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be summarized into three parts. First, selecting the region of interest that may con-
tain objects. Second, performing feature extraction on the region that may contain 
objects. Last, classifying the extracted features. For example, HOG (Histogram of 
Oriented Gradients) detector is an important improvement of scale invariant feature 
transform and shape contexts. In order to balance feature invariance (including trans-
lation, scale, illumination, etc.) and nonlinear (distinguish di�erent object classes), it 
needs to improve detection accuracy by computing overlapping local contrast nor-
malization on a dense grid of evenly spaced cells. DPM (Deformable Parts Model) is 
a SOTA (State of �e Art) algorithm in traditional object detection algorithms pro-
posed in 2008. �e algorithm consists of a root�lter and multiple auxiliary part�l-
ters, which are improved detection accuracy by hard negative mining, bounding box 
regression and context priming techniques. But it cannot adapt to large rotations, 
so the stability is poor. �e traditional target detection algorithm based on manually 
extracted features has the following shortcomings: the recognition e�ect is not good 
enough and the accuracy is low; the huge computation and the operation speed is 
slow.

With the development of deep learning principles and the improvement of hardware 
computing power, the large models and big data techniques are extensively utilized to 
improve the performance of algorithms. Meanwhile, in the feature extraction networks, 
the numbers of layers are sharply increased and the network structures are becom-
ing more and more complicated. It obviously will cost a large amount of computing 
resources for the operation of an algorithm deployed onto the terminal device.

Till now, the objection detection algorithms are mainly divided into two categories: 
the one-stage case and the two-stage case. �e representatives of one-stage models are 
YOLO series [1–5], SSD [6, 7] and RetinaNet [8], whereas the RCNN series models [9–
11] based on the analysis of candidate regions are the classic two-stage models [12, 13].

�e one-stage algorithms can detect objects at a high rate of speed, but the detection 
accuracy is usually lower compared with those of the two-stage methods by reason of 
the complexity of neural network structures. �e networks of YOLO series have under-
gone an iterative evolution from primitive YOLOv1 to the latest YOLOX [14], where the 
latter one has taken into account both the accuracy and the speed of inference for detec-
tion, and it has performed best on varieties of data sets.

�e lightweight feature extraction network is able to reduce the amount of model 
parameters and improve the inference speed of a model by designing a convolutional 
kernel with a smaller amount of parameters and a more concise network structure, while 
hardly a�ecting the accuracy of the model, such as MobileNet [15], MobileNetV2 [16], 
Shu�eNet [17], Shu�eNetV2 [18], CondenseNet [19], etc. �e MobileNet uses separa-
ble convolutions instead of traditional convolutions to bring down the amount of model 
parameters by combining depthwise convolution and pointwise convolution. �e Shuf-
�eNet ensures that the input of the next set of group convolutions comes from di�er-
ent groups by “reorganizing” the feature maps obtained by group convolutions, so that 
the information can be passed through di�erent groups. �e CondenseNet proposes a 
new feature map extraction method, which reduces the amount of model’ s calculation 
through e�cient linear operations. But all the existing methods still cannot perform well 
enough when deployed in the detection environment for railway wheel gaskets.
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In this paper, a lightweight YOLOX like object detection network is proposed, and 
a lightweight Shu�eNetV2-based structure is designed as being the backbone of the 
YOLOX module. �e prediction layer for size 20× 20 objects is removed to further 
reduce the amount of calculation, and the channel attention enhancement module 
ECA [20, 21] is added into the backbone to improve the feature extraction ability and 
the detection accuracy. �e amount of model parameters is evidently reduced and the 
speed of model inference is indeed accelerated on the premise of ensuring the precision 
of detection through the improved lightweight YOLOX like method. �us, the model 
can be agilely deployed on mobile devices with low-cost of computational resources.

2  Related work
In the �eld of SLAM research, the systems of visual simultaneous localization and map-
ping (SLAM) and visual odometry (VO) have been deeply studied by many scholars. 
Using vision sensors alone or in combination with inertial sensors, many excellent sys-
tems were born with steady improvements in accuracy and robustness. We investigate 
monocular and binocular visual inertial navigation SLAM systems relying on maximum 
a posteriori (MAP) estimation, as well as a complete multimap SLAM Atlas system, and 
�nd that ORB-SLAM3 as a new visualization reference and a visualized inertial open 
source SLAM library is undoubtedly excellent.

�e baseline of the essential network described in this paper is established on the basis 
of YOLOX, which is an anchor free model with YOLOv3 being the main structure. �e 
key modules and elements of YOLOX can be introduced as follows.

