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Abstract 

To solve problems related to much calculation to adapt to complex scenes in tra-
ditional structural sound source localization, this paper proposes a method based 
on neural network. The structural sound source at other positions was stimulated 
by successively striking 36 grid centers on the surface of the plate. The time delay 
between different accelerometer signals was considered as the input, and the loca-
tion of the predicted sound source was considered as the output. The influence of the 
number of test sets and epoch training times on sound source localization accuracy 
was discussed. These results show that with the increase in the epoch training times, 
the number of test set decreases, and the number of training set increases, increasing 
the sound source localization accuracy of backpropagation neural network. However, 
these error conditions will frequently appear due to the overfitting phenomenon. 
When the epoch is trained to 50,000 times, and the quantity of the test set is 4, the 
backpropagation neural network has the best localization accuracy with an order of 
magnitude of 10−3 in error, and the localization error scope of the plate is between 
0.01 and 0.1 m.

Keywords:  Sound source localization, Neural network, Structure, Time delay 
difference, Plate, Signal

1  Introduction
Sound source localization is an indispensable part of structural health monitoring 
research. A structural health monitoring system has been established for large mechani-
cal equipment and platforms to monitor whether the structure is abnormal. Therefore, it 
is crucial to diagnose and repair platform equipment and mechanical facilities to accu-
rately identify and locate the anomalous sound source of the monitored system. For 
example, spacecraft in orbit may collide with space debris and need to lock the impact 
position as fast as possible. Therefore, it is imperative to realize the fast and accurate 
positioning of the impact position for spacecraft safety [1]. The loose parts monitoring 
system (LPMS) [2] applied in nuclear power plants is used to monitor the screws, pins, 
and other parts of the primary circuit of nuclear reactors to avoid the degradation of 
reactor safety performance.

There are three traditional sound source location methods: calculating arrival time dif-
ference [3, 4], the circle intersection location method [5], and the scanning legal location 
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method [6]. It is necessary to measure the time difference between sensor signals accu-
rately and then determine the location of the collision source by the wave velocity 
and time difference. The time difference is estimated mainly by the time domain root 
mean square method, generalized cross-correlation method, and Hilbert envelope peak 
method. Among them, the generalized cross-correlation method (GCC) is one of the 
most commonly used delay estimation algorithms. It is widely used in sound source loca-
tion in the air [7]. Li et al. [8] used the improved generalized cross-correlation method to 
realize the positioning of airborne sound source signals under the condition of low SNR. 
Kocur et al. [9] obtained the distribution positions of abnormal sound sources by X-ray 
tomography scanning through time reverse modeling based on the positioning method 
of wave propagation in structures. Gibbons et  al. [10] proposed the spectral ratio 
method, which judges difference in wave properties according to the waveform data on 
arrival of the sound source signal to locate the position of sound source. Marxim and 
Mohanty [11] combined the empirical mode method and generalized cross-correlation 
method to improve the delay estimation accuracy of underwater acoustic signals and the 
accuracy of sound source positioning. Unlike air and water media, wave propagation in 
solid structures is more complex and changeable. The stress wave generated after colli-
sion includes the shear wave, longitudinal wave, bending wave, and other components. 
The combination of multiple waves will affect accurate estimation of the time delay. 
Among them, the curved wave is the main component with high amplitude and disper-
sion. Yang et al. [12] used the first peek of the Hilbert envelope as the signal arrival point 
to calculate the time delay between different sensors when tapping the scale. Ji et al. [13] 
combined wavelet denoising with the Hilbert envelope algorithm to achieve collision 
location on the plate. Saragiotis [14] proposed a sound source location method based on 
the sensor position and wave propagation speed based on the arrival time difference and 
time measured simultaneously. Gollob and Kocur [15] located the signal position of the 
sound source by analyzing the accurate wave velocity distribution and propagation path.

