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Abstract 

This paper provides a method for enumerating signals impinging on an array of sen-
sors based on the generalized Bayesian information criterion (GBIC). The proposed 
method motivates by a statistic for testing the sphericity of the covariance matrix 
when the sample size n is less than the dimension m. The statistic consists of the first 
four moments of sample eigenvalue distribution and relaxes the assumption of Gauss-
ian distribution. We derive the asymptotical distribution of the statistic as m, n tends 
to infinity at the same ratio by random matrix theory and propose the expression of 
GBIC for determining the signal number. Numerical simulations demonstrate that the 
proposed method has a high probability of detection in both the Gaussian and the 
non-Gaussian noise, and performs better than other methods.

Keywords:  Signal enumeration, Generalized Bayesian information criterion, Sphericity 
test, Random matrix theory

1  Introduction
Estimating the number of signals, also called signal enumeration, is an important 
problem in array signal processing. It is applied to diverse fields, such as radar and 
wireless communication [1, 2]. There are many different approaches to signal enu-
meration. Much attention has been aroused on information theoretic criterion (ITC), 
including the Akaike information criterion (AIC) [3], the Bayesian information crite-
rion (BIC) [4], the minimum description length (MDL) principle [5], and the predic-
tive minimum description length (PMDL) principle [6]. These conventional methods 
yield poor performance because the noises rely heavily on the assumption of normal-
ity. In practical applications, e.g., interference of indoor and outdoor mobile signals, 
the radar clutter, and underwater noises follow a non-Gaussian distribution [7–9]. In 
[10], it proposes an approach to estimate the signal number by the entropy estimation 
of eigenvalues (EEE) under the white Gaussian and the non-Gaussian assumption. 
Moreover, a signal subspace identification method is developed under the non-Gauss-
ian noise with heavy-tailed [11]. The above methods work well when the sample size 
n tends to infinity with a fixed sensor number m. However, in certain scenarios, the 
available sample size may be the same order of magnitude as the sensor number, 
even the scenarios m ≫ n can occur likely in practice. For instance, in a short-time 
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stationary process, an array containing a large number of sensors just receives limited 
signal observations in the MIMO radar system. In these cases, these methods will 
encounter performance degradation because the sample eigenvalues can not converge 
to the true eigenvalues as m, n both tend to infinity at the same ratio [12].

The traditional methods, built on information theoretic criteria, have been analyzed 
and developed by random matrix theory (RMT) in the large-dimensional regime. 
There are many methods based on the sample eigenvalue properties of large-dimen-
sional random matrices, respectively discussed in [13–19]. By the distribution of the 
largest sample eigenvalue of a Wishart matrix, the classic AIC is modified by increas-
ing the penalty term [15]. In [16], an improved AIC is proposed when the high-dimen-
sional signals are contained in the white Gaussian noise by the sample moments of 
the random matrix with the Wishart distribution. In [17], a linear shrinkage based on 
the MDL criterion is devised for detecting the signal number by the spherical struc-
ture of noise subspace components under Gaussian assumption. In [18], the BIC is 
reformulated by constructing a penalized likelihood function with a convergence of 
the largest sample eigenvalues and the corresponding eigenvectors. In [19], the signal 
enumeration is realized based on the MDL and sample eigenvalues of the covariance 
matrix for Gaussian observations. Furthermore, a generalized Bayesian Information 
Criterion (GBIC) is derived. The GBIC is constructed by considering additional infor-
mation including the probability distribution or statistics of sample eigenvalues from 
available data [20]. In a large array and finite sample scenario, a signal enumeration 
method is proposed via the GBIC based on a test statistic [21]. In [22], a new algo-
rithm has been presented to estimate the number of sources embedded in a correlated 
complex elliptically distributed noise in the context of a large dimensional regime. As 
a whole, these methods mainly focus on signal enumeration in large-dimensional and 
finite sample settings.

