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Abstract 

To support multi-source data stream generated from Internet of Things devices, edge 
computing emerges as a promising computing pattern with low latency and high 
bandwidth compared to cloud computing. To enhance the performance of edge 
computing within limited communication and computation resources, we study 
a cloud-edge-end computing architecture, where one cloud server and multiple 
computational access points can collaboratively process the compute-intensive data 
streams that come from multiple sources. Moreover, a multi-source environment is 
considered, in which the wireless channel and the characteristic of the data stream 
are time-varying. To adapt to the dynamic network environment, we first formulate 
the optimization problem as a markov decision process and then decompose it into a 
data stream offloading ratio assignment sub-problem and a resource allocation sub-
problem. Meanwhile, in order to reduce the action space, we further design a novel 
approach that combines the proximal policy optimization (PPO) scheme with convex 
optimization, where the PPO is used for the data stream offloading assignment, while 
the convex optimization is employed for the resource allocation. The simulated out-
comes in this work can help the development of the application of the multi-source 
data stream.

Keywords:  Multi-source data stream, Edge computing, Collaborative offloading, 
Proximal policy optimization

1  Introduction
Owing to the rapid advancement and innovation of wireless communication in the 
5th generation (5G), an increasing number of smart devices are linked to the Internet 
through wireless communication, which facilitates the birth and development of the 
Internet of Things (IoT). In IoT networks, one typical application is how to process 
multi-source data streams generated from IoT devices [1–3]. In particular, the char-
acteristic of the data stream is high-dimensional, heterogeneous, and compute-inten-
sive, which leads to a considerable cost for processing at the devices [4–6]. To solve 
this problem, mobile cloud computing (MCC) is devised as a new computing pattern 
by uploading data streams to a more powerful cloud server for computing. Based 
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on MCC, energy consumption can be significantly reduced at the devices. However, 
there exists an unbearable latency in the MCC networks. As the distance is often far 
from the devices to the cloud server, the transmission latency becomes a bottleneck 
[7–9].

In order to handle the issue caused by cloud computing, mobile edge computing 
(MEC) emerges as a promising computing pattern with the advantage of low latency and 
high bandwidth [10–12]. By setting the edge server closer to the devices, the IoT devices 
can upload more computational tasks to the edge server in order to obtain ultra-low 
latency. For the MEC networks, one significant part is to make offloading ratio assign-
ments [13, 14]. Literature [15, 16] studied a MEC network with task dependency and 
proposed some static numerical solutions to reduce the delay and energy overhead. In 
reality, the network environment was dynamic, where the wireless channel was time-
varying, and the characteristic of the data stream was variable [17, 18]. For this case, 
some dynamic offloading methods were devised based on deep reinforcement learning 
(DRL) [19, 20]. The researchers in [21] proposed a Q-learning based binary offloading 
strategy to reduce the task execution time. Moreover, to make offloading strategy more 
flexible, a partial task unpacking decision was proposed based on the Deep Q network 
(DQN) [20]. In further, with the massive increase in the number of devices and the lim-
ited computing resources of CAP, joint optimization of resource allocation and offload-
ing strategy were widely studied for the MEC network [22]. Literature [23] applied the 
Lyapunov optimization for resource allocation and offloading strategy while ensuring 
the maximization of long-term quality of experience (QoE). The authors in [24] pro-
posed a low-complexity algorithm for the real-time MEC system. Furthermore, physical 
layer security was taken into consideration to ensure a secure transmission rate, mean-
while decreasing the system delay for the MEC network [20].

In addition, the performance of the MEC network has been widely investigated. Liter-
ature [9, 25] studied an intelligent reflect surface (IRS)-aided MEC network and derived 
the closed-form of outage probability of system latency. The researchers in [26] evalu-
ated and optimized the performance of the cache-aided relaying MEC network. Moreo-
ver, a hybrid spectrum access technology was studied to improve the performance of the 
non-orthogonal multiple access (NOMA)-based network [27]. Furthermore, literature 
[28] considered a realistic scenario that the perfect estimation was tough to obtain and 
devised a dynamic resource allocation to maximize the energy efficiency for the NOMA-
based MEC network. Although edge computing can effectively relieve the burden on the 
core network compared to cloud computing, its constrained computing and communi-
cation resources became the barrier to development [29]. Thereby, collaborative com-
puting between the cloud server and edge server can further enhance the performance 
of the MEC network [30].

