training strategy is not applicable but the 
network needs to be aware of missing features. A training strategy enabling the network to 
do so is presented in the next subsection.

4.2  Training strategy including source exclusion

In order to enable the network to be able to handle missing data sources, we perform multi-
ple forward passes with masked-out features from excluded data sources. For this we intro-
duce a masking operator, which returns all combinations of masked-out data sources, i.e.,

where the masked-out features are replaced by zeros. The resulting predictions are given 
as fc([µs,µo]) = ŷf , fc([µs, 0]) = ŷs and fc([0,µo]) = ŷo.

For the evaluation performance we apply the binary cross-entropy loss, LBCE , the stand-
ard loss function for multi-label classification tasks. In order to also learn the missing data 
sources, we propose a loss function of the form

with scalar weights wf ,ws,wo ≥ 0 . We found the approach to be robust to the choice of 
these hyper-parameters and ran our experiments with wf = 2,wo = 1,ws = 1.

(3)
M : (µs,µo) → {[µs,µo], [µs, 0],

[0,µo], [0, 0] },

(4)
L(y, ŷs, ŷo, ŷf ) = wf · LBCE(y, ŷf )

+ws · LBCE(y, ŷs)

+wo · LBCE(y, ŷo),

Fig. 2 A sketch of the considered network structure for the training (left) and the testing (right) time. At 
training time, the network receives the ground-truth and gives a prediction based on the fused features 
and the single modalities. At test time, modality-wise OOD detectors are used to propagate distributional 
uncertainty onto the fused prediction. The prior distribution represents the case where no information is 
available and is chosen as a probability of 0.5 for each class
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4.3  Out‑of‑distribution detection (OOD)

For the OOD detection on the individual data sources, we train a simple binary 
classification model consisting of two fully connected layers with 512 and 64 inner 
neurons, hyperbolic tangent activation and a dropout layer with dropout rate of 
0.1. The OOD detectors for the SAR and the optical features as gs(µs) ∈ [0, 1] and 
go(µo) ∈ [0, 1] , representing the probability that the given features are not affected by 
a distribution shift. The considered OOD detectors are trained in a supervised way, 
this means, that out-of-distribution examples are needed in order to learn a boundary 
around the input data [2]. How we chose these out-of-distribution examples can be 
found in Sec. 5.

4.4  Adaptive OOD probability dependent fusion

In order to incorporate the out-of-distribution detection into the prediction process, we 
want to mask out the features based on the in-distribution probability. Thus, for an input 
sample x = (xs, xo) and (branch and combined) network parameters θ = (θb, θc) , let

be the predictive uncertainty and p(µs,µo|xs, xo) the in-distribution probability. Follow-
ing former works as [1, 2, 57], we use a deterministic point-estimation of the network 
parameters and hence drop the θ in the following notations. Further, we apply a strategy 
to use and propagate a source based on its in-distribution probability. This means, if the 
in-distribution probability is 80%, the sample is propagated in 80% out in 20%.

Under this setup, the feature probabilities for the SAR and the optical features that 
are fed into the combined part can be replaced by Bernoulli distributions of the form 
p(�s|xs, xo) and p(�o|xs, xo) , where �s and �o ∈ {0, 1} with 1 if the corresponding data 
source is in-distribution and 0 if it is out-of-distribution. This leads to a predictive 
uncertainty stated as

The formulation in (6) can be explicitly computed as

with �s ∼ Ber(ps) and �o ∼ Ber(po) . The formulation in (7) can be computed straight 
forward as a weighted sum of the combined network part,

(5)
p(y|x∗,D) =

∫

p(y|µ)

p(µ|µs,µo, θc)

p(µs,µo|xs, xo, θb)dθdµsdµo

(6)
p(y|x∗,D) =

∫

p(y|�s · µs, �o · µo) ·

p(�s|xs)p(�o|xo) d�s d�o .