It is more common to meet signal enumeration in a non-Gaussian noise when both 
the sample size and the sensor number are large. The ITC-like methods are difficult 
to implement for the non-Gaussian distributed observations because the probability 
density function (pdf ) is difficult to be expressed. Moreover, the existing distribution 
properties of sample eigenvalues are only applied to the Gaussian observations.

This paper deals with estimating the signal number in a large-dimensional regime 
when the noise is uncorrelated and non-Gaussian. This estimator is considered in the 
complex elliptical symmetric (CES) noises [23], which is a better characterization for 
the noises in many applications. Motivated from [20], we construct a new test statistic 
consisting of high-order moments of sample eigenvalue distribution. It has the higher 
powers for the spiked covariance matrix in [24], according to [25, 26]. Whereas, the 
proposed approach differs from [27] and is analogous to the way devised in [28] from 
the technical point of view.

We propose an approach for signal enumeration based on GBIC, whether the noises 
are Gaussian or non-Gaussian. The characteristics and advantages of our approach 
are explained as follows: 
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1.	 The proposed approach is based on GBIC by utilizing RMT.
2.	 We consider the problem of signal enumeration in the asymptotic situation where 

both the sample size n and the sensor number m tend to infinity with a ratio 
m/n → c ∈ (0,∞).

3.	 We construct an estimator that is composed of the finite moments of the spectral 
distribution of the sample covariance matrix.

4.	 The proposed estimator is evaluated numerically in scenarios with Gaussian and 
non-Gaussian noise and has a higher probability of detection than some existing esti-
mators.

The rest of this paper is as follows. Section 2 introduces the signal model and the GBIC. 
Section 3 proposes a new test statistic and deduces the asymptotic normality with gen-
eral moment conditions under the null hypotheses. Section 4 provides some numerical 
simulation results for demonstrating the asymptotic behavior of the proposed statistic 
and the performance for high-dimensional covariance in Gaussian and non-Gaussian 
noise setting. Section 5 concludes.

1.1 � Notations

The notation R is the real number set. The notation Cm×n is the set of all m× n com-
plex matrix. The notation Cm is the set of all m-dimensional complex column vectors. 
The symbol E denotes the mathematical expectation. The symbol Im denotes the identity 
matrix of order m. For a matrix A , AT and AH respectively denote its transpose and con-
jugate transpose. For a squared matrix A , tr(A) denotes its trace.

2 � Signal model and the GBIC
2.1 � Formulation

Consider that K signals s1, . . . , sK  , which are narrow-band spatially incoherent, impinge 
on an array of m sensors from distinct directions θ1, . . . , θK  . The received sample vector 
at discrete time t denoted as y(t) ∈ C

m , can be modeled as

where A(θ) = [a(θ1), . . . ,a(θK )] ∈ C
m×K  is the unknown manifold matrix with 

unit norm steering vectors a(θk) ∈ C
m corresponding to θk , k = 1, . . . ,K  , and 

s(t) = [s1(t), . . . , sK (t)]T ∈ C
K  is the signal vector, and w(t) ∈ C

m is the additive white 
noise impinging on the sensor array at the time t. Suppose that there are n snapshots of 
sensor array signals. The observation matrix is denoted as

where Y n = [y(1), . . . , y(n)], Sn = [s(1), . . . , s(n)] , and W n = [w(1), . . . ,w(n)] . We esti-
mate the signal number K from Y n . Some statistical assumptions are made for the model 
as follows: 

(1)y(t) =
K

k=1

a(θk)sk(t)+ w(t) = A(θ)s(t)+ w(t),

(2)Y n = A(θ)Sn +W n,
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A1: The signal number is unknown and satisfies K < min{m, n}.
A2: The spatially incoherent signals s1(t), . . . , sK (t) are stationary processes with 0 
mean. The covariance matrix of signal vector s(t) is E{s(t)sH (t)} = diag(p) � Ps , 
where p = [p1, . . . , pK ]T is the signal power vector.
A3: The noise components w(1), . . . ,w(n) are independent of A(θ)s(1), . . . ,A(θ)s(n) 
and come from CES with zero-mean and the covariance matrix σ 2Im , i.e., 
E{w(t)wH (t)} = σ 2Im , where σ 2 is unknown power. And s1(t), . . . , sK (t) are mutu-
ally independent.