In addition, some researchers have proposed a new method of sound source location 
based on the wave propagation law. The beamforming method [16] and others can be 
applied to locate sound sources in three-dimensional space, which is more complex than 
that in a two-dimensional plane structure. Zhou et al. [17] established the space–time 
relation equation between the position of the sound source and the measurement point 
based on the sensor coordinates, wave arrival time and wave speed, and other informa-
tion in the case of known wave propagation velocity (for uniform media) and constructed 
a set of three-dimensional sound source positioning methods suitable for consistent 
press. Bi et al. [18] proposed a plan combining time-reversal analysis with an equivalent 
sound source method with the help of a spherical array composed of 48 microphones. 
The results show that this method can locate sound sources in an arbitrarily shaped shell 
and has a good localization effect for sound sources with frequencies above 1000  Hz. 
Tsangouri et al. [19] formed three-dimensional concrete beam cracks by large-scale pro-
duction in the laboratory, evaluated the location of possible sound sources, and found 
that the location results were significantly affected by the characteristics of the concrete 
structure. Gollob and Kocur [20] proposed a multipath method of sound source loca-
tion analysis based on a nonuniform wave velocity model given the complex propaga-
tion characteristics of waves in concrete structures. This method achieves the expected 
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positioning accuracy, but a significant wave path deviation is caused by cracks and large 
gaps in the concrete, which leads to an increase in the positioning error.

In the above ideas of sound source location, the result of sound source location in the 
structure is often affected by the calculation accuracy of time delay estimation, wave 
velocity, and other variables in the structured medium. Under the condition of low SNR, 
it is difficult to measure the signal delay of the sound source accurately, and the propaga-
tion law of different wave types in the structure is very different. Due to appearing of the 
dispersion phenomenon, the wave propagation velocity is different for other frequency 
signals, affecting the location accuracy of collision sources. In addition, when the elastic 
wave propagates in the structure, its velocity is also affected by the thickness of the flex-
ible body, material properties, and other factors. Because the propagation law of waves 
has not been wholly clarified, the technical route of sound source location based on 
the transmission characteristics of structural waves has not been constituted. In recent 
years, application of neural network in environmental monitoring, seismic research, 
environmental monitoring, and other fields has been widely concerned. Research on 
structural sound source localization method by neural network has gradually been 
developed. Wu et  al. [21] used backpropagation neural network for damage location 
detection of building structures. Povich and Lim [22] used three-layer backpropagation 
network to identify damage location of a 20-span plane truss. Boffa et al. [23] used neural 
network to locate impact events of aerospace structural components. It mainly has ana-
lyzed birds’ impact, tools falling, and debris impact generating vibration and impact in 
different modal frequency range. Also, authors discussed various combination influence 
of experimental sensors arrangement on positioning results. These results are verified 
accuracy of neural network prediction and can avoid solving wave velocity in different 
frequency. Worden and Staszewski [24] applied neural network to determine location 
of acoustic source from structural response recorded by sensors attached to surface. By 
this method, authors successfully find location of acoustic source generated under this 
impact. It also effectively improves prediction accuracy of acoustic source location.

From the perspective of a neural network, through the network layer of the training 
setup between the sensor signal eigenvalue and the mapping relationship between the 
positioning location (characteristic values of the input layer node corresponding to the 
eigenvalue of the sensor signal and the output layer node corresponding to estimated 
positioning point), this article effectively avoids the time delay and the complex calcula-
tion of wave velocity between these two variables. Finally, the sensor input characteristic 
signal to the location of the prediction point has a good data training effect.

2 � Establishment of experimental model
2.1 � Approach to solving problems

Because of the complex problem of structural sound source location, because of the 
influence of many factors, and because most of these factors have different degrees 
of nonlinear correlation, the application of neural networks can deal with this kind of 
problem well. Among them, the error backpropagation neural network has a solid non-
mapping ability, which can be used to predict the structural sound source location. In 
this paper, the elastic wave transmission path, using the transmission rule in tablets as 
a “black box,” is determined from the angle of the artificial neural network by analyzing 
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the relation between the input signal and output signal data characteristics and finding 
the rule of the signal connection structure to realize sound source localization to solve 
the problem of beamformer structures.

