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Abstract 

Sparse arrays are able to generate more lags to extend the array aperture, which is a 
distinct advantage in mixed-field localization. To exploit these lags, existing algorithms 
in the known literature can be mainly divided into two types: the subspace-based 
algorithm and the sparsity-based algorithm. However, the former algorithm cannot 
fully utilize the time delay information provided by sparse array, and the second algo-
rithm has basis mismatch problem. In this paper, an interpolation processing method 
based on atomic norm is proposed to solve the sparse array localization problem. The 
high-order cumulant matrix is reconstructed by the interpolation method to gener-
ate an augmented cumulant matrix without holes, which can make full use of all 
the lags. Then, the atomic norm minimization method is used to recover the sparse 
matrix after interpolation in a gridless way. The matrix after recovery enables gridless 
direction-of-arrival (DOA) estimation. After the interpolation reconstruction, more lags 
can be exploited, the degrees of freedom are further increased. The proposed algo-
rithm can not only make full use of the array receiving information but also avoid the 
base mismatch problem, and the accuracy of DOA estimation is improved. Numerical 
simulations verify the superiority of the proposed algorithm compared with the exist-
ing algorithms.

Keywords: Source localization, Mixed field, Sparse array, Atomic norm, Matrix 
reconstruction

1 Introduction
Source localization is one of the major topics in the fields of radar, sonar, wireless com-
munication and speech recognition location [1–4]. In the past decades, researchers 
have developed various high-resolution algorithms, among which the most widely used 
are the multiple signal classification (MUSIC) [5] and estimation of signal parameters 
via rotational invariance techniques (ESPRIT) [6] algorithms. According to the defini-
tion of the Fresnel region [7], the types of sources can be divided into far-field (FF) and 
near-field (NF) sources. In the FF case, the data received by the sensors collect the DOA 
information, while in the NF case, the data received by the sensors contain range and 
DOA information. In the presence of these two sources separately, many methods have 
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achieved good estimation results [8–13]. In many situations, where FF sources and NF 
sources coexist, such as microphone array positioning [14, 15] and the sixth-generation 
(6G) mobile communication system [16–18], the above algorithms may not work.

In order to solve mixed-field source localization problem, some corresponding algo-
rithms have also been developed recently. In [19], an algorithm based on second-order 
cumulants has been proposed, which used an oblique projection matrix to distinguish 
FF sources from NF sources. Zuo et al. [20] have proposed an algorithm without eigen-
value decomposition, and they used an alternate iterative scheme to promote the estima-
tion accuracy of the oblique projection operator. In [21], a two-stage MUSIC algorithm 
has been developed to localize the mixed field by constructing two fourth-order cumu-
lant matrices. For non-circular signals, a rank reduction (RARE) algorithm has been pro-
posed in [22], which used three MUSIC-like estimators to locate the mixed-field sources. 
The above algorithms were proposed on the basis of uniform linear array (ULA), and 
most did not apply to sparse linear array (SLA) [23].

Since the SLA was developed, it has attracted extensive attention from researchers. By 
utilizing the coarray of physical array, the SLA can expand the array aperture, which dra-
matically improves the estimation accuracy and resolution of DOA estimation. However, 
the sparse array formation and algorithm based on the FF case cannot be directly used 
for mixed-field localization. Many researchers have developed symmetric arrays and 
algorithms suitable for mixed-field localization in SLA case. Wang et al. [24] have pro-
posed a symmetric nested array (SNA) via symmetric the traditional nested array, and 
they used mixed-order statistics to estimate DOA and range. The algorithm had medium 
computational complexity and improved resolution and accuracy. Zheng et al. [25] have 
designed a symmetrical double-nested array (SDNA), which further improved the vir-
tual array aperture compared to the traditional SNA. They combined oblique projection 
technology with spatial smoothing MUSIC (SS-MUSIC). Specifically, the NF component 
was extracted by the oblique projection matrix, and the DOA of the NF source was esti-
mated by SS-MUSIC. Shen et  al. [26] have developed an improved symmetric nested 
array (ISNA) and utilized a sparse reconstruction technique for DOA estimation. Com-
pared with the previous symmetric nested arrays and algorithms, the array and algo-
rithm proposed in [26] had more advantages in estimation accuracy and array aperture.

