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Abstract 

Object detection is one of the essential tasks in computer vision, with most detec-
tion methods relying on a limited number of sizes for anchor boxes. However, the 
boundaries of particular composite objects, such as ports, highways, and golf courses, 
are ambiguous in remote sensing images, and therefore, it is challenging for the 
anchor-based method to accommodate the substantial size variation of the objects. In 
addition, the dense placement of anchor boxes imbalances the positive and negative 
samples, which affects the end-to-end architecture of deep learning methods. Hence, 
this paper proposes a single-stage object detection model named Xnet to address this 
issue. The proposed method designs a deformable convolution backbone network 
used in the feature extraction stage. Compared to the standard convolution, it adds 
learnable parameters for dynamically analyzing the boundary and offset of the recep-
tive field, rendering the model more adaptable to size variations within the same class. 
Moreover, this paper presents a novel anchor-free detector that classifies objects in 
feature images point-by-point, without relying on anchor boxes. Several experiments 
on the large remote sensing dataset DIOR challenging Xnet against other popular 
methods demonstrate that our method attains the best performance, surpassing by 
4.7% on the mAP (mean average precision) metric.

Keywords: Anchor-free detector, Convolution neutral network, Deformable 
convolution, Object detection, One stage detector, Remote sensing

1 Introduction
Object detection purposes include accurately classifying target categories and speci-
fying position information in the input image. As a branch of computer vision, object 
detection plays a vital role in urban management, defense security, and environmen-
tal detection. Traditional object detection techniques typically extract feature vectors 
based on the input images’ texture, brightness, and color and then, apply decision trees 
or support vector machines to regress the target information utilizing feature vectors. 
However, many complex objects, such as ports, airports, and highways, appearing in 
remote sensing images, do not exhibit consistent dimensions and shapes. Thus, the com-
plex nature of the objects being detected prohibits handcrafted feature selection and 
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conventional detection methods from being accurate. Nevertheless, with the fast growth 
of deep learning in pattern recognition, more researchers are attempting to apply these 
techniques to various problems, such as image classification and instance segmentation. 
Indeed, deep learning techniques accommodate massive amounts of data without man-
ual adjustment and fully extract expressive features in the image.

The effectiveness of deep learning methods in computer vision has led to much 
research about object detection in the remote sensing field. For instance, Li et  al. [1] 
proposed a rotation-insensitive region proposal network and introduced a new anchor 
type based on Faster-RCNN that effectively deals with the rotation change of geospatial 
objects. To address the problem of appearance feature ambiguity and translation invari-
ance, Zhong et  al. [2] suggested a position-sensitive network that combines local and 
contextual properties. Liu et al. [3] replaced the traditional bounding box with a rotat-
able bounding box in the SSD framework, which is rotation invariant due to its ability 
to estimate object-orientation angles. Ding et al. [4] developed a full convolution neu-
ral network by dilated convolution and hard sample mining methods to achieve high-
precision detection of small objects in remote sensing images. Dong et al. [5] proposed 
a new maximum suppression method, SIG-NMS, to reduce the error detection of small 
objects.