2.2 � Introduction of backpropagation neural network

The backpropagation neural network is a widely used neural network model. It trains 
multilayer feedforward neural networks using the error backpropagation algorithm 
based on the error backpropagation principle. The backpropagation neural network 
changes the traditional network structure and introduces new layering and logic. The 
learning and training process is divided into forwarding computation and backward 
computation.

In the process of forwarding computation propagation, the input is transmitted from 
the input layer to the output layer after processing of hidden layer neurons, and each 
layer of neurons only affects the computational state of the next layer of neurons. The 
final output value and the error between the output value and the actual value can be 
obtained by calculating in network layers. If error between the final output result and 
the real value exceeds the allowable range, the back-calculation propagation will process. 
At this point, the error value will propagate from the output layer to the input layer. By 
apportioning the error to each network unit, the signal between each layer unit can be 
obtained. Meanwhile, the connection weight and bias value between network layers can 
be updated according to the error signal. The propagation process will be repeated alter-
nately until the global mistake of the neural network tends to a given minimum value. 
In repeated training, the backpropagation neural network adopts the gradient descent 
method to make the weight change along the negative gradient direction of the error 
function and converge to the point of minimum value. Finally, the training result is close 
to the actual value [25].

(1)	Forward calculation of the propagation process [26]. During forward computation 
propagation, xi represents the input signal value, wi is the connection weight, and 
bi represents the offset. Therefore, the output value hi of a neuron is used, which is 
equal to its input value xi. The connection weight is as following Eqs. (1) and (2):

In the above Eq. (3), if f uses the hyperbolic tangent function as the activation function, 
then:

In the output layer, the output layer unit generally uses the linear function (rectified 
linear activation) as the activation function. Therefore, the output values are equal to 

(1)Neti =

n

i=1

(xiwi + bi)

(2)hi = f (Neti)

(3)f (Neti) =
eNeti − e−Neti

eNeti + e−Neti
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the weighted sum of the input values. As shown in Eq. (4), for the output, its value is 
ym:

(2)	Reverse calculation of the propagation process. First, the error between the actual 
value and the expected output value of the network is calculated, and the root means 
square function MSE is used as the error function. Then, the error e is as following 
Eq. (5):

The backpropagation neural network uses the gradient descent method to reduce 
the weight. The partial derivative of each neuron unit in the output layer is calcu-
lated using the error value. The weight adjustment amount of each time is as follow-
ing Eq. (6):

In Eq. (6), μ is the learning rate, and 0 < μ < 1. According to Eq. (6), the error value of 
each neuron in the output layer and the output value of each neuron in the hidden layer 
can be used to modify the connection weight. After calculating the error term of each 
layer, backpropagation can be carried out to obtain the error of each layer again. Mean-
while, the partial derivative of parameters of each layer is calculated, and the parameter 
values are updated to reduce the absolute error.

2.3 � Establishing a neural network model

Based on the above process, this paper constructs backpropagation neural network 
structure shown in Fig. 1. Since input data contain seven components and output data 
contain two components, the number of input layers of constructed backpropagation 
neural network is seven, the number of output layers is two, respectively. Input param-
eter is time difference of arrival corresponding to peak value of wave, and output param-
eter is predicted plate position coordinate. The hidden layer contains several neurons. 
Through continuous training and debugging of neural network, it is shown that the mid-
dle-hidden layer is set as one layer, and the hidden layer contains one hundred hidden 
units. The hidden layer makes use of the S-shaped activation function with hyperbolic 
tangent function. The output layer uses the linear activation function with rectified lin-
ear activation function. The learning rate could change with the increase in iterations 
changeable manually. The specific formula is 0.9999 ^ (epoch/2). The loss index evalu-
ated function used in backpropagation neural network model is the root mean square 
error function (MSE).
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∑
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3 � Experiment of structural sound source localization based 
on backpropagation neural network

3.1 � Arrangement of experiment

An acceleration sensor mounted on the flat plate is used to receive the signal of striking 
the flat plate.

