
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

RESEARCH

Yao et al. 
EURASIP Journal on Advances in Signal Processing         (2023) 2023:48  
https://doi.org/10.1186/s13634-023-01014-1

EURASIP Journal on Advances
in Signal Processing

Seal call recognition based on general 
regression neural network using Mel-frequency 
cepstrum coefficient features
Qihai Yao1,2, Yong Wang1,2*  , Yixin Yang1,2 and Yang Shi1,2 

Abstract 

In this paper, general regression neural network (GRNN) with the input feature of 
Mel-frequency cepstrum coefficient (MFCC) is employed to automatically recognize 
the calls of leopard, ross, and weddell seals with widely overlapping living areas. As a 
feedforward network, GRNN has only one network parameter, i.e., spread factor. The 
recognition performance can be greatly improved by determining the spread factor 
based on the cross-validation method. This paper selects the audio data of the calls 
of the above three kinds of seals and compares the recognition performance of three 
machine learning models for inputting MFCC features and low-frequency analyzer 
and recorder (LOFAR) spectrum. The results show that at the same signal-to-noise ratio 
(SNR), the recognition result of the MFCC feature is better than that of the LOFAR spec-
trum, which is verified by statistical histogram. Compared with other models, GRNN 
for inputting MFCC features has better recognition performance and can still achieve 
effective recognition at low SNRs. Specifically, the accuracy is 97.36%, 93.44%, 92.00% 
and 88.38% for cases with an infinite SNR and SNR of 10, 5 and 0 dB, respectively. In 
particular, GRNN has the least training and testing time. Therefore, all results show that 
the proposed method has excellent performance for the seal call recognition.

Keywords: Seal call recognition, MFCC feature, Underwater acoustic signal, GRNN, 
Machine learning

1 Introduction
Marine mammal acoustics is a science that studies the acoustic behavior of marine 
mammals. Different from the land–air environment, the energy of light, heat, electro-
magnetic wave, and other forms will decay rapidly in the marine water environment, but 
the acoustic signal can spread effectively over a long distance. Therefore, most marine 
mammals evolved the ability of underwater voice to achieve the purposes of commu-
nication, individual recognition, navigation and positioning, foraging for food, and so 
on. Thus, best method to study marine mammals is to use passive acoustic monitoring 
(PAM) technology to record and analyze their underwater acoustic signals.

Almost all seals can make sounds underwater, and the vocal behavior is closely 
related to the habitat and activities of seals during the whole life cycle. Seals spend 
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most of their time underwater to complete breeding, predation, and other behaviors. 
The traditional visual monitoring of seal behavior depends on weather, sea condi-
tions, light, and other conditions, so it is difficult to track and monitor seals for a long 
time and in a wide range. However, PAM technology can get rid of most of the limita-
tions of traditional visual monitoring, which can be effectively used for the investiga-
tion and research of seals. Watkins et al. analyzed the air and underwater vocalization 
of the Ross seal and found that its underwater vocalization includes pulses similar to 
that in the air. The difference is that the center frequency and bandwidth of underwa-
ter vocalization are large [1]. Mossbridge et al. [2] found through spectrum analysis 
that when leopard seals and killer whales in Antarctica appear in similar sea areas, 
the two animals will use frequency modulation to avoid the crossover of their vocal 
frequencies. Rogers et al. [3] studied the seals and Ross seals in Antarctica and found 
that the vocalization of the two seals was related to factors (e.g., day, night, and sea-
sons). Risch et  al. [4] studied the sounds of bearded seals in different Arctic waters 
and found significant differences in the vocal characteristics of different groups of 
bearded seals. Frouin-Mouy et al. [5] found that bearded seals vocalize more at night 
than during the day and more in winter than in summer. Halliday et al. [6] studied the 
seasonal vocal patterns of marine mammals (e.g., bearded seals, spotted seals, and 
whales underwater) and obtain the importance of sea ice to seal call. Cziko et al. [7] 
found that seals can emit ultrasonic waves close to 50  kHz through the broadband 
data collected underwater for a long time.