However, the works listed above mainly focus on the resource allocation as well as off-
loading strategy to improve the performance of the MEC network, which fails to con-
sider a charge service mechanism. If users are allocated more computational resources, 
they need to pay more. Meanwhile, each user should have a budget constraint that 
decides how many resources can be purchased. Therefore, the service mechanism may 
influence the performance of the MEC system. As far as we know, few works consider 
the charge service in the collaborative computing network. Motivated by this, a charge 
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service mechanism is incorporated for the cloud-edge-end computing network. The 
main contributions of this work are listed as follows:

•	 To improve the performance of MEC-assisted multi-source data stream computing, 
we study a cloud-edge-end computing architecture in the case of a dynamic environ-
ment, where the wireless channel is time-varying, and the data stream characteristic 
is variable. Moreover, the charge service mechanism is involved in the considered 
network.

•	 In order to guarantee the effectiveness of the considered computing framework, we 
formulate an optimization for minimizing system latency by optimizing the offload-
ing strategy assignment, the computation resource allocation, and the bandwidth 
resource allocation under the device’s budget jointly.

•	 We design a novel approach that combines DRL with convex optimization, named 
“ECC-PPO.” Specifically, the DRL is used for offloading strategy assignment sub-
problem, while the convex optimization is applied for the resource distribution sub-
problem.

•	 Simulated outcomes reveal the designed scheme “ECC-PPO” works effectively on the 
dynamic network and can help improve the performance of the application of the 
multi-source data stream.

2 � System model
As depicted in Fig.  1, we present a collaborative cloud-edge-end three-tier architec-
ture with M IoT devices, N computational assess points (CAPs), and one central-
ized cloud server with powerful computation capacity. We use M = {1, 2, . . . ,M} and 
N = {1, 2, . . . ,N } to denote the IoT device set and the CAP set, respectively. Specifi-
cally, each CAP comprises one base station and one MEC server, which can serve multi-
ple devices. Meanwhile, each device has already connected with one CAP via a wireless 
channel, and each CAP has associated with the cloud server through different wireless 
backhaul links in advance [31].

We assume that each IoT device generates a compute-intensive data stream in real time, 
which can be arbitrarily divided into several parts and executed simultaneously at the device, 
the CAP, and the cloud server. Generally speaking, the computation capacity of the device ter-
minal is insufficient compared to the CAP and the cloud server. Therefore, the devices need to 
offload a portion of the data streams to the CAP or the cloud server. In addition, we also con-
sider a practical scenario that the CAP and the cloud should charge the devices based on the 
size of the data stream and computation resource allocated to the devices, while the devices 
should purchase computation resources according to individual economic budgets. In the fol-
lowing, we will present the transmission, computation, and pricing models in detail.

2.1 � Transmission model

As mentioned, the uplink channels from device m to CAP n and CAP n to the cloud 
server are wireless for offloading data streams. Besides, we presume those channels are 
independent, identically distributed (i.i.d), and modeled as Rayleigh channels. Specifi-
cally, let ptransm  and ptransn  denote the transmit power of device m and CAP n, respectively. 
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hm,n ∼ CN (0,̟1) and gm,n ∼ CN (0,̟2) are the instantaneous channel parameters 
between device m to CAP n and CAP n to the cloud, respectively. Then, according to Shan-
non’s theory, the corresponding transmission rate are, respectively, given by,

where σ 2 represents the variance of additive white Gaussian noise (AWGN) [32–34]. 
wCAP
m,n  and wc

m,n are the wireless bandwidth allocated by CAP n and the cloud, which satis-
fies the following constraint

(1)rCAPm,n = wCAP
m,n log2 1+ ptransm |hm,n|2

σ 2
,

(2)rcm,n = wc
m,n log2

(

1+ ptransn |gm,n|2
σ 2

)

,

(3)
M
∑

m=1

wCAP
m,n ≤ WCAP

n ,

(4)
M
∑

m=1

wc
m,n ≤ Wc,

Fig. 1  System model of collaborative cloud-edge-end three-tier architecture
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where WCAP
n  and Wc are the total bandwidth of CAP n and the cloud server.

2.2 � Computational model

For this part, we pay attention to the computational model to minimize the latency of 
transmission and computation. At first, device m determines to offload αm portion of data 
stream lm to the CAP n based on some strategies. When receiving the partial data stream 
αmlm from device m, CAP n will judge the computational burden and its own computation 
capacity. If the computational burden is heavy, CAP n needs further offload βm proportion 
of the received data stream αmlm to the cloud server with much more computation capac-
ity. Otherwise, the CAP can process the data streams on its own. The detailed procedure 
for processing data stream lm is shown in Fig. 2.