The experimental platform of the flat plate experiment consists of the test object, 
acceleration sensor, data acquisition equipment, and computer. The empirical thing is a 
Q235 steel plate. The size of the steel plate is 1.3 m × 0.8 m × 0.008 m, and rubber pads 
are installed at the four edges of the steel plate to buffer and isolate vibration. In Fig. 2, it 
shows the connection and site layout of the experimental device. To avoid the reflection 
of the boundary, 36 grid areas were drawn in the middle of the steel plate with a square 
size of 0.1 m × 0.1 m, and the center of each grid was hammered with a strong hammer. 
The grid number and acceleration sensor position are shown in Fig. 3, and the data sam-
pling rate is 65536 Hz.

Fig. 1  Backpropagation neural network structure model

Fig. 2  Experimental device connection and site layout
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3.2 � Procedure of the experiment

The specific steps of the sound source positioning experiment are as follows:

(1)	 Grid division: According to positioning accuracy requirements, grids are divided 
on the impacted object and numbered. In the experiment, the grids are divided into 
0.1 m × 0.1 m.

(2)	 Data calibration: The calibration data were obtained by the hammer percussion 
experiment, and unknown collision signals of different percussion points were 
obtained by tapping the center point of each grid.

(3)	 Data processing: The Hilbert envelope method was used to obtain the peak times of 
the collision signal to sensors #1, #2, #3, #4, #5, #6, #7, and #8, which were recorded 
as t1, t2, t3, t4, t5, t6, t7, and t8, respectively.

(4)	 Input data determination: The arrival time difference t of the signal characteristic 
peak values of sensors in different channels is calculated, respectively, as t12, t23, t34, 
t45, t56, t67, and t78 (where t12 = t1–t2, t23 = t2–t3, t34 = t3–t4, t45 = t4–t5, t56 = t5–t6, 
t67 = t6–t7, and t78 = t7–t8).

(5)	 Output data determination: (Xk, Yk) is used to represent the grid coordinates of the 
tap (where k = 1,2…, 36).

4 � Results and analysis of experiment
The training data can be obtained by tapping the grid on the plate. The relationship 
between the predicted position and the actual tap point position is shown in Tables 1, 
2 and 3.

4.1 � Error analysis

By constantly adjusting the number of test sets and the times of epoch training, dif-
ferent loss function images can be obtained, as shown in Figs.  4 and 5. In Fig.  4, it 
shows the trend of the training error and test error changing with the epoch times 

Fig. 3  Schematic diagram of flat plate meshing
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when the test set was 10, and Fig. 5 shows the curves of the training error and test 
error in different test sets when the number of epochs was 50,000.

4.1.1 � Optimization of epoch

As seen from Fig.  4, during the first 150 epochs of training, the descending gradient 
of the training error and test error was pronounced, which decreased from 1.14e−1 
to approximately 3.60e−2. When the epoch training times changed from 150 to 200 
times, the error decreased slightly from 3.60e−2 to 2.94e−2. When the epoch training 
times changed from 200 to 5000 times, the training error and test error did not change, 
and the error value changed from 2.90e−2 to near 2.60e−2. When the epoch times 
increased from 5000 to 10,000, the training error and test error values decreased gently 
from 2.60e−2 to approximately 1e−2. When the number of epochs risen from 10,000 
to 50,000, the error decreased. When the number of epochs increased from 10,000 to 
20,000, the error value decreased from 1e−2 to approximately 6e−3, showing an appar-
ent decreasing trend of loss error. When the epoch times risen from 20,000 to 50,000, 
the error value decreased from 6e−3 to about 5e−3, and the loss error trend was not 
noticeable. When the number of epochs increased from 50,000 to 100,000, the training 
error decreased from 4e−3 to approximately 1e−3. However, it was evident that when 
the number of epochs increased from 60,000 to 100,000, the test error risen to 6.82e−3. 
When the epoch times increased from 100,000 to 200,000, the curve of the training error 
and test error changed a little, and the final training error and test error were 1.49e−3 
and 5.71e−3, respectively.

According to the images of the training error and test error given in Fig. 4, the final 
training error and test error values under different epoch training times can be obtained 
when the number of test sets is 10, as shown in Table 1.