Under the above assumptions, the observation vector y(t) in (1) at discrete time t has mean 
zero and covariance matrix

We denote the eigenvalues of R as �1 ≥ . . . �K ≥ �K+1 = �m = σ 2 with the correspond-
ing eigenvectors u1, . . . ,um . The sample covariance matrix (SCM) is

The eigenvalues and eigenvectors of R̂ are denoted as �̂1 ≥ . . . ≥ �̂m , û1, . . . , ûm , also 
named the sample eigenvalues and the sample eigenvectors.

2.2 � The review of generalized Bayesian information criterion

As a conventional method, the BIC deals with the model selection issue from a Bayesian 
point of view. But the criterion can not work well in some conditions such as small sample 
size, and low signal-to-noise ratio (SNR). Meanwhile, the BIC relies heavily on the density 
of the observation. By incorporating the density functions of sample eigenvalues and related 
statistics, the GBIC is proposed to remedy the limitation of the BIC [20]. The GBIC has two 
different expressions with relaxed the Gaussian assumption of observation and respectively 
denoted as GBIC1 and GBIC2 . The GBIC1 is made up of two parts: the density of observa-
tions and the ones of sample eigenvalues or related statistics. To reduce the influence of 
sample eigenvectors, the GBIC2 does not need the density of observations from GBIC1 for 
overcoming the limitation of the density. Meanwhile, it is convenient to describe the non-
Gaussian data. Suppose that L is a statistic based on the sample eigenvalues corresponding 
to an unknown vector �(k)

z  with a possible signal number k. If the pdf of the statistic L is 
denoted as f (L|�(k)

z ) , then the expression of the GBIC2 is

where �̂(k)
z  , ν(k) are the maximum likelihood estimate and the involved free parame-

ter number of �(k)
z  respectively. In (5), the first term is the log-likelihood function of 

f (L|�̂(k)
z ) , and the second term is the penalty. In this paper, we suggest a sphericity test 

statistic to estimate the signal number, based on the GBIC2.

(3)R � E[y(t)yH (t)] = A(θ)PSA(θ)
H + σ 2Im.

(4)R̂ = 1

n

n
∑

t=1

y(t)yH (t).

(5)GBIC2(k) = −2 log f (L|�̂(k)
z )+ ν(k) log n,
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3 � The signal enumeration method
Let x1, . . . , xn ∈ C

p be an independent and identically distributed sample (circularly 
symmetric complex) with zero mean and covariance matrix �p . Consider the sphericity 
test for the population covariance matrix:

where σ is an unknown but fixed positive constant.

3.1 � Estimators of tr�i
p/p

Suppose that Hp , Fn are spectral distributions of �p , Sn respectively, where 
Sn = 1

n

∑n
i=1 xix

H
i  is the SCM. We define the integer-order moments of Hp and Fn:

Supposing that the observations are from Gaussian distribution, the estimators α̂i of 
αi , i = 1, 2, 4 , are proved to be consistent, unbiased, and asymptotically normal as 
(n, p) → ∞ and adopted in [25, 26, 29, 30]. These estimators can be expressed as the 
polynomials of β̂i:

where

If the population distribution is non-Gaussian, the unbiasedness does not hold any-
more for α̂k , k = 2, 3, 4 . However, the consistency and asymptotic normality are retained 
under some suitable assumptions in [30].

Assumption 1  The sample size n tends to infinity together the dimension p with a 
ratio cn = p/n → c ∈ (0,∞).