In order to detect objects from remote sensing images, Li et  al. [6] designed an 
improved Transformer to aggregate the features of global spatial positions on multiple 
scales and used attention mechanism to adjust the data set differences with the pre-
training model. Wang et al. [7] uses an improved Inception model to enhance the ability 
of small target extraction in shallow network and improves the pyramid structure in the 
model to enhance the effect of feature fusion. In addition, this method also compares 
the extracted features with candidate boxes with different horizontal-vertical ratios, so 
as to realize the detection of targets with different scales. Li et al. [8] proposed a novel 
Adjacent Context Coordination Network to explore the consistency of adjacent features 
in encoder and decoder structures. The network includes an ACCoM structure, which 
is used to activate salient regions in output features and coordinate multi-level fea-
tures at the same time. Ye et al. [9] apply the stitcher to get an image containing objects 
with different scales, which can balance the ability of detecting multi-scale objects in 
the training process. In addition, this research is inspired by attention mechanism, and 
fuses spatial attention and channel attention in the model to obtain more representa-
tive feature information. Li et al. [10] proposed SeaNet, which includes MobileNet-V2 
for feature extraction, DSMM for high-level dynamic semantic matching and ESAM 
for low-level feature edge self-alignment. This method firstly obtains the high-level fea-
tures of the input remote sensing image and then, uses dynamic convolution to activate 
the position of salient objects in the high-level features. At the same time, in ESAM, 
cross-scale edge information extracted from low-level features is used for self-alignment 
and detail alignment. Yolov5-extract [11] algorithm was proposed by Tom et al. In this 
algorithm, the feature layer and prediction header with poor feature extraction ability in 
Yolov5 algorithm were removed, and a network mixed with Coordinate Attention and 
dilated convolution was integrated in the model, which optimized the extraction ability 
of object position and feature information at different scales. Dong et al. [12] proposed a 
remote sensing image target detection network based on FPN architecture. Considering 
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the variable shape and direction of remote sensing targets, this method uses deform-
able convolution to replace the horizontal connection in FPN to obtain the feature map 
with variable receptive field. In addition, this method also introduces several attention-
based feature fusion modules to adaptively integrate the multi-level outputs of FPN, thus 
further realizing multi-scale target detection. Wang et al. [13] proposed a novel single-
stage detector MSE-Net, which consists of a multi-scale enhanced network and a scale-
invariant regression layer. First, MSE-Net provides multi-scale description enhancement 
by integrating Laplace kernel with fewer parallel multi-scale convolution. In addition, 
the model contains three different independent regression branches (corresponding to 
small, medium and large scales) in the regression layer, so that the default discrete scale 
bounding box covers the full-scale object information in the regression process.

Inspired by the current works, this paper develops a novel anchor-frame detection 
model named XNnet, to detect specific targets in remote sensing images. Compared 
to natural scenes, the targets’ scale in remote sensing images varies significantly, pos-
ing essential impediments in the detection tasks. Thus, Xnet employs a deformable 
convolution strategy to construct a feature extraction network for a flexible receptive 
field during the training phase and adapt to the targets’ shapes at each scale. Finally, 
the proposed method is challenged against other detection methods on the large 
remote sensing dataset DIOR and attains a superior performance. In conclusion, this 
study has the following contributions:

1. Proposing a single-stage, anchor-free object detection method. The feature extrac-
tion network generates high-quality output features by fusing multi-scale features, 
while the anchor-free detector classifies and regresses the output features point-by-
point to predict the category and location information of the objects.

2. Due to the targets’ variable shape in the dataset, the proposed feature extraction 
method implements deformable convolution to construct the feature extraction net-
work. During the training phase, the deformable convolution dynamically modifies 
the range of the receptive fields to obtain more differentiated features.

3. The proposed method is compared to several popular detection methods on the 
DIOR dataset, revealing that our method achieves the best results among the sin-
gle-stage methods. Specifically, our scheme significantly outperforms the competitor 
methods in mAP metrics and is comparable to the effectiveness of the multi-stage 
methods.

Overall, the contribution of this paper lies in the design of a feature extraction net-
work incorporating deformable convolution and residual structure. The backbone 
network can dynamically adjust the range of receptive fields of the model according 
to the input feature, so that the model can capture abundant context information in 
multi-scale receptive fields. Another innovation of this work is that a novel anchor-
free design structure is proposed, which not only eliminates the complex anchor 
boxes clustering in the previous anchor-based model in the preprocess stage, but also 
directly predicts the category and position of the target according to the feature pix-
els, which can better adapt to the detection of targets at different scales.
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The structure of this article is as follows: in the first chapter, we introduce the innova-
tion of this work, the existing problems of remote sensing image object detection and 
the methods proposed by this paper to solve the problems. In the second chapter, this 
paper introduces the research on object detection in satellite remote sensing images. 
The related research can be divided into two categories, one is single-stage, the other is 
multi-stage. In the third chapter, the proposed method is introduced in detail, includ-
ing the improved feature extraction network, feature fusion module and the design of 
anchor-free detection head. In addition, from the perspective of clustering experiments, 
this chapter also analyzes the limitations of anchor-based methods. In the fourth and 
fifth chapters, this paper introduces in detail the design and the quantitative indicators 
related to the comparative experiment, and the analysis of the experimental results, as 
well as the experimental details in the training and verification stage.