• Baseline of YOLOv3: YOLOX [14] employs YOLOv3 [3] as the baseline, in which 
the Darknet53 is applied as the principal structure without FC layer but with an SPP 
module. Besides, the EMA weight updates, Cosine learning rate mechanism, IoU 
loss, IoU aware branching are also used along with fine tune training strategy. The cls 
and obj branches are trained by BCE loss, and the reg branch is trained with IoU loss. 
In addition, the Random ResizedCrop is removed, while the RandomHorizontalFlip, 
ColorJitter and multiscale data augmentation are added into use in the preprocessing 
of training stage.

• Decoupling in head for detection: The detection head of YOLOv3 is in a coupled 
state and YOLOX uses a decoupling head to replace the head for detection in previ-
ous YOLO series networks. The decoupling head is designed like this: First, 1× 1 
convolution is used to unify the original feature maps with different channel num-
bers to be 256. Then, two parallel branches are used for classification and regression, 
respectively, where each branch uses two 3× 3 convolutions consecutively. Mean-
while the IoU method is added into the regression branch.

• Data augmentation: At the beginning of training, two data augmentation methods, 
Mosaic and Mixup are used based on the original YOLOv3. The augmentation for 
data will be turned off during the final 15 training epochs.

• Anchor free: YOLOX has propelled the development of YOLO series networks from 
anchor based [11] to anchor free [22, 23]. It is really simple to convert YOLO frame-
work to the anchor free form, where the prediction of anchors changes from 3 sets to 
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only 1 set with 4 values, which are two coordinate offsets for the upper left corner of 
the grid and the height and width values of the predicted box.

• Label matching strategy: The YOLOX chooses the improved OTA (optimal trans-
port assignment) [24] as the label assignment strategy, where OTA analyzes the label 
assignment from a global perspective and transforms it into an optimal transporta-
tion problem [25–27]. Due to the fact that the optimal transportation problem brings 
additional 25% time cost of training, the authors of YOLOX simplified it to a dynamic 
topk strategy, named SimOTA [14], to obtain an approximate solution. The SimOTA 
at first computes the pairwise match, which is represented by the cost or quality of 
each predicted GT (ground truth) pair. The function of SimOTA can be written as: 

where � is the balance coe�cient, Lclsij  and Lregij  respectively are classi�cation loss and 
regression loss between GT and the predicted value. �e Top-k predicted values with 
the least cost in the �xed central region are then selected as positive samples of gi for GT. 
Finally, the corresponding grids of these positive predictions are designated as positives, 
while the rest of the grids are designated as negatives. �e values of k can be di�erent for 
di�erent GTs.

3  Improved model with�simpli�cations
3.1  Improved backbone

In position recognition, several similar key frames in the Atlas maps are queried in the 
DBoW2 database, and the three visible key frames are geometrically veri�ed through 
DBoW2 candidate key frames and 3D alignment transformation. It also needs to exam-
ine whether there are ORB key points whose descriptors match the map points’ ORB 
descriptors. �e ratio of distance to the second closest match also needs to be checked 
for further judgment.

�e Shu�eNetV2 [18], proposed by Megvii Research Institute, is a lightweight neu-
ral network architecture that can be delicately deployed on mobile and edge terminals. 
�e network structure with high test accuracy is clear and concise, and the memory 
access cost is considered at the beginning of the design. �erefore, it can be conveniently 
deployed on mobile devices with very low latency.

In order to further reduce the calculation amount and improve the speed of model 
inference, two network modules are designed to improve the Shu�eNetV2-based 
structure. In the standard Shu�eNetV2, one ordinary module and one downsampling 
module are respectively shown as in Fig.�1, where the 3× 3 depthwise convolution 
(DWConv) and 1× 1 convolution (Conv) are employed in the right branch of both of 
these two modules.

�e use of 1× 1 convolution before or after DWConv generally has two e�ects: one is 
to fuse the information between channels and cover the shortage of information fusion 
between channels by DWConv; the other is to reduce and increase the dimensions of 
feature maps. �e 1× 1 convolution here in Shu�eNetV2 architecture is only to fuse 
the interchannel information of the DW convolution, while it is somewhat redundant to 
design two 1× 1 convolutions in one branch. Taking into account the weight reduction 

(1)Cij = Lclsij + �L
reg
ij
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e�ect, the 1× 1 convolution can be removed after depthwise convolution in the right 
branches and the improved modules can be shown as in Fig.�2.

Fig. 1 The 3× 3 depthwise convolution (DWConv) and 1× 1 convolution (Conv) in two original modules of 
ShuffleNetV2.