(6)H0 : �p = σ 2Ip vs. H1 : �p �= σ 2Ip,

αi :=
∫

tidHp(t) =
1

p
tr(�i

p),

β̂i :=
∫

tidFn(t) =
1

p
tr(Sin), i = 1, 2, . . .

α̂1 =β̂1,

α̂2 =
n2

(n− 1)(n+ 2)

(

β̂2 −
p

n
β̂2
1

)

,

α̂4 =τ1

(

β̂4 −
4p

n
β̂3β̂1 − τ2β̂

2
2 + τ3β̂2β̂

2
1 − τ4β̂

4
1

)

,

(7)

τ1 =
n5(n2 + n+ 2)

(n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)
,

τ2 =
p(2n2 + 3n− 6)

n(n2 + n+ 2)
,

τ3 =
p2(10n2 + 12n)

n2(n2 + n+ 2)
,

τ4 = p3(5n2 + 6n)

n3(n2 + n+ 2)
.
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Assumption 2  There exists a doubly infinite matrix composed of independent and 
identically distributed random variables wij satisfying

Denote W n = (wij)1≤i≤p,1≤j≤n , the observation vectors can be expressed as xj = �
1/2
p w·j , 

where w·j = (wij)1≤i≤p is the j-th column of W n.

Assumption 3  The spectral norm of �p has a positive constant bound, and the popula-
tion spectral distribution Hp weakly converges to a probability distribution H as p → ∞.

It is worth noting that we are accustomed to assuming E(w4
11) = 3+� , where � is a 

finite constant which is 0 if wij is Gaussian in Assumption 2. Under these assumptions, we 
know that the estimators α̂k converge almost surely to αk , k = 1, 2, 3, 4 [30].

3.2 � Test procedure

Let �1, . . . , �p ∈ R be the eigenvalues of �p . From Cauchy–Schwarz inequality, we know 
that

with equality holding if and only if �1, . . . , �p are equal. By simple deformation of (8), we 
have

Therefore, the moments of the distribution Hp satisfy

The equality holds if and only if the sphericity hypothesis is true. Denote

then φ = 0 iff �p = σ 2Ip . Therefore, the sphericity test (6) is equivalent to the following 
hypothesis

For convenience, we define a new variable

The following theorem investigates the asymptotic distribution of the proposed statistic 
γ under null hypothesis H0a.

E(wij) = 0, E(w2
ij) = 1, E(w4

ij) < ∞, i, j ≥ 1.

(8)

(

p
∑

i=1

�i

)2

≤ p×
p

∑

i=1

�
2
i ,

(9)

∑p
i=1 �

4
i /p

(

∑p
i=1 �i/p

)4
≥

∑p
i=1 �

4
i /p

(

∑p
i=1 �

2
i /p

)2
.

(10)
α4

α4
1

≥ α4

α2
2

.

φ := α4

α4
1

− α4

α2
2

≥ 0,

H0a : φ = 0 vs. H1a : φ > 0.

(11)γ = α̂4

α̂4
1

− α̂4

α̂2
2

.
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Proposition 1  Under Assumptions 1–3, when the null hypothesis H0 in (6) holds, we 
have

where µ̃ = 2� , V = 16+ 16�/c . Further, if E(w4
11) = 3 , then

�Proof  From (2) in [30], we know

where the mean vector m̃ and the terms V 1 and V 2 of the covariance matrix respectively

Let

It is clear that f (t) has a continuous partial derivative at t0 = (1, 1, 1)T and the Jacobian 
vector is

Note that f (t0) = 0 and J (t0) = (−4, 2, 0)T . Based on the Delta method, we have

By simply calculating, we know

Namely,

(12)T = nγ − µ̃√
V

∼ N (0, 1),

(13)T = nγ

4
∼ N (0, 1).

n(α̂1 − 1, α̂2 − 1, α̂4 − 1)T ∼ N3(m̃,V 1 + V 2�),

m̃ = � · (0, 1, c + 6)T ,

V 1 =
1

c





2 4 8
4 4(c + 2) 8(3c + 2)

8 8(3c + 2) 8(c3 + 12c2 + 18c + 4)



 ,

V 2 =
1

c





1 2 4
2 4 8
4 8 16



 .

f (t) = z

x4
− z

y2
, t = (x, y, z)T .