2  Related work
Object detection based on convolutional neural networks involves single-stage and 
multi-stage methods.

2.1  Multi‑stage object detection

Differentiating multi-stage methods necessitates regions from the region proposal net-
work as candidates, as these methods’ first stage generates a series of candidate region 
proposals that may contain objects. The second stage is to divide the candidate region 
proposals from the previous stage into objects and backgrounds and further adjust the 
coordinates of the detection boxes. The R-CNN method [14] is a representative multi-
stage detection method, which applies a CNN (convolutional neural network) to extract 
the features of each proposal region and then, feeds the features into the support vector 
machine for further classification. Ren et  al. [15] proposed the Faster-RCNN method, 
where the region proposal network (RPN) shares the convolutional parameters with the 
subsequent module. The RPN generates high-quality region proposals for the detection 
network through end-to-end training. An alternative solution is the feature pyramid net-
work (FPN) [16], which introduces top-down paths into the feature extraction network. 
This strategy aims to improve the Faster-RCNN’s feature extraction capability process by 
reducing the distance between the features. Besides, the quality of the whole feature can 
be improved by using the semantic information collected from the deep features.

Wu et  al. [17] introduced the Double head RCNN and analyzed the effect of fully 
connected and convolution layers in object detection. Sun et al. [18] developed Sparse 
RCNN, a sparse prediction method that employs learnable region proposals to avoid 
a manual anchor box design and many-to-one label assignments. Cai et  al. [19] sug-
gested the Cascade RCNN method, which involves progressive training and resampling 
to ensure that all detectors have the appropriate proportions of the positive sample set, 
thereby reducing overfitting. Kim et  al. [20] proposed the PAA (Probabilistic Anchor 
Assignment) detection method, a new anchor assignment strategy that adaptively 
divides the anchor boxes into positive and negative samples based on the model’s learn-
ing state. However, the above methods rely on the region proposal network to extract 
all candidate region proposals, with multi-stage methods excluding irrelevant regions 
before classification, thereby improving detection accuracy.
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2.2  Single‑stage object detection

The single-stage target detection strategy does not need to generate candidate region 
proposals compared to the multi-stage approach. A representative approach is the 
YOLO [21, 22] series, which uses the output features of the CNN backbone and pre-
set anchor boxes to predict the detection boxes directly and provide the correspond-
ing class probabilities in the whole image. Compared with YOLO, SSD [23] achieves 
better results in locating small-sized objects by introducing multi-scale features and 
default boxes with multiple groups. Moreover, Lin et  al. [24] proposed RetinaNet, 
which utilizes a hard sample mining approach to alleviate unbalanced foreground and 
background samples in the object detection task. Li et al. [25] suggested the Trident 
Network detection method, which relies on a multi-branch structure with shared 
parameters but different receptive fields. Each branch trains and predicts objects 
within a specific range of size. Tan et al. [26] introduced EfficientDet, a method for 
dynamically scaling the model’s width, dimensionality, and depth. In recent years, 
research on anchor-free detection methods has gained significant attention. For 
instance, Law et  al. [27] developed an anchor-free detection method, Corner Net, 
in which a pair of key points (upper left and lower right corners) are used as detec-
tion targets and then, matched in pairs in the same detection box by a new group-
ing method. Duan et al. [28] suggested the CenterNet detection model that uses key 
point estimation to find the target’s centroid and regress other object attributes, i.e., 
location and orientation. Ge et al. [29] proposed the anchor-free approach YOLOX, 
which decouples the network’s detection and classification heads. This method uses 
SimOTA to match the predicted detection boxes with the ground truth in the training 
phase.