The algorithms mentioned above can be roughly divided into two categories. The first 
one is based on SS-MUSIC, such as [22, 24, 25]. This kind of algorithm can only use 
consecutive lags and waste some unique lags, which loses array aperture and reduces 
estimation accuracy. The other is based on sparse reconstruction techniques, such as 
the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm mentioned in 
[26]. The LASSO algorithm can make full use of all unique lags, but this algorithm is an 
on-grid sparsity-based algorithm, and the performance of the algorithm is affected by 
the grid. To solve basis mismatch issue brought by the gridless methods, an algorithm 
based on atomic norm minimization was proposed and has achieved remarkable results 
in DOA estimation of FF sources [27–29]. Wu et al. [30] have introduced this method 
into mixed-field location and proposed the mixed sparse approach (MSA), but it was 
reconstructed on physical array, which would introduce a large fitting error.
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In this paper, we propose a sparse matrix interpolation reconstruction algorithm 
on the basis of atomic norm minimization. Compared to second-order statistics, the 
mixed-field localization algorithm based on fourth-order cumulant can produce more 
virtual arrays; the fourth-order cumulant algorithm has low computational complex-
ity compared to higher-order cumulant such as sixth-order cumulant. The proposed 
algorithm is able to exploit the full range of unique lags and avoids the base mismatch 
problem. In addition, different from Wu’s method, we perform interpolation recon-
struction on the fourth-order cumulator matrix, which can reduce the fitting error. 
Firstly, construct an interpolation matrix, where the positions of the holes are filled 
with zero elements, in place of the Toeplitz matrix produced by the fourth-order 
cumulant, and the interpolated matrix can be regarded as produced by ULA. Then, 
the interpolated matrix is reconstructed adopting the method of atomic norm mini-
mization, which is gridless. The reconstructed matrix contains all unique lags; there-
fore, a more accurate DOA estimation can be realized. Our key contributions are 
summarized as follows: 

(1) Similar to the covariance matrix under second-order statistics, we derive expres-
sions for the covariance-like Toeplitz matrix and sparse Toeplitz matrix under 
fourth-order cumulants, corresponding to unique lags and unique lags with holes, 
respectively. By using the matrix filling theory, we complete the information of the 
hole and maximize the use of the array accepted data.

(2) The Toeplitz matrix is reconstructed by atomic norm minimization. This method is 
gridless, and compared with LASSO algorithm, it avoids the base mismatch prob-
lem and improves the accuracy. Because the idea of matrix interpolation is adopted, 
the DOF of the algorithm is also higher than that of the LASSO algorithm.

(3) Compared with Wu’s algorithm, the proposed algorithm interpolates on the virtual 
array, and the reconstructed Toeplitz matrix is closer to the ideal case, and the algo-
rithm has better performance.

(4) Through various experimental simulations, the superiority of the proposed algo-
rithm is verified.

The rest of this paper is organized as follows. In Sect.  2, the signal model is intro-
duced. In Sect. 3, we present the proposed sparse matrix reconstruction algorithm on 
the basis of atomic norm minimization. Section 4 provides the performance analysis, 
and Sect. 5 draws the conclusions.

Notations Uppercase(lowercase) characters are used to donate matrices (vectors). 
(·)∗ , (·)T  and (·)H donate the complex conjugate, transpose and conjugate transpose. 
vec(·) donates the vectorization operator, E(·) is the expectation operator, and diag(·) 
is the diagonalization operator. 〈c〉i stands for the ith element of c . �·�2 donates the l2 
norms. Hollow letters, such as N , represent the set of integers. ◦ , ⊗ and ⊙ donate the 
Hadamard product, Kronecker product and Khatri–Rao product.
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2  Signal model
Assume that mixed FF and NF narrowband sources impinge onto a sym-
metry array with 2M + 1 sensors. The inter-element spacing is d ≤ �/4 , 
where � is the signal wavelength, and the array sensors are indexed as 
�M=

{

�−M ,�−(M−1), · · ·�−1,�0,�1, · · · ,�M−1,�M

}

 . Array aperture D is the spac-
ing between the first sensor and the last sensor, and let N = D/(2d) , visibly N = �M . 
For ULA, N is equal to M, and for SLA, N > M.