Let φm = (αm,βm) denote the data stream offloading ratio vector, where αm ∈ {0, 1} and 
βm ∈ {0, 1} . For each device m ∈ M , the size of data stream lm for computing at local, the 
CAP, and the cloud are given as, respectively,

Similarly, for data stream lm , the local device’s computational latency, the CAP’s compu-
tational latency, and the cloud’s computational latency are given as, respectively,

(5)llocalm = lm(1− αm),

(6)lCAPm,n = lmαm(1− βm),

(7)lcm,n = lmαmβm.

(8)T local
m = llocalm ωκ

f lm
,

(9)TCAP
m,n =

lCAPm,n ωκ

f CAPm,n

,

Fig. 2  The detailed procedure for processing data stream lm
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where ω denotes the CPU cycles computing per bit data stream, κ represents the unit 
conversion factor from Mbs to bits, f CAPm,n  and f cm are the CPU frequency allocated by the 
CAP n and the cloud server, and f lm denote the device m’s computation capacity. Accord-
ing to (1) and (2), the transmission latency from device m to CAP n and CAP n to the 
cloud are written as, respectively,

Since the results feedback is small, we ignore the return latency. We assume that each 
device and each CAP has a transmitting unit and a computing unit, which can work 
simultaneously. Thus, data stream lm can be processed and transmitted in parallel. 
Therefore, the latency for processing data stream lm is given by

Moreover, the CAP’s server or the cloud server should create a virtual machine for each 
device. Thereby, all data streams of the M devices can be executed simultaneously. The 
total processing latency of all devices are

2.3 � Pricing model

The pricing model consists of two parts: basic service fee τm and calculation service fee 
πm . The former is related to the size of the data stream lm transmitted to the CAP or the 
cloud server, while the latter is correlated with the computational resource. According to 
[35], the payment for offloading data stream lm is

where ζ1 denotes the unit price for transmitting per Mb of the data stream from device 
m to the CAP, ζ2 represents the price coefficient per Mb of the data stream transmitted 

(10)T c
m,n =

llocalm,n ωκ

f cm
,

(11)T trans, CAP
m,n = lmαmκ

rCAPm,n

,

(12)T trans, c
m,n = lmαmβmκ

rcm,n

.

(13)T total
m = max{T local

m ,T trans, CAP
m,n + TCAP

m,n ,T trans, CAP
m,n + T trans, c

m,n + Tc
m,n}.

(14)T total = max
m∈M

T total
m .

(15)τm = ζ1(αmlm)+ ζ2(βmαmlm),

(16)πm = η1(f
CAP
m,n )+ η2(f

c
m),

(17)Um = τm + πm,
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from the CAP to the cloud, and η1 and η2 are the unit price of computing capacity for the 
CAP and the cloud. In addition, each device m has a finite budget to buy the service, and 
the limitation for the budget of device m is given by

3 � Problem formulation
In this part, we first denote a sequence time slot k = {1, 2, . . . ,K } , where the total sys-
tem delay at time slot k is presented by T total(k) . Then, at each time slot k, our goal is to 
obtain a minimum total system delay under the constrained devices’ budget by jointly 
optimizing offloading ratio assignment, bandwidth resource management, and compu-
tation resource allocation in the considered network, given by 

 where C1 ensures the range of the offloading assignment αm and βm . C2 and C3 repre-
sent the sum of the bandwidth resources assigned to each device, which cannot exceed 
the entire bandwidth at the CAP or the cloud server. Analogously, C4 and C5 denote the 
limitation of computational resource allocation at the CAP or the cloud server, while C6 
is the maximal budget of each device for purchasing resource services. For convenience, 
we denote the vectors φ = {φm} , w = {wCAP

m,n ,wc
m,n} , and f = {f CAPm,n , f cm} as the offloading 

assignment, bandwidth resources management, and computation resources allocation, 
respectively.

(18)Um ≤ Umax
m .