Underwater sound is collected by PAM technology, and acoustic features are extracted 
and input into a machine learning model, which has been widely used in the detection 
and recognition of marine mammals. Potter et  al. used an artificial neural network to 
detect bowhead whales. The results show that the performance of this method is better 
than the time series matched filter and hidden Markov model [8]. Mouy et al. [9] used 
image processing methods for spectrum noise reduction and realized the detection and 
classification of blue whales and baleen whales through time–frequency analysis tech-
nology. Halkias et al. [10] established the restricted Boltzmann machine (RBM) model to 
realize the classification of baleen whales under a low signal-to-noise ratio (SNR). Parisi 
et al. [11] distinguished the underwater calls of bearded seals following different center 
frequencies and bandwidths. Frouin-Mouy et  al. [12] used a spectrum map to realize 
the automatic detection of spotted seals and studied the distribution pattern of spot-
ted seals in the Bering Sea, Chukchi Sea, and Beaufort Sea. Luo et al. proposed the local 
energy normalization method for inputting underwater sound data spectrum of different 
lengths. The convolutional neural network (CNN) model was applied for the effective 
detection of the echolocation sound of odontocetes [13]. Zhong et al. [14] established a 
transfer learning model and input the extracted small sample underwater sound spec-
trum for the detection of beluga whales. Shiu et al. [15] built various machine learning 
models to detect the phonation of North Atlantic right whales. The results show that 
the CNN model can significantly improve accuracy. Mishachandar et al. [16] applied the 
CNN model to marine noise recognition, effectively distinguishing different human, nat-
ural, and marine animal sounds. Escobar-Amado et al. [17] realized the effective classifi-
cation of the sound of bearded seals by extracting the region of interest of bearded seals 
in the spectrum and using the CNN model.
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Few studies related to seals, especially studies on the automatical recognition of 
seal calls, are noted in the field of underwater sound recognition of marine mammals. 
When different kinds of seals live in a similar sea area, the recognition of seal calls is 
of great significance to the study of abundance estimation and population structure. 
Therefore, a method of seal call effective recognition at different SNRs is essential. 
Machine learning is a data-driven method that has emerged in recent years. It can 
automatically extract the most representative abstract features of the category as the 
basis for recognition through a series of deep extractions. It is often of high accu-
racy and good noise resistance, realizing the intellectualization of underwater acous-
tic recognition. Most of the existing acoustic signal recognition methods based on 
machine learning models are complex and require training a large number of network 
parameters. This makes it difficult to find the optimal structure to adapt to the recog-
nition task, and it is easy to overfit. Besides, the training time is often long.

In this study, a general regression neural network (GRNN) method using Mel-fre-
quency cepstrum coefficient (MFCC) features is proposed to accurately recognizing 
seal calls. The GRNN method has only one network parameter. The optimal network 
architecture can be obtained by determining the spread factor, and the training time 
is short. The MFCC features can extract the feature information of the low-frequency 
part more effectively, and the frequency of the seal calls is mainly concentrated in the 
low-frequency part. Based on the above considerations, the GRNN model for input-
ting MFCC features combines the feature advantages of MFCC and the nonlinear fit-
ting ability of the GRNN in order to improve the recognition performance for seal 
calls. Figure 1 shows the whole structure of our framework.

2  MFCC
MFCC is a widely used feature in speech recognition. It is proposed based on the 
characteristics of the human ear. Due to the particularity of human ear structure, the 
listener can automatically separate the low- and high-frequency part of speech, in 
which the low-frequency part recognizes speech characteristics. Based on this, the 
characteristics of the human ear can be simulated and effective spectrum features 
extracted (i.e., convert the spectrum into Mel spectrum) by setting denser filters in 
the low-frequency part and fewer filters in the high-frequency part. Cepstrum is used 
in log functions to transform multiplicative signals into additive signals to reflect the 
low-frequency envelope spectrum characteristics and high-frequency detail charac-
teristics of the signal. Through cepstrum analysis of the Mel spectrum, MFCC can be 
obtained and widely used in underwater target recognition [18].