However, high-precision object detection has always been an essential task for optical 
remote sensing image processing, and there is still ample room for development. In the 
proposed model, the feature extraction network relies on deformable convolution [30] 
to adaptively capture the target-related feature information. Simultaneously, an anchor-
free detector classifies and regresses target information in the multi-level output feature. 
Based on these enhancements, this method increases the object detection precision in 
remote sensing images and reduces misidentification and leakage identification.

3  Methods
The proposed model comprises the feature extraction network, the feature fusion 
module, and the detection module (Fig.  1). Residual networks [31] and deformable 
convolutions are utilized to construct the feature extraction module, which extracts 
feature maps at varying levels. The feature fusion module uses a feature pyramid net-
work to fuse essential information of multi-level features, while deformable convo-
lution improves the output features and adjusts the receptive field area dynamically 
during training, accommodating geometric changes in target objects. The multi-stage 
output features from the feature extraction network are input into the module for 
anchor-free detection. The detection module predicts object categories and regresses 
locations where the gradient value in the feature image is greater than zero. The sub-
sequent sections analyze each module within our method.
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3.1  The feature extraction network

3.1.1  Deformable convolution

Equation  (1) presents the two-dimensional convolution formula, where K represents 
the convolution operation, and the size of the input features I is m × n. Obtaining the 
complete feature information of the target is a crucial step for subsequent model clas-
sification, with Dai et al. [30] introducing the limitation of the normal convolution and 
explaining why the network meets the challenges when detecting complex objects.

A normal convolution extracts features within the radius of the receptive field. How-
ever, the limited size and shape of the receptive field might lead to incomplete target 
object features, affecting the accuracy in the final detection stage. Especially most 
objects in remote sensing images have ambiguous bounds and various scales.

As shown in Eq. (2), the deformable convolution adds two learnable variables, x and y, 
to the normal convolution, assisting the network to flexibly sample features during the 
training stage.

In addition, Fig.  2 visually compares the receptive field between the normal and 
deformable convolution, highlighting that deformable convolution has a broader sam-
pling range and better meets the target distribution. Hence, the deformable convolution 
allows the network to obtain complete and precise feature information.

3.1.2  The structure of the feature extraction network

The feature extraction network in the proposed model substitutes some of the nor-
mal convolutions with deformable convolutions based on ResNet [31], which affords 
an appealing performance and is frequently employed in various visual tasks. A 

(1)O(i, j) =
m n

I i +m, j + n · K (m, n),

(2)O(i, j) =
∑

m

∑

n

I(x +m+�x, j + n+�y) · K (m, n),

Fig. 1 The overall structure of the proposed model, where N is the batch size and K is the number of 
detection boxes
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deformable convolution involves two additional learnable parameters enabling the 
network to adjust the receptive field and improve the network’s ability to adapt to 
target scale changes. As depicted in Fig. 3, the feature extraction network comprises 
five stages, each composed of three distinct bottle structures. Each bottle struc-
ture encompasses multiple convolution layers with a 3 × 3 kernel size and residual 
connections.

The difference between the three bottleneck structures is whether a 1 × 1 con-
volution adjusts the feature channel and whether the deformable convolution is 
supplanted for the normal convolution at the end of the bottleneck structure. Fig-
ure  3 highlights that the deformable convolution exists only in the main branch of 

Fig. 2 Visual comparison of the deformable convolution (right) and the normal convolution (left)

Fig. 3 The structure of the feature extraction module
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BottleNeck3 due to computational efficiency. The input size of the feature extraction 
module is w × h× c , where w, h, and c are the width, height, and channel, respec-
tively. The output feature size is w

2i
× h

2i
× (c × 2i) , where i is the stage of the output 

feature. As illustrated in Fig. 1, the outputs of different stages are input into the next 
module.

3.2  The feature fusion module

Shallow features in convolutional neural networks commonly comprise more positional 
information than deep features, whereas deep features contain more semantic informa-
tion due to their larger receptive fields. Moreover, multiple downsampling imposes the 
target’s feature information loss, particularly weakening the small objects’ category and 
location information. Consequently, the proposed model employs the feature fusion 
module to enhance the detection effect of the small-scale target.