Table 1  Loss errors of different epochs when the number of test sets was 10

When the number of test sets was 10

The epoch times 100 150 200 500 1000

   Train loss 4.55e−2 3.62e−2 2.94e−2 2.92e−2 2.91e−2

   Test loss 4.51e−2 3.60e−2 2.94e−2 2.91e−2 2.91e−2

The epoch times 5000 10,000 50,000 100,000 200,000

   Train loss 2.62e−2 1.04e−2 3.86e−3 1.05e−3 1.49e−3

   Test loss 2.65e−2 9.87e−3 5.69e−3 6.82e−3 5.71e−3

Table 2  Loss function diagram of different number of test sets when the epoch was 50,000

When epoch was 50,000

Number of test sets 1 2 3 4 5

   Train loss 4.13e−3 4.18e−3 1.63e−3 2.61e−3 2.12e−3

   Test loss 5.14e−3 8.97e−3 6.08e−3 3.77e−3 5.15e−3

Number of test sets 6 7 8 9 10

   Train loss 2.45e−3 2.62e−3 4.18e−3 2.78e−3 3.86e−3

   Test loss 7.46e−3 8.02e−3 4.89e−3 8.52e−3 5.69e−3
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The final loss error data given in Table 1 were used to draw the absolute training error 
and test error change curves under different numbers of epochs when the number of test 
sets was 10. As seen from Fig. 5, with the increase in epoch times, the loss error curve 
showed a downward trend overall, and the changes in the test error and training error 
were consistent. The change curve was mainly divided into three stages: rapid decline, 
slow decline, and gentle fluctuation. When the number of epochs increased from 100 to 
10,000, the loss error decreased rapidly. When the number of epochs varied from 10,000 
to 50,000, the decreasing trend of loss error became slow. When the number of epochs 
increased from 50,000 to 200,000, the loss error curve showed fluctuated characteristics. 

Table 3  Predicted location coordinates

The serial number Actual position predict position Absolute 
error/m

X/m Y/m X/m Y/m

1 0.05 0.55 0.08 0.53 0.03

2 0.15 0.55 0.20 0.52 0.06

3 0.25 0.55 0.28 0.53 0.03

4 0.35 0.55 0.32 0.54 0.03

5 0.45 0.55 0.37 0.52 0.09

6 0.55 0.55 0.54 0.53 0.02

7 0.05 0.45 0.13 0.40 0.09

8 0.15 0.45 0.10 0.45 0.05

9 0.25 0.45 0.33 0.43 0.09

10 0.35 0.45 0.28 0.47 0.06

11 0.45 0.45 0.47 0.46 0.02

12 0.55 0.45 0.51 0.40 0.06

13 0.05 0.35 0.02 0.31 0.05

14 0.15 0.35 0.13 0.36 0.02

15 0.25 0.35 0.26 0.30 0.05

16 0.35 0.35 0.39 0.42 0.08

17 0.45 0.35 0.45 0.34 0.01

18 0.55 0.35 0.53 0.36 0.02

19 0.05 0.25 0.01 0.25 0.04

20 0.15 0.25 0.20 0.27 0.05

21 0.25 0.25 0.30 0.17 0.10

22 0.35 0.25 0.34 0.21 0.04

23 0.45 0.25 0.47 0.28 0.04

24 0.55 0.25 0.54 0.25 0.01

25 0.05 0.15 0.13 0.14 0.08

26 0.15 0.15 0.10 0.15 0.05

27 0.25 0.15 0.28 0.09 0.07

28 0.35 0.15 0.35 0.16 0.02

29 0.45 0.15 0.48 0.11 0.05

30 0.55 0.15 0.56 0.11 0.04

31 0.05 0.05 0.13 0.09 0.09

32 0.15 0.05 0.22 0.10 0.09

33 0.25 0.05 0.28 1.14e-3 0.06

34 0.35 0.05 0.35 0.09 0.04

35 0.45 0.05 0.44 0.03 0.02

36 0.55 0.05 0.55 0.04 0.01
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(a) Loss function diagram
when the epoch was 100