(7)

p(y|x∗,D) = E�s,�o [p(y|�s · µs, �o · µo)]

= (1− ps) · (1− po) · p
(

y|0, 0
)

+ ps · (1− po) · p
(

y|µs, 0
)

+ (1− ps) · po · p
(

y|0,µo

)

+ ps · po · p
(

y|µsµo

)

,
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4.5  Computational complexity

The computational complexity and memory consumption is an important aspect for 
many applications. The only additional computational steps and memory consumption 
of our approach results from the multiple passes through the combined part of the net-
work. Here the number of calculations and variables increases linearly with the number 
of combinations of masked data sources. For our concrete application example (i.e. two 
data sources) there are three possible combinations (no masked data sources, masked 
optical data, masked SAR data), so that three forward passes through the combined part 
are required for a prediction. It is important to note that in practice the combined part 
is often reduced to a few linear layers and that the multiple forward passes can be run in 
parallel as a batch.

4.6  Adaptive and non‑adaptive fusion

In the following experiments we evaluate the considered baselines against two differ-
ent approaches based on our proposed procedure. The full approach with training and 
inference as described above, including the OOD detection, we refer to Adaptive Fusion. 
Further, we also evaluate the performance only based on the proposed training strat-
egy without additionally using the OOD detectors at test time, i.e. assuming the inputs 
are in-distribution and only evaluating the output ŷf  . For this we refer to Non-Adaptive 
Fusion.

5  Data
5.1  BigEarthNet‑MM

For our experiments we use the BigEarthNet-MM data set, which is the multi-modal 
version of the BigEarthNet data set [13]. It consists of 125 co-registered Sentinel-1 and 
Sentinel-2 tiles distributed over 10 different countries all over Europe. The authors took 
care of a minimal temporal difference between the acquisition of the SAR and the opti-
cal data. The collected tiles are separated into 590,326 non-overlapping pictures, with 
atmospheric correction on the optical Sentinel-2 images. The patches are labeled for 
a multi-label classification task, i.e., each patch is annotated by a subset of in total 19 
classes of land-cover.

In-distribution and OOD class splits 
In order to train the proposed OOD detectors we consider the following split of the 19 

classes into the following subsets:

• In-Distribution: Twelve classes containing different types of vegetation (i.e., class 3 to 
class 14).

(8)

ŷ = (1− ps) · (1− po) · 0.5

+ ps · (1− po) · ŷs

+ (1− ps) · po · ŷo

+ ps · po · ŷf .
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• OOD Training Data: Two classes that contain only industrial classes (i.e., class 1 
(Urban Fabric) and class 2 (Industrial).

• OOD Testing Data: Five classes containing sand and water related classes (i.e., classes 
15 to 19).

For the described splits, we excluded all patches that contain both in-distribution and 
OOD classes. This split leaves 149,820 in-distribution patches for training, 68,959 for 
validation and 70,750 for testing. For the OOD detection the split results in 4022 cloudy 
samples from which we selected 197 very cloudy samples in an additional subset, 23,054 
samples containing snow and ice and 4,748 samples with only OOD training classes and 
4,997 samples with only OOD testing classes.

Additional OOD examples 
The BigEarthNet-MM data set explicitly excludes all samples that contain clouds in 

the optical data or where the land is covered by snow and ice. For testing our approach 
we make use of this and consider seven different types of OOD examples in single data 
sources. Example samples are visualized in Fig. 3.

• Samples with clouds and shadows:

 4022 patches where the optical image is affected by cloud coverage in all different 
levels of intensities.

• Handpicked samples with high cloud coverage:
 A subset of 197 samples which are fully covered by clouds.
• Samples with Snow and Ice:
 23,054 samples where seasonal snow or ice occurs.
• Samples with missing SAR modality:
 We simulate a missing SAR modality by using the original test data set (70750 sam-

ples) without the SAR modality.
• Simulated samples with corrupted SAR modality:
 The SAR data of the test data set (70750 samples) is replaced by pixels sampled from 

a Gaussian distribution using the mean and standard deviation of the training data.
• Samples with missing optical modality:
 We simulate a missing optical modality by using the original test data set (70750 

samples) without the optical modality.
• Simulated samples with corrupted optical modality:

Fig. 3 Pairs of optical and SAR patches representing the considered test cases
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 The optical data of the test data set (70750 samples) is replaced by pixels sampled 
from a Gaussian distribution using the mean and standard deviation of the training 
data.