(19a)P1 : min
{φ(k),w(k),f (k)}

T total(k),

(19b)s.t.C1 : αm(k) ∈ [0, 1],βm(k) ∈ [0, 1], ∀m ∈ M,

(19c)C2 :
M
∑

m=1

wCAP
m,n (k) ≤ WCAP

n , ∀n ∈ N ,

(19d)C3 :
M
∑

m=1

wc
m,n(k) ≤ Wc,

(19e)C4 :
M
∑

m=1

f CAPm,n (k) ≤ FCAP
n , ∀n ∈ N ,

(19f )C5 :
M
∑

m=1

f cm(k) ≤ Fc ,

(19g)C6 : Um ≤ Umax
m ,
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In this article, what is noteworthy is that a multi-source environment is considered, where 
the wireless channel is time-varying and the characteristic of the data stream is dynamic at 
each time slot. To adapt to the multi-source environment and minimize the system latency, 
we design an algorithm to make decisions at each time slot. In particular, the decision-mak-
ing at the current time slot k can be used as a reference for that at the next time slot k + 1 . 
Therefore, we can design the data stream offloading process with resource allocation as a 
Markov Decision Process (MDP), detailed in the next subsection.

3.1 � MDP

As illustrated in the last section, we formulate the data stream offloading problem as an 
MDP with a tuple {S ,A,P ,R, γ } . We use ak ∈ A, rk ∈ R , and sk ∈ S to denote the action, 
reward, as well as state at time frame k, respectively.

3.1.1 � State space

For the considered network, we consider a multi-source scenario, where the 
data stream is heterogeneous and the channel gain is time-varying at each 
time slot. Therefore, at the beginning time slot k, the system state is depicted as 
sk = {T total(k − 1),φ(k − 1),L(k),H(k),G(k)} , where L(k) = [l1(k), l2(k), . . . , lM(k)] 
denotes the data stream vector, H(k) = [|h1,n|2(k), |h2,n|2(k), . . . , |hM,n|2(k)] and 
G(k) = [|g1,n|2(k), |g2,n|2(k), . . . , |gM,n|2(k)] are the instantaneous channel gain vector.

3.1.2 � Action space

Recall the problem P1 , the main factors affecting the system latency are offloading strategy 
φ(k) , bandwidth resource management w(k) , and computation resource allocation f (k) . 
Hence, the action is defined as ak = {φ(k),w(k), f (k)} . Mention that the number of pairs 
{state, action} is infinite, due to the continuous values of ak and sk . Therefore, it is inefficient 
to use a table to store all pairs or apply a value-based method to solve P1 . To solve this 
problem, we use a deep neural network (DNN) ψ(a|s; θa) to approximate policy function 
ψ(a|s) , guiding the agent to do action a under state s.

3.1.3 � Reward function

The core of the reward function is to evaluate the qualify of action at . Specifically, a posi-
tive reward will be given, if the agent makes a decision that efficiently minimizes the system 
latency and vice versa. Thereby, we defined the reward function related to time slot t as

For this considered network, there exists a central control at the cloud for the considered 
network, which can obtain all the device information and the whole system network sta-
tus. Therefore, the central control is regarded as an agent. At the beginning time slot 
k, the agent first observes the system state sk and makes a decision ak based on ψ(a|s) . 
Then, the system will give an immediate reward rk to the agent, and alter its state from 

(20)rk = −T total(k).
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sk to sk+1 with a transit probability P . This process will last for a long time until an end 
state Send is observed. Meanwhile, the agent’s target is to acquire an optimal ψ∗(a|s) to 
obtain a long-term accumulated reward Ck from the original state sk , given by

where γ is the discount factor.
Although we formulate a specific MDP to deal with P1 , it is still untoward to solve, 

due to the max operator and many variables. Since P1 is a min-max problem, and we can 
transform P1 into a mean weighted-sum problem P2 according to [29, 36, 37], given as 

 Note that P2 is also an MDP problem. However, we find that the transition probabil-
ity of the wireless channels and the data streams’ characteristics are unknown. Moreo-
ver, the dimension of the action is high and causes a huge action space. In further, the 
variable of offloading assignment φ(k) and resource allocation {w(k), f (k)} are tightly 
coupled, leading to difficulty in convergence. To deal with these issues, we decompose 
problem P2 into offloading strategy allocation sub-problem and resources allocation 
sub-problem, where we design a novel DRL-based approach to handle the sub-problems 
efficiently, specified in the following.