The signals received by the mth sensor are written as

where sk(t) donates the kth received signal, nm(t) donates the additive Gaussian white 
noise of the mth sensor, and τmk is the phase shift associated with the propagation time 
delay of the kth source between the mth sensor and the sensor reference point. In the 
case of NF source, the expression for τmk is as

where

where θk donates the DOA of the kth source and rk donates the range of the kth NF 
source, respectively. The NF sources locate in the Fresnel region, i.e., 
rk ∈

[

0.62
(

D3/�
)1/2

, 2D2/�

]

 . Otherwise, if the kth source locates in the FF region, which 

means rk is greater than 2D2/� , τmk can be expressed as

Assuming that there are K sources in total, the first K1 are FF sources, and the remaining 
K − K1 are NF sources. The matrix form of (1) can be expressed as

where x(t) ∈ R
(2M+1)×1 is the sensor received signal, n(t) ∈ R

(2M+1)×1 is noise matrix, 
and

(1)xm(t) =

K
∑

k=1

sk(t)e
jτmk + nm(t),

(2)τmk = �mωk +�2
mφk ,

(3)ωk = −2π
d

�
sin θk ,

(4)φk = π
d2

�rk
cos2θk ,

(5)τmk = �mωk .

(6)x(t) = AFsF (t)+ ANsN + n(t),

(7)x(t) =[x�−M (t), . . . , x�0(t), . . . , x�M (t)]
T ,

(8)n(t) = [n�−M (t), . . . , n�0(t), . . . , n�M (t)]
T ,

(9)AF =[a(θ1), . . . ,a θK1 ],
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where

donates the steering vector (Fig. 1).
For the full paper, follow the following assumptions: 

(1) The source signals are non-Gaussian processes with nonzero kurtosis and are inde-
pendent of each other.

(2) The noise signals of the sensors are additive white Gaussian noise with zero mean, 
which is independent of the source signals.

(3) The inter-sensors spacing is no greater than one quarter wavelength, which can 
suppress ambiguity in the DOA estimation.

3  Proposed algorithm
In this section, we propose an interpolation algorithm based on atomic norm minimi-
zation for the mixed NF and FF sources localization problem. The proposed algorithm 
can be divided into two operations: A. DOA estimation and B. source classification and 
range estimation.

3.1  DOA estimation of mixed‑field sources

On the basis of the prior assumptions, a Hermitian matrix with the elimination range 
parameter and only DOA information is constructed by using the fourth-order cumu-
lant. Detailedly, the fourth-order cumulant is defined as

(10)AN =[a
(

θK1+1, rK1+1

)

, . . . ,a(θK , rK )],

(11)sF (t) = [s1(t), . . . , sK1(t)]
T ,

(12)sN (t) = [sK1+1(t), . . . , sK (t)]
T ,

(13)a(θk , rk) = [ej
(

�−Mωk+�2
−Mφk

)

, . . . , 1, . . . , ej
(

�Mωk+�2
Mφk

)

]T

Fig. 1 Linear array configuration
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where c4,sk=cum
{

sk(t), s
∗
k(t), s

∗
k(t), sk(t)

}

 is the fourth-order cumulant of the sk.
Assume n = −m , q = −p , then (14) can be re-expressed as

(15) is just represented by the DOAs of the sources. Let m̄ = m+�M + 1 and 
p̄ = p+�M + 1 , we obtain a cumulant matrix C1 and the(m̄, p̄) th of C1 is expressed as

In matrix form, C1 can be expressed as

where C4s = diag
[

c4,s1 , ..., c4,sK
]

 , B = [b(θ1), . . . , b(θK )] ∈ R
(2�M+1)×K  can be regarded 

as a special steering matrix without range parameter rk with

Then, by vectorizing matrix C1 , vector cL is obtained

where C
′

4s =
[

c4,s1 , . . . , c4,sK
]T . cL behaves like the received data of a new line array with-

out noise and the matrix B∗ ⊙ B is a new array steering matrix whose sensor positions 
are determined by set:

Removing duplicates in cL and rearranging them, then we obtain a new vector cG:

(14)

cum

�

xm(t), x
∗
n(t), x

∗
p(t), xq(t)

�

=cum

�

K
�

k=1

sk(t)e
j(�mωk+�2

mφk ), (

K
�

k=1

sk(t)e
j(�nωk+�2

nφk ))∗,

�

K
�

k=1

sk(t)e
j(�pωk+�2

pφk )

�∗

,

K
�

k=1

sk(t)e
j(�qωk+�2

qφk )







=

K
�

k=1

ej{[(�m−�n)−(�p−�q)]ωk+[(�2
m−�2

n)−(�2
p−�2

q)]φk }

× cum
�

sk(t), s
∗
k(t), s

∗
k(t), sk(t)

�

=

K
�

k=1

c4,sk e
j{[(�m−�n)−(�p−�q)]ωk+[(�2

m−�2
n)−(�2

p−�2
q)]φk }

(15)cum
{

xm(t), x
∗
−m(t), x

∗
p(t), x−p(t)

}

=

K
∑

k=1

c4,sk e
j2(�m−�p)ωk

(16)

C1(m̄, p̄) = cum
{

xm̄−�M−1(t), x
∗
−m̄+�M+1(t),

x∗p̄−�M−1(t), x−p̄+�M+1(t)
}

=

K
∑

k=1

c4,sk e
j2(m̄−�M−1)ωk ×

(

ej2(p̄−�M−1)ωk

)∗

(17)C1 = BC4sB
H

(18)b(θk) =
[

e−j2�Mωk , . . . , 1, . . . , ej2�Mωk

]T
.