  The class distributions of the individual test cases can be found in the supplementary 
files contained in the code repository.

6  Experiments
6.1  Comparison of methods and training procedure

We compare the proposed fusion process to the EmbraceNet structure [61], simple base-
line approaches with early and late fusion and individual modality approaches trained 
equivalently to the one proposed by the authors of the data set [13]. For our experiments 
we build the considered fusion architectures based on a ResNet18 [64]. The ResNets are 
structured in five convolutional blocks, followed by a linear classifier. For the baseline 
approach with late fusion and the EmbraceNet, the fusion takes place between the last 
convolutional block and the classifier part. For the baseline approach with early fusion, 
the data is concatenated before the first layer such that a normal ResNet is trained. The 
same holds for the optical-only and the SAR-only setup.

We train all approaches for 50 epochs and save the parameters for the best perfor-
mances on the given validation split. We set the loss parameters to wo = 1 , ws = 1 and 
wf = 2 . Following this, we train the OOD detectors for three epochs on the optical and 
the SAR branch. The OOD detectors are two layers with a tanh activation function and 
a scalar output representing the probability that the input is out-of-distribution. In order 
to get a better sensitivity to distribution shifts, we apply intensity augmentations on the 
OOD-data. For the optimization we use Adam with a learning rate of 0.0001.

For the evaluation, we consider the F1 and F2 scores for multi-label classification to 
measure the classification performance. We differentiate two different types of the F1 
and F2 scores, namely the micro, macro and sample evaluation, referencing to weight-
ing each class prediction equally, averaging the scores class-wise or averaging the scores 
sample-wise. For the F1 score these three metrics are defined as follows:

where ŷi,c is the prediction for class c based on the i-sample, i = 1, ..,M , and yi,c is the 
corresponding ground-truth. For the F2 score the procedure follows the same principle. 
For missing modalities we assume the absence of the data to be recognized and adjust the 
propagation in the adaptive fusion and the EmbraceNet accordingly. For the corrupted 
data we assume that the noise is not recognized and the data is processed in a normal 
way. In order to evaluate the trustworthiness of the predictions, we state the calibration 

(9)F1(micro) : F1({(ŷi, yi)}
M
i=1)

(10)F1(macro) :
1

C

C
∑

c=1

F1({(ŷi,c , yi,c)}
M
i=1)

(11)F1(sample) :
1

M

M
∑

i=1

F1(ŷi, yi),
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error, given as the adaptive calibration error over 10 bins [65], and the mean entropy. 
Further, we indicate the separability of the different test sets from the original testing 
data set using the average under the receiver operating characteristic curve (AUROC) 
and the average under the precision recall curve (AUPR) evaluated with respect to the 
average entropy and the average confidence. For the proposed adaptive fusion approach 
we additionally state the AUROC and AUPR values based on the modality-wise OOD 
detectors.

In Fig. 4 examples for the adaptive fusion under different types of test time data distri-
butions are visualized.

6.2  Results

In the following, we first evaluate the influence of the fusion stage on the performance 
of the proposed adaptive fusion approach. Following this, we compare the proposed 
method against other approaches on multiple different data setups. Finally, we evaluate 
how well the different methods allow to differentiate between in-distribution and out-of-
distribution data. The results are based on five repetitions. Besides the result figures in 
this paper, the results can be also found as tables in Additional File 1.

6.2.1  Evaluate best fusion stage for adaptive fusion

First, we compare the adaptive fusion approach with ResNet18 backbone and fusion 
strategies after each of the five convolutional blocks. The results in Fig.  5 show that 
later fusion stages show little difference between the different stages. One can see, that 
the standard deviation among the five repetitions is the largest for the corrupted single 

Fig. 4 Example visualizations of different test cases: in-distribution samples, samples with the optical 
modality affected by clouds, out-of-distribution samples with unknown classes and a sample with corrupted 
optical data
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modalities test cases. In the following, we use the fourth fusion stage, which performs 
slightly better than the other stages, as a representative for our adaptive fusion approach.