J (t) = ∂f (t)

∂t
=

(

− 4z

x5
,
2z

y3
,
1

x4
− 1

y2

)T
.

n

(

α̂4

α̂4
1

− α̂4

α̂2
2

)

D−→ N (µ̃,V ).

µ̃ = J (t0)
T m̃ = 2�,

V = J (t0)
T (V 1 + V 2�)J (t0) = 16+ 16�/c.

nγ ∼ N (µ̃,V ).
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Thus,

� �

By the work in [29], we employ the statistic T = α2/α
2
1 , where α1 = tr(�p)/p and 

α2 = tr(�2
p)/p for testing the sphericity of a p− dimensional positive definite covariance 

matrix �p . If �p is proportional to the identity matrix, there will be α2
1 = α2 and T = 1 . 

Otherwise, the statistic T > 1.
Therefore, T is a sphericity test statistic, which can be employed for testing the sphe-

ricity structure of a positive definite covariance matrix. In [29], tr(�) and tr(�2) are 
unbiasedly and consistently estimated on the asymptotic condition m, n → ∞ and 
n = O(mδ), 1/2 < δ < 1 , where n = O(pδ), 1/2 < δ < 1 reveals that n is on the same mag-
nitude as pδ . However, Proposition 1 ensures that the proposed statistic T performs well for 
testing the sample covariance matrix when the dimension exceeds the sample size under 
the asymptotic condition.

The key problem is detecting the signal number using the proposed sphericity test sta-
tistic. We denote the presumptive covariance matrix of signals as R(k) with eigenval-
ues �1 ≥ · · · ≥ �k > �k+1 = . . . = �m = σ 2

k  , and the unknown parameter vector as 
�

(k) = [�1, . . . , �k , σ 2
k ]T , where σ 2 is the noise power. The signal eigenvalues of R(k) are 

�1, . . . , �k with the signal subspace Uk � {u1, . . . ,uk} , and the noise eigenvalues of R(k) are 
�k+1, . . . , �m with the noise subspace Um−k � {uk+1, . . . ,um} . By the unitary coordinate 
transformation, we decompose the received data y(t) as

where y(k)s (t) = UH
k y(t) ∈ C

k and y(k)w (t) = UH
m−ky(t) ∈ C

m−k are the presumptive sig-
nal and noise subspace components, respectively in [14, 17]. For the presumptive signal 
subspace components, its covariance matrix is

For the presumptive noise subspace component, the corresponding covariance matrix is

If there exists no signal in the presumptive noise subspace components y(k)w (t) , R(k)
w  

should be proportional to the identity matrix, i.e. R(k)
w  is spherical. Therefore, the prob-

lem of estimating the signal number turns out to be testing the sphericity of the pre-
sumptive noise subspace covariance matrices R(k)

w , k = 0, 1, . . . , min(m, n)− 1 . We 
define

T = nγ − µ̃√
V

∼ N (0, 1).

(14)UHy(t) =
�

UH

k

UH

m−k

�

y(t) �





y
(k)
s (t)

y
(k)
w (t)





(15)E
(

y(k)s (t)(y(k)s (t))H
)

= diag(�1, . . . , �k) � R(k)
s .