Fig. 1 The whole structure of the proposed method
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Figure  2 shows the MFCC feature extraction process, which is mainly composed of 
preprocessing, fast Fourier transform (FFT), Mel filtering, and discrete cosine transform 
(DCT).

The preprocessing process includes pre-emphasis, framing, and windowing. Pre-empha-
sis enables the spectrum of the signal to be gentler by raising the spectrum of the high-
frequency part of the signal. Framing can divide the signal into several short-term signals 
in which the signal can be regarded as a stationary process. In the process of framing, the 
method of overlapping segmentation is generally adopted to make the frame to frame 
excessively smooth. Windowing reduces the truncation effect of the signal. Thus, the signal 
and the window function are set as s(n) and w(n) , respectively. The signal obtained after 
windowing is as follows:

where N  is the number of samples and w(n) is the Hamming window.
After preprocessing, FFT is performed on each frame signal to obtain the spectrum. The 

discrete spectrum S′

a(k) of the signal can be expressed as

The spectrum is then filtered through a group of triangular band-pass filters to 
obtain Mel filters. Moreover, M filters exist, and the center frequency is f (m) , of which 
m = 1, 2, · · · ,M . The formula of triangular filter is [19]:

The logarithmic energy output by each filter is calculated, which is expressed as follows:

Perform DCT on the M logarithm energies calculated by Formula (4) to obtain the 
MFCC of order L (L = 12–16), where the DCT is [20]:
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Fig. 2 MFCC feature extraction flow chart



Page 5 of 20Yao et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:48  

In practical application, the cepstrum difference parameter (delta cepstrum) is calcu-
lated following the value of L MFCC cepstrum coefficients, which is expressed as [18]:

where d represents the nth first-order difference result, Cn represents the nth cepstrum 
coefficient calculated by Formula (5), L represents the order when calculating MFCC, 
and K represents the time difference of the first-order derivative, which can be taken as 
1 or 2. The second-order difference result can be obtained when the calculation result is 
brought into Formula (6).

Generally, MFCC and the first- and second-order cepstrum difference parameters are 
combined as the eigenvector of the signal.

3  GRNN
GRNN is a feedforward neural network. This neural network is based on kernel regres-
sion analysis [21] and has a good nonlinear mapping ability. The input characteristic is 
one-dimensional sequence. GRNN obtains the conditional probability density function 
by calculating the input and output of the training data and the input of the test data to 
further obtain the output of the test data.

3.1  Theoretical basis

The theoretical basis of the GRNN model is kernel regression analysis. Kernel regression 
analysis is a kind of nonlinear regression analysis. f (x, y) is assumed to be the joint prob-
ability density function of random variables x and y. The regression of non-independent 
variable y to independent variable x (conditional mean) calculates y with the maximum 
probability value. Then, the regression of y to x is as follows:

GRNN estimates f (x, y) according to the training data. Let Xi(i = 1, 2, · · · ,N  ) and Yi
(i = 1, 2, · · · ,N  ) be the observed values of the training samples of x and y, respectively, 
and X and Y are the observed values of the test samples of x and y, respectively. Then, 
the estimated density function can be provided according to the Parzen nonparametric 
estimation [22]:
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where N is the number of training samples, M is the dimension of random variable x, 
and σ is the spread factor.

By substituting f̂ (X ,Y ) into f (x, y) in Formula (7) and exchanging the order of inte-
gration and summation, Ŷ (X) can be calculated as follows:

Given that 
∫∞

−∞
� exp(−�

2)d� = 0 , Formula (9) can be simplified as [23]

According to Formula (10), Ŷ (X) can be regarded as the weighted average of the 
observed values ( Yi ) of all the training samples, and the weight of each observed value 
( Yi ) is the exponent of the square of the Euclidean distance between the observed value 
of the corresponding training sample ( Xi ) and the observed value (X) of the test sample. 
When σ approaches zero, Ŷ (X) is approximate to observation value Yi of the training 
sample corresponding to the observation value ( Xi ) nearest observation value X. When 
σ is very large, Ŷ (X) is approximate to the mean value of all training sample observations 
Yi . σ controls the width of the RBF and determines the fitting degree of the network. It is 
the only parameter to be optimized. Only when the spread factor is appropriate can we 
obtain a satisfactory fitting result.