(b) Loss function diagram
when the epoch was 150

(c) Loss function diagram
when the epoch was 200

(d) Loss function diagram
when the epoch was 500

(e) Loss function diagram
when the epoch was 1000

(f) Loss function diagram
when the epoch was 5000

(g) Loss function diagram
when the epoch was 10,000 

(h) Loss function diagram
when the epoch was 50,000 

(i) Loss function graph
when the epoch was 100,000

(j) Loss function diagram
when the epoch was 200,000

Fig. 4  Loss function diagram of different epochs when the test set was 10
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This is because when the epoch training times reached an enormous value (100,000 and 
200,000), the loss error was in a small range. At this point, the backpropagation neural 
network model is prone to overfitting when the epoch training times increase, resulting 
in increased training errors and test errors. Therefore, when the number of test sets was 
ten, and the number of epochs was 50,000, the training error and test error were small.

4.1.2 � Optimization of the number of test sets

As seen in Fig.  6, when the number of training iterations is 50,000, the final training 
error and test error will change as the number of test sets changes.

The curve’s trend in Fig. 6 shows that the training error and test error decreased signif-
icantly during the first 150 epochs of training. When the epoch training times changed 
from 150 times to 15,000 times, the loss error curve entered the stage of gentle fluctua-
tion and slow decline. In the platform stage, the loss error hardly changed. In the slow 
descent stage, the loss error decreased slowly. When the epoch training times increased 
from 15,000 to 50,000 times, the change degree of the loss error was also small, but when 
the test set was minimal, the final loss error increased.

According to the images of the training error and test error given in Fig. 6, the loss 
function curves under different test sets can be obtained when the number of epochs is 
50,000, as shown in Table 2.

Using the final loss error data given in Table  2, the loss error curves of different 
numbers of test sets were drawn when the number of epochs was 50,000. It can be 
seen from Fig. 7 that the test error is higher than the training error. When the num-
ber of test sets changes from 1 to 2, the training error remains the same, the train-
ing error value is approximately 4.1e−3, and the test error increases from 5.14e−3 
to 8.97e−3. When the number of test sets changes from 2 to 3, the training error and 
test error decrease. When the number of test sets changed from 3 to 7, the training 
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Fig. 5  Variation curves of final training error and test error on different epochs when the test set was 10
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(a)Loss function diagram when the test set was10 (b)Loss function diagram when the test set was 9

(c)Loss function diagram when the test set was 8 (d)Loss function diagram when the test set was7

(e)Loss function diagram when the test set was 6 (f)Loss function diagram when the test set was 5

(g)Loss function diagram when the test set was 4 (h)Loss function diagram when the test set was 3

(i)Loss function diagram when the test set was 2 (j) Loss function diagram when the test set was 1

Fig. 6  Loss functions of different number of test sets when the epoch was 50,000



Page 13 of 17Huang et al. EURASIP Journal on Advances in Signal Processing         (2023) 2023:54 	

error increased slightly but remained near 2e−3. The test error showed a trend of 
gradual increase from 3.77e−3 to 8.02e−3. When the number of test sets changes 
from 7 to 8, the training error increases from 2.62e−3 to 4.18e−3, and the test error 
decreases from 8.02e−3 to 4.89e−3. When the number of test sets changes from 8 
to 10, the training error first slips and then increases, and the training error finally 
reaches 3.86e−3. The test error first increases and then falls, and the test error finally 
comes to 5.69e−3.

According to the above analysis, it can be seen that when the epoch training times 
were fixed at 50,000 and the number of test sets was 4, the test errors and training 
errors were minor. The predicted coordinates were close to the coordinates of the 
actual sound source position.

4.2 � Analysis of localization results

Through the learning and training of the backpropagation neural network model 
mentioned above, the coordinates of the sound source location predicted by the neu-
ral network can be obtained when the number of epochs is 50,000 and the number of 
test sets is 4, as shown in Table 3.

Table 3 shows the fundamental error values between the predicted position and the 
actual sound source position. The fundamental minimum error is 0.01 m, the fundamen-
tal maximum error is 0.10 m, and the fundamental average error is 0.05 m. Using back-
propagation neural network training, the positioning error accuracy can be obtained, 
and the positioning error is less than 0.10 m. The error distribution diagram between the 
predicted position and the actual sound source position is shown in Fig. 8.