4 � Problem decomposition
As illustrated before, the dimension of action is high, which leads to a huge action space. 
Moreover, the sub-action, which includes offloading ratio assignment φ , bandwidth allo-
cation w , and computational allocation f  , are closely related. Besides, we perceive a vital 
phenomenon that the data stream offloading φ assignment affects the transmission delay 
and the computational simultaneously, but the bandwidth allocation w and the com-
putation allocation f  can only influence them, respectively. Therefore, we decompose 
P2 into a resources allocation sub-problem and an offloading strategy allocation sub-
problem. The former sub-problem is only related to the bandwidth resource allocation 
and computation resource allocation, and the latter sub-problem is involved with the 
offloading assignment. We solve the former and the latter sub-problems by convex opti-
mization and DRL methods, respectively.

4.1 � Convex optimization based for resource allocation sub‑problem

It is obvious that, at any time slot, the resource allocation sub-problem to optimize (w, f ) 
is a convex optimization problem with linear and convex constraints, given the offload-
ing strategy φ . Therefore, we convert P2 into 

(21)Ck =
∞
∑

t=0

γ t rk+t ,

(22a)P2 : min
{φ(k),w(k),f (k)}

M
∑

m=1

T total
m (k),

(22b)(19b)− (19g).
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 The optimal solution can be obtained with the standard convex optimizer, which often 
needs iteration to solve. To get the optimal solution without iteration, we further slack 
the budget’s constraint (19g), converting P3 into a Lagrange problem, written as,

where β , δ,µ and ν are Lagrangian multipliers. Let us take the partial derivatives f  and w
,

where

By setting the partial derivative (25) to zero, we can get a optimal solution 
w∗ = {wCAP

m,n ,wc
m,n},∀m ∈ M and f ∗ = {f CAPm,n , f cm},∀m ∈ M,

(23a)P3 :min
{w,f }

M
∑

m=1

(T trans, CAP
m,n + T trans, c

m,n + TCAP
m,n + Tc

m,n),

(23b)(19c)− (19g).

(24)

P4 : L(w, f , �, δ,µ, ν)

=
M
∑

m=1

(T trans, CAP
m,n + T trans, c

m,n + TCAP
m,n + Tc

m,n)

+ �

(

M
∑

m=1

wCAP
m,n −WCAP

n

)

+ δ

(

M
∑

m=1

f CAPm,n − FCAP
n

)

+ µ

(

M
∑

m=1

wc
m −Wc

)

+ ν

(

M
∑

m=1

f cm − Fc

)

,

(25)



























∂L

∂wCAP
m,n

= − Am

(wCAP
m,n )2

+ �,

∂L

∂f CAPm,n
= − Bm

(f CAPm,n )2
+ δ,

∂L
∂wc

m,n
= − Cm

(wc
m,n)

2 + µ,

∂L
∂f cm

= − Dm

(f cm)
2 + ν,

(26)Am = lmαmκ

log2

(

1+ ptransm |hm,n|2
σ 2

) ,

(27)Bm = lmαmβmκ

log2

(

1+ ptransn |gm,n|2
σ 2

) ,

(28)Cm = lmαm(1− βm)κω,

(29)Dm = lmαmβmκω.
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Note that w∗ is always effective, since it has nothing to do with the device’s budget, while 
f ∗ is available only if the constraint (19g) holds. Otherwise, the optimal solution f ∗ is 
obtained by the conventional convex tools, e.g., the CVX tools.

4.2 � Proximal policy optimization

In this part, we employ the proximal policy optimization (PPO) strategy to solve the 
offloading ratio assignment sub-problem owing to its advantage of stability and practi-
cability [38, 39]. The PPO strategy originates from the actor-critic scheme, which can 
effectively deal with continuous action space. Specifically, we use ψ(a|s; θa) and V (s; θv) 
to denote the actor and critic network, where θa and θv are the parameter sets of the 
two DNNs, respectively. The actor DNN ψ(a|s; θa) is responsible for making decisions a 
given state s, while the critic DNN V (s; θν) is to assess the value of state s.