According to Fig. 4, the feature fusion module utilizes pyramid structures to connect 
features directly at various levels. Moreover, the deep and shallow features are fused in 
the fusion module. The upsampling operation forces the deep features to have the same 
size as their adjacent shallow features, and then, the module concatenates the adjacent 
features and feeds them to the subsequent stage. If the channel numbers of two concate-
nated feature maps are unequal, the module first applies a 1 × 1 convolution operation to 
adjust both channel numbers. The feature map C1, C2, and C3, generated by the feature 
extraction module, are input to the feature fusion module, and the i-th output feature 
Pi has the same resolution as the input feature Ci. Therefore, the anchor-free detector 
in the subsequent stage obtains richer image features by enhancing its ability to detect 
small objects.

3.3  Anchor‑free detector

We further describe the uniqueness of the anchor-free detector head in the following 
contents. In general, object detection networks with anchor frames have a great impact 
on detecting some targets of different sizes, and more preset anchor boxes are needed 
to get higher recall during training, so this leads to an additional need to calculate the 
maximum intersection ratio between anchor boxes and ground truth during training. 

Fig. 4 The structure of the feature fusion module
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In addition, since most of the anchor boxes are negative samples, there is also the prob-
lem of sample imbalance. However, in the anchor-free detection model proposed in 
this paper, the calculation of IOU between anchor box and ground truth is avoided, 
and the good detection effect is maintained. According to the description above, the 
Xnet method proposed in this paper introduces multi-scale pixel-by-pixel regression 
for object detection while using an anchor-free box detection head. The scale of targets 
regressed on different scale features is varied, and for a certain layer, targets that do not 
satisfy the regression size of that layer are not processed further, which also alleviates the 
duality due to target overlap to some extent.

Three features from the feature extraction network are input into the feature fusion 
module to generate the output features Pt , i ∈ (1, 2, 3) in three varying scales. In contrast 
to anchor-based methods, the anchor-free detector directly predicts the object’s cate-
gory and location information in multi-stage output features. To investigate the relation-
ship between feature gradients and target distribution, we employ the Gram-Cam [32] 
method to generate a gradient map of the input image. In Fig. 5, the highlighted regions 
represent pixels with strong gradients that overlap heavily with the target objects. 
Spurred by this finding, we eliminate the interference of irrelevant regions by employing 
Xnet, which only performs prediction in regions where the gradients are greater than 
zero.

As shown in Fig. 6, the detector regresses a certain point (x, y) to obtain a four-dimen-
sional vector t = (l̂, ĥ, r̂, b̂) and its corresponding label ĉ , where (l̂, t̂, r̂, b̂) is the distance 
between point (x, y) and the boundary of the detection box and ĉ denotes the classifica-
tion of the detection box. For point (x, y) in the feature image, (x − l̂, y− r̂) on the upper-
left corner and (x + r̂, y+ b̂) on the lower-right corner constitute the coordinates of the 
detection box, respectively.

Each point satisfying this requirement has detection boxes of various scales for the 
input feature images. In other words, the same point has a detection box for the feature 
image at different levels. The coordinate in  Pi must be multiplied by  2i+1 to match the 
size of the original images. The anchor-free detection module comprises two fully con-
volutional branches, where the classification branch predicts the probability that a point 
belongs to the category, and the regression branch predicts the center location and offset 
of the bounding box.

Fig. 5 The gradient map of the input image
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3.4  The analysis of the anchor‑based detector

This paper analyzes the performance of the anchor-based methods by clustering 
anchor boxes according to their width and height using the KMeans++ algorithm 
[33]. Table 1 reports that the IoU between limited anchor boxes and the ground truth 
is small, with a decreasing trend as the number of cluster groups rises. This indicates 
that in the initial stage, preset anchor boxes cannot adequately accommodate the 
sizes of the detected objects, necessitating substantial position adjustments during 
the training phase of the anchor-based method. Our novel anchor-free detector, veri-
fied in a comparative experiment, enables our method to resolve this issue.

4  Loss function
In Eq. (3), the cross-entropy loss assesses the reliability of the classification results. If 
the model classifies the results more precisely, the loss value tends to decline. In Eq. 3, 
yic denotes the i-th sample that belongs to category c, and pic is the predicted prob-
ability it belongs to category c.