(19)cL = vec(C1) =
(

B
∗ ⊙ B

)

C
′

4s

(20)N =
{

�p −�q|−M ≤ p, q ≤ M
}

.
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where AG ∈ R
|N|×K  is a coarray manifold matrix, and |N| represents the cardinality of 

the set N . G is a selection matrix defined as

where the set M(�i) contains each pair 
(

�p −�q

)

 that contributes to the coarray index 
�i , which is

For example, for a linear array configuration with �M = {−2, 0, 2} , we have 
N = {−4,−2, 0, 2, 4} and G is given as

From the vector cG , a new Toeplitz matrix can be constructed:

where LN = (|N| + 1)/2.
In [31], a Toeplitz matrix is proposed to replace the covariance matrix in the spatial 

smoothing algorithm. Similar to the covariance matrix in [31], (17) can be regarded 
as a special covariance matrix without noise; therefore, (25) is also a substitute matrix 
for the smoothed covariance matrix, and the DOA information can be obtained by 
processing (25) with the subspace algorithm. For a detailed proving process, please 
refer to [31].

Notably, when the coarray is continuous, CG can be directly used to obtain the DOA 
information. When the coarray is discontinuous, the conventional algorithms need to 
select a continuous part, which will lose the array aperture. Next, a sparse matrix is 
constructed with holes to utilize all the unique lags.

Define the interpolated signal vector cI and initialize it as

The measurements of the unique lags in vector cI correspond to vector cG , and the 
interpolation sensors are initialized to zeros. i ∈ V/N means i is in V but not in N . After 

(21)cG = GcL = AGC
′

4s

(22)
�G�i,p+(q−1)(2M+1) =

{

1
M(ni)

,
(

�p,�q

)

∈ M(ni)

0, otherwise

−M ≤ p, q ≤ M

(23)M(�i) =
{

(

�p,�q

)

∈ �2
M

∣

∣�p −�q = �i

}

,�i ∈ N.

(24)G =













0 0 0 0 0 0 1 0 0

0 0 0 1
2 0 0 0 1

2 0
1
3 0 0 0 1

3 0 0 0 1
3

0 1
2 0 0 0 1

2 0 0 0
0 0 1 0 0 0 0 0 0













.

(25)CG =









�cG�0 �cG�−1 · · · �cG�−LN+1
�cG�1 �cG�0 · · · �cG�−LN+2

...
...

. . .
...

�cG�LN−1 �cG�LN−2 · · · �cG�0









(26)�cI �i =

{

�cG�i, i ∈ N

0, i ∈ V/N
.
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interpolation, the vector cI can be regarded as the signal accepted by the ULA with the 
sensor positions as the integer set V:

From the interpolate vector cI , construct an interpolated Toeplitz matrix:

where LV = (|V| + 1)/2 , and obviously, N = (LV − 1)/2 . C I contains all values in CG 
and zeros resulting from interpolation.

The concept of atomic norm is proposed in [11], which summarizes several com-
monly used norm for sparse representation and recovery, e.g., the ℓ1 norm and the 
nuclear norm. Use the atomic norm minimization method to reconstruct the interpo-
lation matrix C I , first rewrite the matrix C I as

where B̄ =
[

b̄(θ1), . . . , b̄(θK )
]

∈ R
(2N+1)×K  , and b̄(θk) =

[

e−j2Nωk , . . . , 1, . . . , ej2Nωk
]T.

Then, define an atom set

Evidently, C is a linear combination of K atoms in atomic set A, and similarly, CG and C I 
are also linear combinations of atomic set A. The atomic ℓ0 norm represents the mini-
mum number of atoms that can synthesize C and is defined as:

where inf  donates the infimum. While minimizing (31) is an NP-hard problem, the 
atomic norm convex relaxation is introduced as

(27)V = {i|min (N) ≤ i ≤ max (N) }.

(28)CI =









�cI �0 �cI �−1 · · · �cI �−LV+1
�cI �1 �cI �0 · · · �cI �−LV+2
...