6.2.2  Comparison to other approaches

In Fig. 6 the performance of the proposed adaptive fusion approach (with fusion at stage 
four) is compared to the proposed non-adaptive strategy (also with fusion at stage four), 
the multi-modal baselines with early and late fusion, the uni-modal baselines and the 
EmbraceNet. For the original testing data set, the performance of the adaptive approach 
is slightly below the performance of the baseline models and the non-adaptive version, 

Fig. 5 Comparison of different stages of fusion for the proposed adaptive fusion approach. The results are 
given as mean and standard deviation over five runs. The different stages seem to be beneficial for different 
types of distributional uncertainty. Considering the high standard deviation on the results of some test 
settings, we decided to use the approach with fusion after the fourth block for the comparison against the 
baselines
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which performs best on the testing, the snow and ice data set the data set with all ranges 
of cloud coverage. The SAR only approach performs slightly worse on the original test-
ing data and these two data sets, while the optical approach performs comparable well.

Compared to the original test data set, the performance on data that is shifted by 
including clouds and shadows in the optical version, results in a slightly worse pre-
diction performance in all approaches except the SAR only approach, where the per-
formance even improved compared to the clear test data set. The performance drop 
is significantly larger for the EmbraceNet, the early and late fusion baselines and the 

Fig. 6 Evaluation of the proposed method and the baseline approaches on different test settings. The results 
are given as mean and standard deviation over five runs. Based on the results in Figure 5 we use the fusion 
stage 4 for the proposed approaches. For the Optical Only and for the SAR Only approaches only the results 
with available data is listed, for the Baseline fusion approaches, the missing modalities are masked out with 
zeros
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optical only approaches. For the high cloud coverage test case again all approaches 
but the SAR only approach result in worse classification performance. The proposed 
adaptive fusion shows the smallest drop while all other approaches except the SAR-
only approach shows a significantly larger drop in the predictive performance. For the 
snow and ice test case, a slight decrease of the classification performance is observed 
for the early fusion baseline only.

For the missing modality and the data corruption experiments, the adaptive approach 
is ranked between the compared multi-modal baselines, which perform worse, and the 

Fig. 7 Separation of in-distribution samples and OOD samples. The given values only indicate how well the 
considered approaches and metrics separate the given data sets from in-distribution test samples. For the 
cloudy data set, for example, many samples contain almost no clouds and hence the sample might not be 
interpreted as a clear OOD example. For the Optical Only and for the SAR Only approaches only the results 
with available data is listed, for the Baseline fusion approaches, the missing modalities are masked out with 
zeros. The thicker red box marks the case where a prediction is not possible and only the separation in in- and 
out-of-distribution is achievable
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single modality approaches, which perform slightly better if the corresponding modality 
is available and not affected by the data corruption.

6.2.3  Out‑of‑distribution detection performance

The separability of in-distribution data and (possibly) OOD data is shown in Fig. 7 as 
the Average under the Curve Receiver Operating Characteristic (AUROC) and precision 
recall (AUPR) based on the average entropy and the average confidence in the network 
predictions. In comparison to this, the performance of the explicitly trained OOD detec-
tors is shown in Table 1. In Fig. 7 one can see for the case of unknown classes, that the 
trained OOD detectors out-perform the non-supervised approaches significantly. In 
Table 1 one can also see, that the optical OOD detector gives a good separability espe-
cially on the high cloud coverage data set and the corrupted optical examples. For the 
SAR OOD detector, only for the unknown classes and the corrupted SAR data the OOD 
detector shows a tendency towards separating the in-distribution and OOD samples.