(16)E
(

y(k)w (t)(y(k)w (t))H
)

= diag(�k+1, . . . , �m) � R(k)
w ,
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and

where

According to Proposition 1, the statistic T̂ (k) follows Gaussian distribution if we estimate 
α
(k)
1 ,α

(k)
2 ,α

(k)
4  by the presumptive noise subspace components y(k)w (t) . If there exists no 

signal, the m− k smallest eigenvalues will be equal to each other, and R(k)
w  will be spheri-

cal. If the presumptive noise subspace components contain signals, R(k)
w  turns out to be a 

diagonal matrix. The distribution of T̂ (k) is non-Gaussian in this case. Thus, T̂ (k) is also a 
statistic of the m− k smallest eigenvalues. We employ it as the statistic L of the second 
type expression of the GBIC. This shows that the signal number can be estimated via the 
GBIC with T̂ (k) by the principle that T̂ (k) can be employed for testing the kth presump-
tive noise subspace.

3.3 � Implementation of the RMT‑based GBIC

We adopt T̂ (k) to signal enumeration via the GBIC in this subsection. By the unitary 
coordinate transformation with sample eigenvalues and sample eigenvectors, we obtain 
the presumptive noise subspace components of the observations. The sample eigenval-
ues are �̂1 > · · · > �̂m with the corresponding sample eigenvectors û1, . . . , ûm . For the k 
signals, we can estimate the noise subspace components as

where Ûm−k = [ûk+1, . . . , ûm] . The covariance matrix of the presumptive noise sub-
space components is unbiasedly estimated by

Letting

we have α̂(k)
1  , α̂(k)

2  and α̂(k)
4  can be unbiasedly and consistently estimated as follows:

(17)

α
(k)
1 �

1

m− k
tr(R(k)

w ),

α
(k)
2 �

1

m− k
tr(R(k)

w )2,

α
(k)
4 �

1

m− k
tr(R(k)

w )4,

(18)T (k) = nγ (k) − µ̃√
V

,

γ (k) = α
(k)
4

(α
(k)
1 )4

− α
(k)
4

(α
(k)
2 )2

.

(19)ŷ(k)w (t) = Û
H

m−ky(t) ∈ C
m−k ,

(20)Ŝ
(k)

w = 1

n

n
∑

t=1

(ŷ(k)w (t))(ŷ(k)w (t))H .

(21)β̂
(k)
i = 1

m− k
tr(Ŝ

(k)

w )i, i = 1, 2, 3, 4,
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where τ1, τ2, τ3 and τ4 are shown in (7).
The statistic γ (k) is estimated by

If R(k)
w  is proportional to the identity matrix, we have the asymptotic distribution of γ̂ (k) 

is

The pdf f (T̂ (k)|�̂(k)
) under the parameter estimate �̂

(k) = [�̂1, . . . , �̂k , σ̂ 2
k ] with 

σ̂ 2
k = 1

m−k
�̂k is

Substituting (26) into (5) with f (L|�̂(k)
) = f (T̂ (k)|�̂(k)

) and the parameters num-
ber ν(k) = k + 1 and ignoring the constant term, we have the proposed GBIC-based 
function

By minimizing (27) concerning k, we estimate the signal number as:

In summary, we write the proposed signal enumeration methods as the following algo-
rithm (Table 1).

(22)

α̂
(k)
1

= β̂
(k)
1

,

α̂
(k)
2

= n2

(n− 1)(n+ 2)

(

β̂
(k)
2

− m

n
(β̂

(k)
1

)2
)

,

α̂
(k)
4

= τ1

(

β̂
(k)
4

− 4m

n
β̂
(k)
3

β̂
(k)
1

− τ2(β̂
(k)
2

)2 + τ3β̂
(k)
2

(β̂
(k)
1

)2 − τ4(β̂
(k)
1

)4
)

,

(23)γ̂ (k) = α̂
(k)
4

(α̂
(k)
1 )4

− α̂
(k)
4

(α̂
(k)
2 )2

,

(24)T̂ (k) = nγ̂ (k) − µ̃√
V

.

(25)T̂ (k) ∼ N (0, 1).

(26)f (T̂ (k)|�̂(k)
) = 1√

2π
exp

(1

2
(T̂ (k))2

)

(27)GBICnew(k) = (T̂ (k))2 + (k + 1) log n.