3.2  Network structure

GRNN includes the input, pattern, summation, and output layers. GRNN only needs 
one network parameter, while other neural network models generally need to select 
multiple parameters. Therefore, GRNN has obvious advantages in network construction. 
Figure 3 shows the structure of the GRNN model. The purpose of each layer of GRNN is 
as follows:

The input layer passes the input vector to the pattern layer.
The number of neurons in the pattern layer is consistent with the number of training 

samples (N), and each training sample has a corresponding neuron. Neuron Gi is the 
exponent of the square of the Euclidean distance between training data input Xi and test 
data input X [23]:

where σ is the spread factor to be selected.
The summation layer includes two types of neurons: the D and S neurons. The D neu-

ron is the arithmetic summation of all the neurons in the pattern layer, and the S neuron 
is the weighted summation of all the neurons in the pattern layer (the weight between 
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the ith neuron in the pattern layer and the kth neuron in the summation layer is yik). D 
and S neurons can be expressed as [21]

The number of neurons in the output layer is dimension K of the output vector, and 
the output of the corresponding neurons is calculated by dividing the corresponding 
pattern layer (Sk) by D:

3.3  Spread factor determination

The GRNN model has only one network parameter, i.e., spread factor. Only by optimiz-
ing the spread factor can the training performance of the network be improved. Gener-
ally, the smaller the spread factor is, the better the fitting degree is, but an extremely 
small spread factor can easily lead to overfitting. In this study, the input feature of the 
GRNN model is the extracted one-dimensional MFCC feature, and the k-fold cross-vali-
dation is used to determine the optimal spread factor. The steps are as follows:

(1) The value range of the spread factor is determined, e.g., from 0.1 to 1.0 with an 
increment of 0.1.

(2) Recognition accuracy is taken as the measurement index of the recognition result, 
and the formula is as follows:

(12)D =

N
∑

i=1

Gi.

(13)Sk =

N
∑

i=1

yikGi

(14)ŷk(X) =
Sk

D
, k = 1, 2, . . . ,K

Fig. 3 Structure diagram of GRNN model



Page 8 of 20Yao et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:48 

where N is the number of samples and N  is the number of correctly recognized samples 
in N samples.

(3) For k-fold cross-validation, randomly dividing the training samples into k folds 
with onefold used as validation set and the other k-1 folds used as training set.

(4) For each spread factor, building the network with training set using this spread fac-
tor and applying the resulting network for validation set and recording the accuracy; 
repeating this process k times so that all the k folds are used as the validation set once 
and computing the average of all the k accuracies (namely, as the averaged accuracies).

(5) The procedure (4) is repeated for all the spread factors, and the spread factor cor-
responding to the minimum value of the averaged accuracies is taken as the optimal 
spread factor.

3.4  Computer configuration

The proposed method was developed on a workstation with 11th Gen Intel(R) Core(TM) 
i7-1165G7 CPU*8. The code was written using MATLAB R2020b (https:// www. mathw 
orks. com/).

4  Results and discussion
4.1  Dataset

In this study, calls of leopard, ross, and weddell seals are conducted. Figure 4 shows the 
distribution maps of leopard, ross, and weddell seals. It shows that the above three kinds 
of seals have extensive overlap living areas in Antarctica. Therefore, it is of great signifi-
cance to realize the recognition of seal calls automatically.

The data used in this study are the audio signals of leopard, ross, and weddell seals in 
Watkins marine mammal sound database [25]. This database provides a wide range of 
sounds from the 1940’s to the 2000’s and contains approximately 2000 unique record-
ings of over 60 species of marine mammals, which can be used as a reference dataset for 
the detection of marine mammals in PAM data collected worldwide. Figure 5 shows the 
geographic regions collected by the Watkins database, and the seal audio used in this 
study is from the elliptical area. Figure 6 shows the waveforms of the calls of different 
kinds of seals.