Fig. 6 The structure of the anchor-free detector

Table 1 The IoU between the preset anchor boxes and the ground truths

Number of groups for clustering Mean IoU

3 0.4434

4 0.4703

5 0.5060

6 0.5190

7 0.5583

8 0.5706
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The IoU loss in Eq. (4) represents the degree to which the detection and ground truth 
boxes overlap and is primarily employed to evaluate the precision of the proposed mod-
el’s regression section. In this loss function, A represents the ground truth coordinate, B 
is the detection box coordinate, and Pxy > 0 indicates that the model only regresses the 
detection boxes for regions where the feature gradient is greater than zero, ignoring all 
other regions.

The loss function in Eq. (5) consists of the two loss functions listed above, where Npos 
is the number of images sampled during the training phase and � is applied to balance 
the weight of the classification. In the subsequent comparison experiments, the IoU loss 
is set to 1.

5  Experiment
5.1  The DIOR dataset

We demonstrate the proposed model’s efficacy by challenging it against current methods 
on the large DIOR remote sensing image dataset. DIOR [34] comprises 23,463 remote 
sensing images covering 20 categories of ordinary objects. The images have a fixed reso-
lution of 0.5–30 m and a fixed size of 800 × 800. Figure 7 depicts the categories distri-
bution, which is diverse in data quantity and object categories. The target area in the 
image varies from 100 to 4 ×  104, including 20 categories such as aircraft, airports, base-
ball fields, bridges, chimneys, and dams. To ensure that the object class during training 

(3)L1 = −
1

N

∑

i

M
∑

c=1

yic log (pic),

(4)L2 = Npos

∑

reg

pxy>0Lreg

(

bxy, b̂xy

)

,

(5)L = L1 + � · L2,

Fig. 7 Class distribution in the DIOR dataset
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remains balanced, the experiments exploit the officially divided training and validation 
sets.

5.2  Training and inference details

Our method is challenged against current deep learning methods under the default 
configuration of the Paddle framework, i.e., all network parameters are initialized ran-
domly and retrained on the experimental dataset. During the training stage, all meth-
ods adjusted the input resolution to 800 × 800. Moreover, the comparison experiment 
countered overfitting through image augmentation techniques such as horizontal flip-
ping, scaling, clipping, and color vibration. The batch size for each iteration is eight, 
and the initial learning rate is 1× 10−3 . During the training stage, 36,000 iterations are 
performed. When the model’s loss fails to decrease after 5000 iterations, the learning 
rate reduces to 1/10 of its previous value until the minimum learning rate 1× 10−5 is 
reached. Only the weights with the minimum loss are saved during the validation phase. 
The model obtains the detection boxes of the input image during the prediction phase, 
with the maximum suppression method neglecting the redundant detection boxes to 
provide the final output.

All trials are implemented on an Intel Xeon Gold 6330 CPU with 32 GB of memory 
and an NVIDIA 3090 graphics card with 12 GB of video memory.

5.3  Performance evaluation metrics

Object detection models are typically evaluated based on the accuracy, precision, recall, 
and specificity performance metrics, with different metrics utilized based on the appli-
cation and scenario. This paper employs the mAP (mean average precision) metric 
involving precision and recall, defined as:

where TP, FN, FP, and TN are defined as presented in Table 2.
Equation  (8) defines the method to plot the PR curve, where the X-axis denotes the 

prediction accuracy and Y-axis is the recall. Calculating the area within the curve and 
the coordinate axis determines the predicted AP value of one category in the dataset. 
The mAP value is the average of the AP values of all categories.

(6)Precision =
TP

TP+ FP
,

(7)Recall =
TP

TP+ FN
,

Table 2 The definitions of TP, FN, FP, and TN

The ground truth Prediction value

Positive samples Negative 
samples

Positive samples TP FN

Negative samples FP TN



Page 13 of 19Fu et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:53  

The Intersection over Union (IoU) is considered from 0.5 to 0.95 when evaluating 
the model’s prediction performance. We calculate the AP values corresponding to dif-
ferent IoUs and then, average them to obtain mAP@0.5:0.95. In addition, the  mAPsmall, 
 mAPmid, and  mAPlarge metrics represent the AP values of varying-sized detection tar-
gets, where small targets are smaller than 1024 pixels, medium targets are between 1024 
and 4096 pixels, and large targets are greater than 4096 pixels.