(28)
k̂ = arg min

k
GBICnew(k),

k ∈ N , 0 ≤ k ≤ min(m, n)− 1.

Table 1  Summary of the proposed algorithm

Step 1: Perform eigenvalue decomposition on R̂ given in (4), and descending order 
the sample eigenvalues �̂1 > . . . > �̂m . The corresponding sample eigen-
vectors are denoted as û1, . . . , ûm

Step 2: For k = 0, 1, . . . , min(m, n)− 1 , execute the following step 3 and step 4

Step 3: Calculate Ŝ
(k)

w , β̂
(k)
i (i = 1, 2, 3, 4), α̂

(k)
1 , α̂

(k)
2 , α̂

(k)
4 , γ̂ (k) , and T̂ (k) with (20)–(24)

Step 4: Compute the function of the proposed GBIC-based method with (27)

Step 5: The signal number is estimated by minimizing the proposed criterion of (28)
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4 � Numerical evaluation
This section verifies the performance of signal enumeration by comparing the proposed 
method with some existing methods. These methods are respectively presented in [15]
(denoted as BN-AIC), [16] (denoted as RMT-AIC), [18] (denoted as BIC-variant), [10] 
(denoted as EEE) and [21] (denoted GBIC-SP), and set in the scenario of a large array in 
white Gaussian and non-Gaussian noise setting. The existing criterion functions are col-
lected in Table 2.

4.1 � The situations of no source signals

When no source signals are present, we mainly look at two cases in large dimensional 
regime: 

Case 1: the additive noise is distributed as complex Gaussian w ∼ CN (0, Im);
Case 2: the noise is K-distributed w =

√
τ (t)n(t) with τ (t) ∼ Gamma (v, 1/v) and 

n ∼ CN (0, Im).

We compute the empirical probability of correct detection based on 3000 independent 
numerical runs in the two cases.

Figure 1 shows the correct detection probabilities versus the number of sensors in the 
Gaussian and K-distributed noise when no sources are present. Figure 1 indicates that 
our proposed method shows a good detection effect when the ratio c becomes large, as 
the probability of correct detection is very close to 1.

Table 2  Competing criterion functions in the existing literature

Criterion Noise type Function

BN-AIC Gaussian
k̂ = argmin

k
(m− k)n log

1
m−k

∑m
i=k+1 �̂i

∏m
i=k+1 �̂

1/(m−k)
i

+ 2Ck
(

m+ 1− k+1
2

)

C = 2+ 0.001× log n

RMT-AIC Gaussian
k̂ = argmin

k

n2

2

[

(m−k)
∑m

i=k+1 �̂
2
i

(

∑m
i=k+1 �̂i

)2 −
(

1+ m
n

)

]2

+ 2(k + 1)

BIC-Variant Gaussian
k̂ = argmin

k
2n(m− k) log

1
m−k

∑m
i=k+1 �̂i

∏m
i=k+1 �̂

1/(m−k)
i

+mk log(2n)

−m

k
∑

i=1

log
�̂i

1
m−k

∑m
i=k+1 �̂i

EEE Gaussian non-Gaussian
k̂ = argmin

k

−1

m− k

m
∑

j=k+1

log
( 1

m− k

m
∑

i=k+1

KG(�̂j − �̂i)
)

−+ 1

m− k + 1

M
∑

j=k

log
( 1

m− k + 1

M
∑

i=k

KG(�̂j − �̂i)

)

where 
KG(x) = 1√

2π
e−

x2

2

GBIC-SP Gaussian non-Gaussian k̂ = argmin
k

(n−1)2

4
(T̂ (k) − 1)2 + (k + 1) log n

where T̂ (k) is the test statistic for sphericity (see (13) in [21])
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4.2 � The presence of signals