For the critic network, in order to reduce the error between real value and estimated 
value generated by V (s; θν) , the temporal-difference (TD) scheme is utilized for the loss 
function, designed by

where Ek(·) is the expectation operator over k samples.
Let ̺ = (s1, a1, r1, . . . , sk , ak , rk) denote a trajectory in an episode. Generally speak-

ing, the traditional actor network is relied on the policy gradient method, which needs a 
complete sequence trajectory ̺  and updates itself in one episode, leading to slow conver-
gence and local optima. To deal with this issue, the well-known method PPO-clip [40] is 
adapted for the actor network, given by

where F(θanew) represents the ratio of the difference between the old and new strategies, 
given by

(30)wCAP
m,n =

√
Am

∑M
m=1

√
Am

WCAP
n ,

(31)f CAPm,n =
√
Bm

∑M
m=1

√
Bm

FCAP
n ,

(32)wc
m,n =

√
Cm

∑M
m=1

√
Cm

Wc,

(33)f cm =
√
Dm

∑M
m=1

√
Dm

Fc.

(34)L(θν) = Ek [rk + γV (sk+1; θν)− V (sk; θν)]2,

(35)Lclip(θa) = Ek [min(F(θanew)Âk , CLIP(F(θ
a
new)Âk))],
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The function CLIP(y) is the clip operator constraining the value of x in [1− ε, 1+ ε] , 
expressed by

where ε denotes the clip factor. In addition, Âk represents the advantage function applied 
to reduce variance but may increase bias. To make a balance between variance and bias, 
the generalized advantage estimation (GAE) method [41] is used for the advantage func-
tion, written as

where χ is the trade-off coefficient between variance and bias. In the next part, we will 
present the PPO-based training workflow for data stream offloading sub-problem.

4.3 � DRL‑based training workflow for data stream offloading assignment sub‑problem

For the offloading decision sub-problem, we only focus on using the DRL to get the off-
loading strategy φ(k) at each time slot k, given w(k) and f (k) . The agent training proce-
dure begins with the initialization of parameter sets θν , θanew , and θaold , respectively, and 
of the experience pool B . At the beginning time slot k, the agent estimates the chan-
nel parameters by some channel estimations and obtains the basic devices’ data. Then, 
the agent makes an offloading decision ak by running policy ψ(·|sk , θaold) and execute the 
convex optimization to acquire w(k) and f (k) . Meanwhile, the system gives a reward rk 
and moves to the next state sk+1 . Then, the agent collect the experience (sk , ak , rk , sk+1) 
into experience pool B for updating, and interacts with the system K times. As B is full, 
the agent updates the parameter sets θanew and θν by using PPO-clip methods. We regard 
the training workflow as one episode and train the agent for N episodes.

For the considered system, we only use the DRL to obtain the offloading ratio assign-
ment φ , and acquire the resource allocation w and f  by the convex optimization, as this 
can improve the performance of the agent. Moreover, importance sampling is utilized 
according to the PPO-clip methods, where the agent samples data based on the old 
policy ψ(·|s; θaold) for updating the parameters θanew of the new policy ψ(·|s; θanew) , which 
can reuse the data to speed up the convergence. The detailed algorithm is presented in 
Algorithm 1.

(36)F(θanew) =
ψ(ak |s + k; θanew)
ψ(ak |s + k; θaold)

.

(37)C(y) =







1+ ε, y > 1+ ε,
y, 1− ε ≤ y ≤ 1+ ε,
1− ε, y < 1− ε,

(38)δk = rk + γV (sk+1; θν)− V (sk; θν),

(39)Â
GAE(γ ,χ)
k =

∞
∑

l=0

(γ χ)lδk+l ,
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5 � Simulation
This section will show some simulation outcomes to evaluate the practicability of the 
devised optimization algorithm for data stream offloading and resource allocation. In 
the simulations, the considered network experiences Rayleigh flat fading channels, and 
a path-loss model is considered with a loss exponential 3 [42, 43]. Besides, the distance 
from devices to the cloud is normalized as unity, where the distance from devices to 
CAPs is denoted as d ∈ (0, 1) . Similarly, the distance from CAPs to the cloud is (1− d) . 
For such, ̟1 = d−3 and ̟2 = (1− d)−3 . If not specified, we set d = 0.2 , ptransn = 2 W, 
and ptransm = 1 W. For the network, there exist 2 heterogeneous CAPs with different 
computation capacities, which are set to 8× 108 and 1.2× 109 cycles per second (cyc/s), 
while the cloud server has a more powerful computation capacity with 1× 1010 cyc/s. 
Logically, each IoT application m has a smaller computation capacity, following a dis-
tribution f lm ∼ U(1× 108, 1.5× 108) cyc/s. In addition, each CAP is connected to 4 dif-
ferent computational sizes of data streams, subjecting to the uniform distribution with 
l1 ∼ U(120, 160) , l2 ∼ U(130, 140) , l3 ∼ U(60, 80) and l4 ∼ U(40, 60) Mb, respectively. 
For the service charge part, the basic service prices η1 and η2 are set to 0.1 and 0.2 per 
Mb, while the calculation service prices η1 and η2 are set to 10 and 2 per computation 
unit. The detailed network parameters are listed in Table 1.