4.2  Extraction of input features

The data used in this study are from ‘Best of Cuts’ in Watkins marine mammal sound 
database. The sound clips of ‘Best of Cuts’ are considered to be of higher quality and 
lower noise. The sampling rates of leopard, ross and weddell seal data are 5000  Hz, 
20000 Hz and 20480 Hz, respectively. On the one hand, the sampling rate needs to be 
unified. On the other hand, the sound characteristics of seal calls are concentrated in 
the low-frequency part. Therefore, all sounds are resampled at 5000 Hz. For the MFCC 
feature and LOFAR spectrum extracted from the resampled audios, data is divided into 
frames with a window length of 25 ms for 125 samples with a step size of 10 ms for 50 

(15)Accuracy =
N

N
× 100%

https://www.mathworks.com/
https://www.mathworks.com/
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samples. Table 1 shows the information of raw recordings of seal calls and number of 
samples after framing.

In the process of extracting MFCC features of each segment of data, 24 groups 
of filters are set, and their first- and second-order difference coefficients are calcu-
lated, so that each segment of data can obtain a 1 × 36 feature vector. This is used 

Fig. 4 Distribution maps of leopard, ross, and weddell seals [24]
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as the feature input of a single sample. Leopard, ross, and weddell seals all take the 
MFCC feature of the 2.5-s sound data as an example as shown in Fig.  7a–c. In this 
study, 5218, 7194 and 4296 MFCC features are extracted from the calls of leopard 
seal, ross seal and weddell seal, respectively, with a total of 16,708 MFCC features. We 
randomly select 75% of each category for training and the rest for testing. A total of 
12,531 training samples and 4177 test samples are obtained.

Fig. 5 Geographic regions collected by the Watkins database [25]

Fig. 6 Sound waveforms of different kinds of seal calls

Table 1 The information of raw recordings of seal calls

Name Recording time and location Total duration (s) Number 
of 
samples

Leopard Jan-1966. Cape Jones, Antarctica 52 5218

Ross Jan-1966. Cape Hallett, Antarctica 72 7194

Weddell Nov-1964. McMurdo Sound, Antarctica 43 4296
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In this study, low-frequency analyzer and recorder (LOFAR) spectrum of signal energy 
variation characteristics in the time–frequency domain can be obtained by continuous 
sampling of signal and short-time Fourier transform (STFT) of continuous signal sam-
ples. For STFT, the frequency interval of STFT is set to 10 Hz. The LOFAR spectrum of 
the three kinds of seal calls are shown in Fig. 8. It can be seen that the spectrum char-
acteristics change significantly with time. For LOFAR spectrum, the input feature is the 
amplitude of all frequency points under each time frame, and its dimension is 1 × 251. 
Similarly, a total of 16,708 LOFAR spectrum are extracted. When allocating training and 
test samples, ensure that the time frame corresponding to the training and test data of 
LOFAR spectrum is consistent with the MFCC features, so that the subsequent recogni-
tion performance comparison between the MFCC characteristics and the LOFAR spec-
trum is meaningful.

Fig. 7 MFCC features of different kinds of seal calls

Fig. 8 LOFAR spectrum of different kinds of seal calls

Fig. 9 Statistical histograms of MFCC features and LOFAR spectrum
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The statistical histograms of MFCC features and LOFAR spectrum are shown in Fig. 9. 
The different colors represent three types of seals; Fig. 9a shows that the three types of 
seal calls have obvious differences in terms of MFCC, which are specifically expressed in 
the location, shape, skewness and kurtosis of the distributions. Figure 9b shows that the 
calls of leopard and weddell seals are very similar in terms of LOFAR spectrum, which 
greatly reduces the recognition performance.

4.3  Design of recognition model

In practical application, the ocean often has different degrees of environmental noise. 
This paper analyzes the recognition performance of this method at different SNRs. 
Gaussian white noise is added to the original audio signals. Taking the calls of leopard 
seals as an example, Fig. 10 shows a comparison of the waveform of the original data 
and the corresponding samples at different SNRs. It can be obtained that the lower 
the SNR, the more burrs appear in the signal.