Fig. 2 The improved modules of ShuffleNetV2
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3.2  Lightweight attention mechanism

In transformer and CNN, the attention mechanism has achieved good results, while 
it has been added into the Shu�eNet structure to improve the network performance 
in this paper. �e channel attention mechanism has been shown great potential in 
improving the performance of deep convolutional neural networks (CNNs). Avoid-
ing dimensionality reduction and proper crosschannel interactions are important 
for learning high performance and e�cient channel attention. �e ECA (E�cient 
Channel Attention) module by considering each channel and its neighbors for local 
crosschannel exchange of information [20] is an ultralightweight channel attention 
module. �e ECA can be e�ectively implemented by 1D convolutions of size k, where 
the convolution kernel size k represents the coverage of local crosschannel interac-
tions, i.e., how many neighbors near this channel participate in the attention predic-
tion of this channel. ECA attention module, which is a channel attention module, is 
often applied with visual models. It supports plug and play, i.e., it can perform chan-
nel feature enhancement on the input feature map and the �nal ECA module output 
without changing the size of the input feature map. �e �ow of the ECA model is as 
follows: �rstly, the input feature map is compressed with spatial features, and a 1× 1 
feature map is obtained by global average pooling. Secondly, the compressed feature 
map is subjected to channel feature learning by 1× 1 convolution. Finally, the feature 
map with channel attention is multiplied with the original feature map channel by 
channel, and �nally the feature map with channel attention is output. To avoid man-
ual tuning of k through crossvalidation, this paper proposes a method to adaptively 
determine k.

�e grouped convolutions have shown that high dimensional (low dimensional) 
channels are proportional to long distance (short distance) convolutions for a �xed 
number of groups. Similarly, the coverage of crosschannel information interaction 
(that is, the kernel size k of one dimensional convolution) should also be proportional 
to the channel dimension C. It is well known that the channel dimension C is usually 
set to a power of 2. It is hoped that high dimensional channels can have longer inter-
actions and low dimensional channels have relatively short interactions. In summary, 
and k = 2 is set in the experiment. �e ECA attention added to the Shu�eNet mod-
ule can be shown as in Fig.�3.

3.3  Lightweight detection head

�e YOLOX network detects large, medium and small size targets based on three dif-
ferent feature layers of 20× 20, 40× 40 , and 80× 80 . �e total loss of the model is 
composed of the sum of these three di�erent scale loss functions, thus, poor train-
ing results on any scale will a�ect the whole training e�ect and the convergence 
speed. Considering that the gasket is relatively small and there is no large target in 
the inspected image, the 20× 20 object prediction layer and its associated bottleneck 
connection are removed in order to make the network more suitable for the recogni-
tion task of gasket conditions.
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4  Experiments and�analysis
�e model inference hardware was con�gured with Intel� CoreTM i5-8350U 
CPU@1.70�GHz.

Experimental data A total of 800 gasket images were collected in the workshop, and 
the images were marked by LabelImg software with labels “ok-dp” (attached tightly) and 
“ng-dp” (not attached tightly). �ere are about 2100 “ok-dp” labels and 2000 “ng-dp” 
labels, and the input image size for model training and testing is 416× 416.

Experimental parameters �e training learning rate is set to 0.01, the optimizer selects 
Momentum, the moving average parameter momentum is given as 0.9, only the weight 
parameter of the convolutional layer in the network uses L2 decay, the factor is 0.0005, 
the activation function chooses Relu, the input image size, the batch size and epoch are 
(416, 416), 128 and 300, respectively. We use 10-fold cross-validation to prevent the 
algorithm from over�tting and to improve the accuracy of the algorithm.

Evaluation index In this study, mAP (mean Average Precision) is selected as the evalu-
ation index of algorithms. �e precision indicates the proportion of correct predictions 
in the prediction results, the formula is as follows:

�e recall rate represents the proportion of the target that is correctly predicted by the 
model.

(2)Precision =

TP

TP+ FP

(3)Recall =
TP

TP+ FN

Fig. 3 The ECA added ShuffleNetV2 module
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where TP is the number of samples that are actually positive and determined to be posi-
tive, FP is the number of actually negative samples determined to be positive samples, 
and FN is the number of actually positive samples determined to be negative samples. 
Each category is integrated by the PR (precision recall) curve:

where the precision (p) denotes the proportion of true positive samples in the prediction 
results. Recall (r) represents the proportion of correctly predicted values among all posi-
tive samples. �e average of APs of all categories is mAP.

�e network after cutting Conv1*1 layer, described in Sect.�3.1, is named Shu�eNetLite, 
based on which the lightweight network with ECA attention module added, described in 
Sect.�3.2, is named Shu�eNetLite-ECA.