For the DRL framework, the critic DNN has two fully connected layers with 64 and 
128 nodes, and the actor DNN consists of three fully connected layers with 64, 256, 
and 64 nodes, respectively. To enhance the fitness of DNN, the Rectified Linear Unit 
(ReLU) is used as the activated function. Moreover, the DRL training process is sped 
up by adapting the Adam optimizer method. In addition, the DRL training process 
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consists of 200 episodes and each episode has 256 time slots, where the hyper-param-
eters ε , γ , χ , and |B| are set to 0.2, 0.92, 0.95, and 128, respectively. To avoid accidents, 
the training process repeats at least 10 times.

In the simulations, we present six offloading schemes for comparison

•	 ALL-Local: data streams of M devices are computed locally.
•	 ALL-CAP: data streams of M devices are fully offloaded to the CAP for computing 

with average resource allocation.
•	 ALL-Cloud: data streams of M devices are fully offloaded to the cloud for comput-

ing with average resource allocation.
•	 ECC-PPO: the proposed strategy by using the cloud-edge-end computing frame-

work for resource allocation and data stream offloading assignment.
•	 MEC-PPO: the computation of data streams is assisted by the CAP using the pro-

posed strategy.
•	 MCC-PPO: the computation of data streams is assisted by the cloud server using 

the proposed strategy.

Figure 3 presents the convergence of the devised strategy with the device’s budget 
U = 160 . As seen from Fig.  3, the system latency of the “ECC-PPO” strategy drops 
slowly in the first 20 episodes, but then faster in the next 60 episodes, eventually 
converging at about 100 episodes. Thanks to “ECC-PPO,” the action space is largely 
reduced. Therefore, the DRL agent tends to find a feasible solution after a few train-
ing episodes. Moreover, the proposed “ECC-PPO” scheme shows excellent potential 
in minimizing the system latency, compared to the other five schemes. In particu-
lar, in the 140th episode, the system latency of the “ECC-PPO” scheme is close to 
15  s approximately, which is the lowest value in the six proposed schemes, about 
16%, 31%, 50%, 62%, and 70% lower than “MCC-PPO,” “MEC-PPO,” “ALL-Cloud,” 

Table 1  Parameter setting

Parameters Value

Number of devices M 8

Number of CAPs N 2

Variance of the AWGN σ 2 0.01

Bandwidth of nth CAP and the cloud server {4 Mhz, 4 Mhz, 12 Mhz}

Computation capacity of nth CAP and the cloud server {8× 108 , 1.2× 109 , 1.0× 1010 } cyc/s

Distribution of each device’s computation capacity f lm U(1.0× 108, 1.5× 108) cyc/s

Distribution of the size of data stream l1 ∼ U(120, 160) Mb

l2 ∼ U(130, 140) Mb,

l3 ∼ U(60, 80) Mb,

l4 ∼ U(40, 60) Mb

li ∼ U(40, 80)  Mb, ∀i > 4

Transmit power ptransm  of mth IoT device 1 W

Transmit power ptransn  of nth CAP 2 W

Conversion factor κ from Mb to bit 220

CPU’s cycles for calculating one bit data stream ω 40
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“All-CAP,” and “All-Local” schemes, respectively. The above results in Fig. 3 indicate 
the effectiveness of the devised scheme for the considered network.

Figure 4 illustrates the impact of the device’s budget on the system latency, where 
the budget ranges in [60, 160]. Obviously, since the device with more budget can buy 
more computation resources, the performance of the “MCC-PPO,” “MEC-PPO,” and 
“ECC-PPO” strategies becomes better as the device’s budget increases. Meanwhile, 
the system latency of “ALL-Cloud” and “ALL-Local” strategies remains stable, as the 
devices’ budget has nothing to do with the fullying offloading strategy. Besides, there 
exists a little reduction in the system latency when the budget goes from 140 to 160. 
This is mainly because the transmission latency rather than the computation latency 
affects the system performance when the device’s budget has high budget. Moreover, 

Fig. 3  Convergence of the devised scheme versus episode

Fig. 4  The impact of the device’s budget on the system latency
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the system latency of the “ECC-PPO” strategy is the lowest of the five strategies 
whether the user budget is high or not low, which illustrates the superiority of the 
proposed “ECC-PPO” strategy in reducing system latency.