In this study, three machine learning models, namely GRNN, support vector 
machine (SVM) and CNN, are designed to study the recognition performance with 
the input feature of MFCC and LOFAR spectrum at different SNRs.

For the GRNN model, the spread factor is determined using tenfold cross-valida-
tion. The spread factor range is set to be [0.01 : 0.01 : 0.10.2 : 0.1 : 1.0] . Figure 11a–b, 
respectively, shows the relationship between the spread factor and the recognition 
performance of the GRNN method using MFCC features and LOFAR spectrum at 
different SNRs. The results show that the recognition performance of the MFCC fea-
tures and LOFAR spectrum decreases with the increase in the spread factor, and the 
optimal spread factor is concentrated between 0 and 0.1. Compared with LOFAR 
spectrum, GRNN method with MFCC feature input feature has higher average accu-
racy after determining the optimal spread factor.

Fig. 10 Waveform at different SNRs
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For the SVM model, it solves the inner product operation in high-dimensional space 
by introducing kernel function [26]. In this study, the radial basis function (RBF) is 
used as the kernel function of the SVM model.

RBM is a kind of randomly generated neural network that can obtain the probability 
distribution by training the data set. RBM contains a visible layer and a hidden layer. 
In this paper, RBM is combined with the softmax activation function, and the number 
of hidden units is set to 200 [10].

CNN is a special neural network. The convolution layer extracts the local features 
of the data through the convolution kernel while reducing the impact of unrelated 
factors [27]. Most of the CNN models used in the field of underwater acoustic rec-
ognition of marine mammals have a relatively few number of layers, including 2–4 
convolution layers [13, 15, 17, 28]. The CNN classification model built in this paper 
has three convolution layers. Convolution kernel sizes are all set to 1 × 2, and num-
ber of convolution kernels is set of 128, 128 and 256, respectively. After each convo-
lution layer, the rectified linear unit (ReLU) is used as the activation function. The 
pooling layer reduces the dimensionality based on the local correlation of the feature 
data using the average-pooling method while keeping the feature scale constant. An 

Fig. 11 Determination of the optimal spread factor of GRNN at different SNRs

Fig. 12 CNN structure
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average-pooling layer is set behind each ReLU, and the size of the pooling filter is set 
of 1 × 2. The features extracted through the convolution and pooling operations are 
passed through the fully connected layers, which are connected to the output layer. 
The CNN structure is shown in Fig.  12. The obtained model is trained by Stochas-
tic Gradient Descent with Momentum (SGDM) algorithm with the learning rate of 
0.0001. The minibatch size is set of 10. The CNN model is trained until the loss func-
tion converges. The cross-entropy is used as the loss function.

In 2015, He et  al. [29] studied the CNN model with residual connection in depth, 
which can be used to build a deeper network architecture. Residual CNN is a widely 
used and state-of-the-art model. For residual CNN, this paper uses the typical ResNet18 
as the recognition model. The network parameter configuration is consistent with the 
above common CNN.

Tables 2 and 3 show the training and testing time of different models with the input 
feature of MFCC feature and LOFAR spectrum, respectively. The results show that since 
GRNN has only one network parameter, and compared with LOFAR spectrum, the 
MFCC feature has fewer parameters, the GRNN method for inputting MFCC feature 
has the least training and testing time, while the ResNet18 model has the longest time 
due to the most network parameters.

Table 2 The training time (s) of different models

Feature GRNN SVM[26] CNN ResNet[29] RBM[10]

MFCC 15.5 32.8 80.6 125.8 38.2

LOFAR 20.8 42.3 105.1 151.2 50.9

Table 3 The testing time (s) of different models

Feature GRNN SVM[26] CNN ResNet[29] RBM[10]

MFCC 1.9 3.8 7.5 8.1 4.3

LOFAR 2.5 5.4 8.9 9.2 6.1

Fig. 13 Comparison of the recognition results using MFCC features and LOFAR spectrum of the original data
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4.4  Recognition results