5.4  Analysis of the experimental results

As reported in Table 3, the mAP value of the YOLOV4 method is only 24.5%. As a rep-
resentative anchor-based object detection method, the performance of YOLOV4 in the 
DIOR data set lagged significantly with the anchor-free methods. Therefore, the anchor-
free method is more appropriate for datasets involving a wide distribution of object size 
and categories. In the mAP@0.5:0.95 and  mAPsmall metrics, the proposed method devi-
ated slightly from the Cascade-RCNN model, which is a multi-stage method, presenting 
only a 0.3% gap in the capacity to detect small objects.

Therefore, the single-stage Xnet method can nearly achieve a similar detection per-
formance compared with the Cascade-RCNN method. In contrast to other preva-
lent methods, our model achieves the optimal performance on the test dataset, while 
mAP@0.5:0.95 increases by 4.7% compared to the suboptimal YOLOX method. Accord-
ing to the feature point distribution, CenterNet [27] can regress the size and location of 
the detection box. However, the feature points of some targets in the feature maps will 
be compressed to the same location during downsampling, resulting in the overlapping 
problem.

Xnet obtains more discriminative features and location information of multi-level fea-
tures at various scales to prevent the occurrence of the above problem. Consequently, 
compared to CenterNet, our technique increases mAP@0.5:0.95 and mAPsmall by 7.7% 
and 2.1%, respectively. The suggested method obtains the complete output features with 
less information redundancy through deformable convolution than the YOLOX method, 
thereby reducing the interference of useless information in object detection. Accord-
ingly, our method affords a 4.7% higher mAP in the test dataset, while the  mAPsmall is 
slightly lower than the YOLOX method by 0.7%.

According to the above analysis, additional annotation information is not required 
in the proposed model. The deformable convolution design in the feature extraction 

(8)AP = ∫10 P(R)dR,

Table 3 Metrics in the comparative experiment

Methods mAP@.5:.95 mAPsmall mAPmid mAPlarge

Ours 0.498 0.147 0.397 0.689

CenterNet 0.421 0.124 0.363 0.586

YOLOV4 0.245 0.051 0.206 0.351

YOLOX 0.451 0.154 0.386 0.602

Cascade RCNN (Multi-
stage)

0.517 0.150 0.425 0.705
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network and the anchor-free detection are applied to fuse the output feature maps of 
different scales effectively and mitigate the sizable differences within the same cat-
egory to enhance the performance of object detection in remote sensing images.

This section demonstrated this method’s efficacy by comparing and analyzing the 
experimental evaluation metrics. Similarly, as demonstrated in Table 4, the detection 
performance of Xnet is superior to the competitor methods. For instance, Example C 
in Table 4 reveals that only our method detected the ships of all sizes and the ports 
where they are docked. In Example B, no errors or omissions are made in detecting 
the aircraft with dense stops. Hence, Xnet can adapt to detecting both types with sig-
nificant size differences within the same image (Example D). As demonstrated by the 
visual examples, Xnet achieves the same excellent effect as the multi-stage detection 
method, demonstrating its detection efficacy.

Table 4 Comparison of the visualization results

Methods Example

A B C D

Ours

CenterNet [27]

YOLOV4 [35]

Cascade RCNN [19]

YOLOX [29]
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ADSI (Airbus Defense and Space Intelligence) is an oil storage tank detection data-
set provided by Airbus. Storage areas for large oil tanks are common in manufactur-
ing and government facilities, and are critical infrastructure in the industry.

Deep learning uses aerial or remote sensing images to detect oil tanks, which can 
get the number, type and status information of oil tanks in the current storage area, 
thus preventing oil tanks from overturning, leaking and other events. The following 
figure is a sample in the ADSI dataset, and the distribution of oil tanks in this sce-
nario as Fig. 8 is in the red rectangular box.