7  Discussion
The presented results underline that our proposed training strategy together with the 
quantification of distributional uncertainty on single modalities can improve the per-
formance especially when one modality experiences a significant change in the data 
distribution. While the compared approaches experience a significant drop in the per-
formance, the proposed approach suffers much less from the distribution shift. Inter-
estingly, corrupted SAR modalities have a much smaller effect on the performance of 
the multi-modal baselines and on the EmbraceNet than corrupted optical data. This 
indicates, that these approaches focus more on the optical data than on the SAR data, 
what is a clear drawback when missing optical data can appear or the optical data is 
corrupted. At the same time, the quantification of the distributional uncertainty within 

Table 1 Evaluation of the distribution separation performance of the OOD detectors which are 
used for the adaptive fusion approach

The table shows the separation performance of in-distribution samples from the test set and OOD samples for different 
test cases. For cases where the separation of in-distribution and OOD examples is clear, the direction of improvement is 
indicated by an arrow

Data Set Metric Approach

OOD detector optical OOD detector SAR

Clouds and Shadows AUROC 0.73 ± 0.06 0.36 ± 0.05

AUPR 0.80 ± 0.04 0.43 ± 0.03

Very Cloudy AUROC ↑ 0.97± 0.01 0.20 ± 0.04

AUPR ↑ 0.98± 0.01 0.35 ± 0.01

Snow and Ice AUROC 0.59 ± 0.11 0.38 ± 0.03

AUPR 0.61 ± 0.08 0.42 ± 0.01

Unknown Classes AUROC ↑ 1.00± 0.00 0.95 ± 0.02

AUPR ↑ 1.00± 0.00 0.95 ± 0.02

Optical Corrupted AUROC ↑ 0.97± 0.02 –

AUPR ↑ 0.93± 0.05 –

SAR Corrupted AUROC – ↑ 0.70± 0.19

AUPR – ↑ 0.60± 0.15
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the adaptive fusion approach, leads to a better representation of the predictive uncer-
tainty by weighting the OOD examples less. This is not only useful in the cases where 
single modalities are corrupted (see for example the handpicked examples with high 
cloud coverage), but also for the case where samples only contain unknown classes. The 
experiments on the clear OOD samples based on left-out classes show the capability of 
detecting unknown classes while keeping the classification performance high on the in-
distribution samples. Even though the trained OOD detectors show the best separation 
between the test set and the considered OOD test sets, the most potential for possible 
improvements still lies in the OOD detectors, which are very simple for this example. 
More advanced approaches have the clear potential to further boost the performance of 
the proposed adaptive fusion. This can be also seen since the weaker performance might 
be explained by the very simple OOD detectors and a possibly weaker performance of 
the OOD detector on the SAR modality. The increase in the classification performance 
in the SAR-only model when comparing the clear and the cloudy data can be explained 
by a different class distribution in the two data sets and is negligible at this point.

8  Conclusion
In this work we presented an approach for the training and inference of an optical-SAR 
data fusion neural network which takes the occurrence of out-of-distribution examples 
in individual data sources at test time. We introduced an advanced training strategy 
and applied OOD detectors on individual data sources and propagate the distributional 
uncertainty of the individual data sources onto the fused prediction. The proposed 
method has shown great potential in making data fusion approaches more robust to 
distribution changes. Compared to the baseline approaches, the proposed approach sig-
nificantly improved the predictive performance on OOD examples while keeping com-
parable performance on in-distribution examples.

9  Outlook
While we used simple OOD detectors and a multi-label classification setup, we are plan-
ning to investigate more complex out-of-distribution detection approaches for simpler 
classification tasks. Especially the usage of unsupervised OOD detection approaches 
(i.e., approaches that do not need OOD examples for the training) has a large potential 
to make the data fusion more applicable in real life scenarios. OOD detectors explicitly 
designed for specific modalities will also play an important key role in our up-coming 
work, as the distribution shift has been shown to be significantly harder to detect in the 
SAR data. Further, the evaluation of contrastive information from the different modali-
ties and different fusion strategies, as for example weighted sums, and an evaluation of 
the applicability of including other sources of uncertainties (e.g., aleatoric uncertainty) 
during the fusion process, will be part of future research.

Abbreviations
AUPR  Average under precission recall curve
AUROC  Average under receiver operating curve
OOD  Out-of-distribution
PR  Precision recall
ROC  Receiver operating curve
SAR  Synthetic aperture radar
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