Figure 5 reveals the influence of the number of devices on the system performance, 
in which the number of devices M varies from 6 to 16. Obviously, the system overhead 
of all schemes rises as the number of devices rises. That is reasonable since the grow-
ing number of devices generates more computational data stream and thereby puts a 
heavy computational burden on the cloud-edge-end system. Although the number of 
devices impacts the system overhead seriously, we still observe the proposed “ECC-
PPO” approach performs better than other ones, which further verifies the superiority of 
the proposed method for data stream unpacking and resource allocation.

Figure 6 depicts the influence of CAP’s bandwidth on the system’s overhead among the 
three schemes, where the bandwidth at each CAP ranges in [2, 10] MHz. From Fig. 6, 
each scheme shows a small gap between M = 8 and M = 12 . That is reasonable, as the 
number of device users increases, the task data stream offloaded to the server becomes 
larger, further increasing the pressure on the network transmission and resulting in 
significant transmission delays. Therefore, the increasing number of devices M signifi-
cantly affects the system performance. Moreover, the system performance improves as 
the bandwidth increases at each CAP. That result is as expected since increasing band-
width can effectively increase wireless transmission capacity, which can reduce trans-
mission latency and thus enhance the system’s performance. In further, the “ECC-PPO” 
scheme behaves best among the three strategies. For example, when the bandwidth of 
CAP equals 8 Mhz and M = 12 , the performance of “ECC-PPO” scheme is about 14% 
and 16% better than that of “MCC-PPO” and “MEC-PPO” schemes. This result verifies 
the effectiveness of the designed cloud-edge-end framework.

Figure 7 shows the influence of CAP’s computation on the system performance with 
the device’s budget U = 50 and U = 100 . As expected, the system latency decreases 
swiftly and then remains steady when the CAP’s computation capacity changes from 

Fig. 5  The influence of the number of devices on the system performance
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0.6× 109 cyc/s to 1.6× 109 cyc/s. This is owing to the fact, the growth of the number 
of computing resources leads to a reduction in the completion time of each offload-
ing data stream, while it is also important to ensure the constraint of the computa-
tional resource unit that the device can purchase. Moreover, the “ECC-PPO” scheme 
performs better than the “MEC-PPO” scheme when the computation resource at the 
CAPs is sufficient, which shows the superiority of the collaborative cloud-edge-end 
framework for intelligent resource allocation.

Figure 8 demonstrates the impact of the cloud server’s computation capacity on the 
system overhead with the device’s budget U = 50 and U = 100 . From Fig. 8, the sys-
tem overhead gradually decreases as the computation resource of the cloud server 

Fig. 6  The influence of CAP’s bandwidth on the system’s overhead with M = 8 and M = 12

Fig. 7  The influence of CAP’s computation capacity on the system performance with the device’s budget 
U = 50 and U = 100
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increase. This is because the cloud server with much computation capacity can pro-
cess data streams more efficiently, and more data streams can be offloaded to the 
cloud to reduce overall system latency. Besides, the device’s budget U is also an impor-
tant factor influencing the system overhead. When the computation resource of the 
cloud server is abundant, the system latency of the “ECC-PPO” scheme with U = 100 
is much lower than that with U = 50 . Moreover, the “ECC-PPO” scheme performs 
better than the “MCC-PPO”, which shows the advantage of the devised cloud-edge-
end architecture in resource allocation and data stream offloading assignment.

6 � Conclusion
To enhance the performance of MEC-assisted multi-source data stream computing, 
we investigated a cloud-edge-end computing network, where the CAPs and the cloud 
server can collaboratively help process the data streams from IoT devices. For this 
considered network, the wireless channel was time-varying, and the characteristic of 
the data streams was variable. To adapt to this dynamic network, we proposed a novel 
approach that combined the PPO with the lagrangian multiplier method for offloading 
ratio assignment and resource allocation. Finally, simulation outcomes demonstrated the 
superiority of the devised scheme and could help develop the multi-source data stream 
application. In future works, we will discuss more MEC scenarios, e.g., NOMA-based 
MEC network and IRS-assisted MEC network, and utilize multi-agent reinforcement 
learning to deal with the offloading strategy.
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