Overall, the error between the predicted position and the actual position of the 
sound source is between 0.01 and 0.10  m, and the error range is less than one grid 
size. The positioning accuracy of the sound source in the structure is high.
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Fig. 7  Loss functions of different number of test sets when the epoch was 50,000
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5 � Conclusions
In this paper, a backpropagation neural network is designed, the delay difference signal 
between acceleration sensors is used as the input, and the number of input units is 7. 
Specific conclusions are as following:

(1)	 With the increase in the neural network epoch training times, the loss error of the 
backpropagation neural network decreases overall. The loss error curve can be 
divided into three stages: rapid decline, slow decline, and delicate fluctuation. After 
entering the gentle fluctuation stage, increasing the epoch training times is prone to 
overfitting, which leads to an increase in the training error and test error value of 
the neural network model.

(2)	 In the case of small samples, the decrease in the number of test sets and the 
increase in the number of training sets can reduce the training error, improve the 
training effect of the backpropagation neural network, and improve the positioning 
accuracy. However, when the number of test sets is small (1 or 2), with the increase 
in the epoch training times, the backpropagation neural network model will show 
extensive error results due to overfitting.

(3)	 When the epoch training times was 50,000 and the number of test sets was 4, the 
backpropagation neural network achieved the highest positioning accuracy level, 
with an order of magnitude of e−3 in error, and the positioning error range of each 
grid on the plate ranged from 0.01 to 0.10 m.

(4)	 Although the data used for training and testing in this paper are small, a back-
propagation neural network is used to ensure the prediction accuracy of the loca-
tion coordinates of the knock points based on the adjustment of the epoch train-
ing times and test sets, thus achieving better positioning of the structural sound 
sources, which has excellent application and research value.

(5)	 This paper mainly discusses the influence of some parameters in neural network 
structure on positioning results, such as the number of iterations, the number of 

Fig. 8  Error distribution between the predicted position and the sound source position
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test set. From previous analysis, higher iteration times play a positive role in posi-
tioning accuracy with neural network structure model in this paper. A larger sam-
ple dataset can be better verified accuracy, portability, and stability of this neural 
network model in the paper.

Reduction of signal-to-noise ratio (SNR) with increase in background noise, it will 
lead to increase in acoustic source location error. For example, Boffa et al. [23] stud-
ied the influence of noise on signals. In this paper, by manually adding zero-mean 
Gaussian noise to normal signal and repeating above positioning steps, it is found 
that positioning results in low signal-to-noise ratio environment will gradually dete-
riorate with continuous increase in noise level. Therefore, it can be concluded that 
although this methodology is applicable to noise pollution signals with relatively 
high signal-to-noise ratio, it is necessary to filter noise when the signal-to-noise 
ratio is lower than a certain level. Under the condition of low signal-to-noise ratio, 
it is difficult to accurately measure time delay of sound source signal, and further 
research is needed.

In addition, similar existing work is compared with this paper. She et al. [25] pro-
posed an acoustic source location method based on backpropagation neural network. 
Under time difference of receiving indoor sound as the input, acoustic source location 
was as the output. Experimental results show that backpropagation neural network 
model with seven neurons and three hidden layers is more suitable for this research 
scenario, and accuracy of location can reach a high level. Authors in this document 
have studied indoor acoustic source location problems. The document is similar 
to background of this article. With time difference of arrival of wave crest as input 
parameter, it is mainly aimed at the flat structure. Results of structural sound source 
location are analyzed to achieve better positioning accuracy.

Sheng [27] designed acoustic source location model based on generalized cross-
correlation and convolution neural network. Through extracting feature vectors of 
different dimensions from four-channel acoustic source signal, authors design five-
layer, nine-layer, eleven-layer, and thirteen-layer dual-channel convolution neural 
network structure with different depths for experimental verification, it is shown that 
the nine-layer network structure has better accuracy of acoustic source event detec-
tion and location estimation compared with other three networks. Compared with 
this document, this structure of neural network designed in the paper is simpler and 
more convenient. Also, better positioning effect can be achieved.
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