As shown in Table 5, the mAP value of the YOLOX method is 43.1%, which is also 
a method for detecting targets without anchor boxes, the detection effect of YOLOX 
method is far inferior to the another anchor-free method Xnet proposed in this paper.

Fig. 8 Sample in the ADSI dataset

Table 5 Metrics in the comparative experiment

Methods mAP@.5:.95 mAPsmall mAPmid mAPlarge

Ours 0.513 0.137 0.407 0.699

CenterNet 0.445 0.122 0.353 0.593

YOLOV4 0.411 0.119 0.322 0.412

YOLOX 0.427 0.134 0.397 0.631

Cascade RCNN (Multi-
stage)

0.501 0.150 0.411 0.715
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Overall, the results of this comparative experiment are similar to the previous com-
parative experiments conducted on the DIOR dataset, and the anchor-free detection 
methods also exhibit better detection results than the anchor-based detection methods. 
Among the anchor-free detection methods, the method with the lowest mAP 42.7% 
is better than any one of the methods with anchor boxes. The following Fig.  9 shows 
the actual detection effect of the method proposed in this paper, although there were 
numerous oil tanks to be detected, the Xnet method was able to detect all of them in the 
scene.

5.5  The ablation experiments

The ablation experiments aim to confirm the influence of deformable convolution on 
object detection. To ensure experimental integrity, the super parameter setting and 
training strategy of the ablation experiment are identical to the comparative experi-
ment. The effects of the ablation experiment are listed in Table 5, which highlights that 
when the structure of the anchor-free detector in the proposed method is unaltered, the 
design of the deformable convolution in the feature extraction network improves the 
overall model’s detection effect. There is a 2.2% improvement in the mAP@0.5:0.95 met-
ric and a 1.2% increase in the  mAPsmall metric. To test the effect of deformable convo-
lution on various feature extraction networks, we create a new control group utilizing 
another backbone network, while all other experimental settings remain unchanged. As 
indicated by the experiment metrics, the deformable convolution significantly impacts 

Fig. 9 The actual detection effect of the method proposed in this paper
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ResNet18, attaining a 0.3% improvement in mAP@0.5:0.95 and a 0.6% improvement in 
 mAPsmall. According to the findings of the experiments, deformable convolution can 
improve the accuracy of an object detection task, accomplishing a superior outcome.

The method described in this paper achieves the same improvement effect with differ-
ent feature extraction networks, exemplifying that this method can augment the object 
detection effect of other feature extraction networks, as shown Table 6.

6  Conclusion
The challenge in object detection of remote sensing images arose from the considera-
ble proportion of small-size objects and the differences within the same type of objects, 
leading to the ineffective detection effect of some current multi-stage and single-stage 
methods. Regarding the anchor-based method, the anchor boxes set manually or based 
on clustering cannot cover the size distribution of all data set objects.

To address the issues above, we incorporate a deformable convolution for feature 
extraction instead of exploiting standard convolution, providing the network with a 
more adaptable receptive field. In addition, our anchor-free detector directly predicts 
the detected objects on the multi-level feature map without requiring preset anchor 
boxes to adjust the position, thereby overcoming the accuracy degradation caused by 
the dense distribution of anchor boxes and the sample imbalance in the anchor-based 
method. The comparative experiments demonstrate that although our scheme adopts 
a single-stage detection strategy, it affords an IoU of 49.8%, comparable to multi-stage 
models, thus verifying our method’s efficacy. Future research will investigate reducing 
the model’s parameters and applying our model in a scenario with limited computational 
resources.

This research additionally conducted a comparison experiment on the ADSI data-
set. The results of this comparison experiment show that for small object detection in 
remote sensing images, the anchor-free detection model is more advantageous in terms 
of detection accuracy. In addition, XNet achieves the best detection results among the 
anchor-free methods in the comparison experiment with the feature extraction capabil-
ity of the backbone network incorporating deformable convolution and the multi-layer 
feature fusion network, as well as the unique anchor-free detection head design.
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