�e comparison for ablation experiments are shown in Table�1, where di�erent net-
work structures are compared considering four dimensions of mean average precision 
(mAP), inference latency, calculation amount and parameter amount.

As for deployment on the mobile devices, the average precision and inference 
latency are two most important indicators to be valued. For the Shu�eNetLite, the 
mAP decreased from 36.28 to 35.80% with a drop of 0.48%, and the inference latency 
decreased from 19.06 to 13.52�ms with a speed increase of 5.53�ms, comparing with 
Shu�eNetV2. It can be seen that the model size and the amount of parameters and 
calculation amount are signi�cantly reduced after the 1× 1 convolution is corre-
spondingly removed, while it has only a slight impact on the precision but can boost 
the inference speed evidently. Compared with Shu�eNetLite, the mAP of Shu�e-
NetLite ECA has increased from 35.80 to 38.40% with a gap of 2.60%, and the infer-
ence latency has slightly increased by 0.19� ms. From the experimental results, it 
e�ectively illustrated that the Shu�eNetLite-ECA model is able to improve the detec-
tion precision.

In the YOLOX-based experiments, similarly as YOLO-S and YOLO-Nano presented 
in paper [1], the YOLOX-S and YOLOX-Nano are considered as being the baselines 
for comparison and analysis. Besides, in this paper, YOLOX-LH means the light-
weight YOLOX model with 20× 20 prediction layer removed and bottleneck layer 
removed, which is mentioned in Sect.�3.3. �e YOLOX-Shuf2 stands for the YOLOX 
network using Shu�eNetV2 as the backbone. �e YOLOXLite represents our pro-
posed lightweight network.

(4)AP =
1
0 p(r)dr

(5)mAP =

�N
i=1 APi

N

Table 1 Comparison of ShuffleNetV2 ablation experiments

Model mAP Latency (ms) FLOPs (GB) Param (MB)

ShuffleNetv2 36.28 19.06 1.47 1.28

ShuffleNetLite 35.80 13.53 1.03 0.915

ShuffleNetLite-ECA 38.40 13.72 1.03 0.916
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�e experimental results for network ablation can be shown in Table�2. Compared 
with YOLOX-Nano and YOLOX-Shuf2, the YOLOXLite has obviously improved the 
detection precision and inference speed. On the other hand, although the YOLOX-S 
has slightly higher detection accuracy, the amount of parameters and computation is 
too large and the inference time takes too long. �e YOLOX-LH brings tiny increase in 
detection precision and inference speed compared with YOLOX-S, which means that 
the detection quality can be improved via removing 20× 20 prediction layer and its 
related bottleneck layer.

�e detection results of gaskets’ states on High-speed EMU wheelset are demon-
strated as in Fig.�4 by utilizing YOLOX and YOLOXLite, respectively. It can be evidently 
proven that our proposed method YOLOXLite is able to detect and identify the tight-
ness of the antiloose gaskets and the bolt much better with higher con�dence values. 
As shown in Fig.�4, due to the very small proportion of the detected object to the whole 
detected object, and the presence of shadow occlusion resulting in insu�cient light, etc. 
our detection results also have missed and false detections, but compared to YOLOX, 
our YOLOXLite achieved signi�cant detection results.

Table 2 Experimental results of improved-YOLOX networks

Model mAP Latency (ms) FLOPs (GB) Param (MB)

YOLOX-S 38.81 386.14 26.80 9.0

YOLOX-Nano 35.70 23.35 1.08 0.91

YOLOX-LH 39.16 383.65 26.71 9.0

YOLOX-Shuf2 36.28 36.28 19.06 1.28

YOLOXLite 38.40 1.03 1.03 0.916

Fig. 4 The detection results of gasket states by using YOLOX and YOLOXLite. a Status “Not-attached” 
detected by YOLOX model; b status “Attached” detected by YOLOX model; c status “Not-attached” detected by 
YOLOXLite model; d status “Attached” detected by YOLOXLite model
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5  Conclusions
�is paper proposes an improved lightweight YOLOX-wise model that can be 
deployed on mobile devices with low computing resource consumption. �e origi-
nal Shu�eNetV2 backbone has been cut to be a new lightweight structure applied 
in YOLOX. �e 20× 20 prediction layer for large objects detection are removed to 
further reduce the calculation amount and increase the detection precision, and the 
channel attention enhancement module has also been added into the model structure 
to increase the capabilities of feature extraction and object detection. All the experi-
mental results illustrate that, the lightweight network proposed in this paper not only 
ensures the detection accuracy, but also greatly reduces the amount of parameters 
and the resource of algorithmic calculations. �e proposed algorithm improves the 
model inference speed with low computing necessities and can even run fast on low 
power small mobile devices.
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