Figure 13 shows the comparison of the three machine learning methods with the input 
feature of MFCC and LOFAR spectrum of the original data. The results show that in 
the scene without added noise, GRNN method has better recognition performance than 
other methods for the same input features, and the accuracy of GRNN method with 
the input features of MFCC reach 97.36%. When MFCC features are given as input, the 
recognition performance of RBM, CNN and SVM are similar, and that of ResNet18 is 
slightly better. When inputting LOFAR spectrum, the recognition performance of CNN 
and ResNet18 is obviously better than that of SVM. The recognition accuracy of RBM is 
only 88.53%, while that of GRNN, CNN, ResNet18 and SVM models are 93.41%, 92.39%, 
92.08% and 90.12%, respectively, that is, RBM has the worst recognition performance. 
The MFCC features are obtained according to the human ear auditory mechanism, 
which can extract the feature information of the low-frequency part more effectively, 
and the frequency of the seal calls is mainly concentrated in the low-frequency part, 
so the recognition performance of MFCC features is obviously better than that of the 
LOFAR spectrum for the same method.

Table 4 Accuracy (%) of seal calls recognition by the GRNN model

SNR/dB MFCC LOFAR spectrum

A B C Total A B C Total

20 99.12 97.58 94.01 96.90 95.25 92.32 91.05 92.87
15 97.83 96.02 93.91 95.92 91.71 91.35 90.69 91.25
10 93.55 95.53 91.24 93.44 92.96 89.23 89.28 90.49
5 91.96 94.67 89.37 92.00 90.17 85.82 83.21 86.40
0 88.01 90.65 86.47 88.38 84.42 81.71 79.81 81.98

Table 5 Accuracy (%) of seal calls recognition by the CNN model

SNR/dB MFCC LOFAR spectrum

A B C Total A B C Total

20 98.85 97.13 91.71 94.23 94.51 91.25 90.15 91.97
15 93.61 96.73 90.19 93.51 93.47 90.02 88.37 90.62
10 92.52 95.24 90.61 92.79 89.90 89.88 86.32 88.70
5 90.48 93.46 89.18 91.04 86.75 85.05 80.71 84.17
0 85.91 85.21 85.44 85.52 78.52 75.38 73.89 75.93

Table 6 Accuracy (%) of seal calls recognition by the ResNet18 [29] model

SNR/dB MFCC LOFAR spectrum

A B C Total A B C Total

20 98.32 93.80 92.82 94.98 94.25 90.19 89.52 91.32
15 96.92 93.76 91.38 94.02 93.85 89.09 89.61 90.85
10 94.21 93.22 90.31 92.58 88.03 85.31 83.71 85.69
5 91.55 90.15 85.06 88.92 85.19 83.22 80.38 82.93
0 85.59 82.92 80.28 82.56 74.52 74.41 71.21 73.38



Page 16 of 20Yao et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:48 

Tables 4, 5, 6, 7 and 8 show the recognition accuracy of GRNN, CNN, ResNet18, SVM 
and RBM models, respectively, inputting MFCC features and LOFAR spectrum at differ-
ent SNRs. A, B, and C represent the leopard, ross, and weddell seals, respectively.

Figure 14 shows the change in the accuracy curves with SNR using MFCC features 
as input features. These models can effectively recognize seal calls at high SNRs, 
but the reduction of SNR has a great impact on the RBM method. The error of the 
RBM method is large and cannot realize effective recognition when the SNR is 0 dB. 

Table 7 Accuracy (%) of seal calls recognition by the SVM [26] model

SNR/dB MFCC LOFAR spectrum

A B C Total A B C Total

20 94.51 97.31 92.52 94.78 91.85 88.02 89.17 89.68
15 92.10 95.25 90.33 92.56 89.36 86.71 85.31 87.12
10 91.10 93.35 89.66 91.37 84.64 86.47 81.37 84.16
5 88.05 85.39 83.02 85.48 81.66 81.85 79.91 81.14
0 81.65 82.00 81.63 81.76 74.02 70.92 68.03 70.99