We assume that K = 5 spatially incoherent narrow-band signals with identical power 
ps from the directions of arrival (DOA) θ = {−55◦,−25◦,−5◦, 20◦, 40◦} impinge 
upon a linear array containing m sensors with uniform half-wavelength gap. We gen-
erate the signals by independent complex Gaussian sequences with steering vectors 
a(θk) = (1/

√
m)

(

1, ej(2πd/�) sin θk , . . . , ej(2πd/�)(m−1) sin θk
)T

, k = 1, . . . ,K  . We define the 

Fig. 1  Probability of detection versus the ration c under the complex Gaussian and K-distributed noise
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signal-to-noise ratio (SNR) is equal to 10 log(ps/σ 2)), where the noise power σ 2 = 1 . The 
setting of additive noise still adopts the two cases in Sect. 4.1.

Figure 2 respectively shows the empirical probability of the corrected detection ver-
sus SNR in the complex Gaussian and K-distributed noise for large sample size n and 
sensor size m. Figure 2a, b indicate that the empirical correct detection probabilities 
of all methods increase as the SNR becomes large. Meanwhile, we note that the pro-
posed method has the best performance.

Fig. 2  Probability of detection versus SNR under the complex Gaussian and K-distributed noise
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Figure 3 shows the empirical correct detection probabilities versus the number of 
samples in the complex Gaussian and K-distributed noise. Figure 3a, b indicate these 
estimators have consistency when sample size n becomes larger and larger except for 
EEE. As the SNR is low or the sample size is small, the EEE approach performs poorly.

Figure  4 shows the empirical probabilities of the correct detection versus the num-
ber of sensors for the high-dimensional case with c = m/n = 1.5 . We can see that the 

Fig. 3  Probability of detection versus sample size under the complex Gaussian and K-distributed noise
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proposed method is significantly better than the criteria collected in Table 2. The reason 
is that T̂ (k) is more sensitive to the structure of R̂

(k) , and the accurate probabilistic model 
of T̂ (k) ensures that the proposed method can reach a higher correct detection probabil-
ity. The BN-AIc and BIC-variant methods can not work because the denominators of the 
criterion functions equal 0.

Fig. 4  Probability of detection versus the number of sensors under the complex Gaussian and K-distributed 
noise
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Figure  5 shows the correct detection probabilities versus the number of sensors in 
the Gaussian and K-distributed noise. Figure  6 shows the correct detection probabili-
ties versus the ratio c in the Gaussian and K-distributed noise. Figures  5 and 6 imply 
that the proposed method has good performance in most situations when the ratio c 
becomes large. The RMT-AIC method has better performance in some places but exhib-
its instability.

Fig. 5  Probability of detection versus the number of sensors under the complex Gaussian and K-distributed 
noise
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Figure 7 shows the correct detection probabilities versus the parameter v of Gamma 
distribution in K-distributed noise. We can see that the proposed method has the high-
est empirical correct detection probability than the others for large n and m with n > m.

From the above simulation results, we have the following conclusions: 

Fig. 6  Probability of detection versus the ratio c under the complex Gaussian and K-distributed noise
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1.	 All these methods perform well for the high SNR and large sample size with n > m 
in the above types of noise.

2.	 The BN-AIC and BIC-variant methods can not work well in a high-dimensional case 
with n < m.

3.	 The EEE approach performs well in the Gaussian noise but suffers the low SNR or 
small sample size.

4.	 The proposed method has an optimal detection performance in the Gaussian and 
no-Gaussian noise for the case of large dimensions.

5 � Conclusion
This paper has developed an RMT-based method for signal enumeration in Gaussian 
and non-Gaussian noise when the sensor number is large together with the sample size. 
We estimate the signal number via RMT-based GBIC built on a new test statistic in the 
sphericity hypothesis of the noise subspace covariance matrix. The proposed method 
provides higher correct detection probabilities than the existing methods in Gaussian 
and non-Gaussian noise settings. Moreover, the proposed method can achieve more 
accurate signal enumeration even when the sample size is less than the sensor number.
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