Table 8 Accuracy (%) of seal calls recognition by the RBM [10] model

SNR/dB MFCC LOFAR spectrum

A B C Total A B C Total

20 94.06 93.68 91.83 93.19 90.36 87.38 85.69 87.81
15 92.42 93.08 90.65 92.05 87.80 86.71 83.25 85.92
10 91.02 86.23 87.32 88.19 82.53 79.50 79.62 80.55
5 82.38 79.43 74.95 78.92 77.08 74.29 73.72 75.03
0 75.97 69.27 65.03 70.09 64.05 65.94 60.57 63.52

Fig. 14 Comparison of the five models with the input feature of MFCC
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Compared with RBM, SVM and ResNet18, the CNN method is less affected by the 
reduction of SNR, but the results of CNN method also have a large error at low SNRs, 
especially at 0  dB. Because the texture, gradient and other features of underwater 
acoustic signal are not obvious, namely there is less detailed information, too deep 
network is easy to cause gradient disappearance and overfitting during the training. 
Therefore, compared with traditional CNN, the estimation performance of ResNet18 
is poor at low SNRs. The SNR reduction has the least impact on the GRNN method. 
The GRNN method can realize accurate recognition when the SNR exceeds 5 dB, and 
it can still realize approximate recognition when the SNR is 0 dB.

Figure  15 shows the change in the accuracy curves with SNR using LOFAR spec-
trum as input features. For the GRNN, ResNet18 and CNN models, inputting the 
LOFAR spectrum can realize effective recognition at high SNRs, but the error is large 
at low SNRs. For the RBM and SVM method, inputting the LOFAR spectrum can only 
realize approximate recognition, which is no longer applicable at low SNRs. Especially 
for RBM, it is difficult to determine the optimal network parameters, which leads to 
the convergence of the training to the local optimal solution. It is also easy to overfit. 
In addition, RBM belongs to the traditional shallow neural network, which is diffi-
cult to extract deep features. Therefore, compared with other models, its recognition 
results are poor at low SNRs.

Figure 16 shows the recognition accuracy of different methods with the input fea-
ture of MFCC and LOFAR spectrum. Due to the poor recognition performance of 
RBM and SVM, only GRNN, ResNet18 and CNN are shown here. The results show 
that the underwater acoustic features have a greater impact on the recognition results 
than the recognition models. At different SNRs, the recognition results of MFCC fea-
tures using various models are better than those of LOFAR spectrum.

Fig. 15 Comparison of the five models with the input feature of LOFAR spectrum
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In general, because the GRNN model for inputting MFCC features combines the 
feature advantages of MFCC and the nonlinear fitting ability of the GRNN, the seal 
call recognition can be realized stably at various SNRs, and its recognition accuracy 
of the test samples is better than that of other models at the same SNR. Few stud-
ies related to seals, especially studies on the automatical recognition of seal calls, are 
noted in the field of underwater sound recognition of marine mammals. All results 
show that the proposed method has excellent performance for the seal call recogni-
tion, which fills the blank in this field.

5  Conclusion
This paper presents an accurate seal call recognition method based on the GRNN 
with the input feature of MFCC. The RBM, SVM, CNN, ResNet18 and GRNN models 
are compared for inputting MFCC and LOFAR spectrum. The results show that at the 
same SNR, the recognition result of the MFCC feature is better than that of LOFAR 
spectrum. The accuracy of GRNN method with the input features of MFCC of the 
original data reaches 97.36%. Compared with other models, the GRNN model has 
better recognition performance and can still realize effective recognition at low SNRs. 
In particular, GRNN has the least training and testing time. In addition, although this 
method is used for seal call recognition in this paper, it is not limited to this. In the 
field of passive acoustics, this method is also applicable to the preliminary work of 
other underwater vocal biological species observation (e.g., distance and seasonal 
measurement, abundance estimation, and population structure determination). It 
can also be used in other target sound recognition (e.g., natural sound and ship noise 
recognition).
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GRNN  General regression neural network
MFCC  Mel-frequency cepstrum coefficient

Fig. 16 Comparison of the various models with the input feature of MFCC and LOFAR spectrum
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CNN  Convolutional neural network
FFT  Fast Fourier transform
STFT  Short-time Fourier transform
SVM  Support vector machine
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