...
. . .

...
�cI �LV−1 �cI �LV−2 · · · �cI �0









(29)C = B̄C4sB̄
H
=

K
∑

k=1

c4,sk

(

b̄(θk)b̄
H
(θk)

)

(30)A =
{

B̄(αk) = b̄(αk)b̄
H
(αk),αk ∈ (−90◦, 90◦]

}

.

(31)�C�A,0 = inf

{

K : C =

K
∑

k=1

c4,sk B̄(αk), c4,sk > 0

}
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where conv(A) is the convex hull. The atomic norm of virtual matrix C I can be displayed 
in an equivalent semi-definite programming (SDP) form as

where tr(·) donates the trace operator and T (u) is a Hermitian Toeplitz matrix with vec-
tor u as its first column. Taking into account the relationship between RI and R , (33) can 
be rewritten as a convex optimization problem, and its expression is as follows

where F  is a selection matrix consisting of 0s and 1s to distinguish zero and nonzero 
values in matrix C I , specifically, the 1s in matrix F  correspond to the nonzero values in 
matrix C I , and the 0s correspond to the zero values. ε is a threshold for fitting error.

The optimization problem (34) can be solved by some classical and efficient soft-
ware tools, such as CVX [32] or SeDuMi [33]. The matrix C I will be reconstructed as 
the Hermitian Toeplitz matrix T (u) . It should be pointed out that, after interpolation 
and restoration, the T (u) is a LV × LV matrix, so the maximum number of detectable 
sources can be greater than the number of physical sensors. Algorithm 1 summarizes 
the proposed DOA algorithm for sparse matrix interpolation.

3.2  Range estimation of the NF sources

In order to obtain the range estimations of NF sources, the covariance matrix 
Rxx = E

{

x(t)xH (t)
}

 needs to be calculated first. Perform eigen-decomposition on 
Rxx = E

{

x(t)xH (t)
}

 yields:

where �s contains the K largest eigenvalues of Rxx and U s is the corresponding eigenval-
ues, �n contains the 2M + 1− K  smallest eigenvalues of Rxx and Un denotes the corre-
sponding eigenvectors. With the DOA estimates 

{

θ̂k , k = 1, 2, . . . ,K
}

 , taking the θ̂k into 

a(θk , r) , the range of the kth source is estimated as

When rk = ∞ , the FF sources can be distinguished; when rk is in the Fresnel region, the 
range of NF sources can be obtained. θ̂k and rk will be matched automatically, and no 
redundant operations are required.

(32)

�C�A = inf
{

h > 0 : C ∈ h conv(A)
}

= inf

{

∑

k

c4,sk

∣

∣

∣

∣

C =
∑

k

c4,sk B̄(αk), c4,sk > 0

}

(33)
�C�A = inf

u,W ,C

{

1
2LV

tr(T (u))+ 1
2LV

tr(W )
∣

∣

∣

∣

[

T (u) C

C
H

W

]

> 0
}

(34)

min
W ,u,C

tr[W + T (u)]

s.t.

[

T (u) C

C
H

W

]

> 0,

�C ◦ F − C I�
2
2 ≤ ε,

(35)Rxx = U s�sU s +Un�nUn,

(36)rk = min
r

(

a(θk , r)UnU
H
n a

H (θk , r)
)

.
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3.3  Discussion

Multiple FF and NF sources with the same DOAs According to (36), when the FF sources 
and the NF sources have the same DOAs, the proposed algorithm automatically classi-
fies the DOAs to the NF sources. Therefore, an additional operation is required to distin-
guish NF sources DOAs, which is given by

To make it clearer, assume there are four signal sources, (−30◦,∞)(−10◦,∞)

(−10◦, 8�)(30◦, 14�) , and linear array is �M = {−9,−3,−2, 0, 2, 3, 9} . After Algorithm 1, 
three estimated θk are obtained, θk = −30◦,−10◦, 30◦ . Substitute the estimated θk into 
(36) in turn, and the result is shown in Fig. 2a, from which we can only distinguish the 

(37)θFF = min
θ

(

a(θ ,∞)UnU
H
n a

H (θ ,∞)
)

.

Fig. 2 Mixed-field sources location with same DOAs. (SNR=20dB and T=2000)
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information of two NF sources and one FF source. Then according to (37), we get the 
result shown in Fig.2b, from which we can distinguish the DOAs of the FF sources.

Note that there is a weak spectral peak at the position of θk = 30◦ , which is because 
the steering vector a(θk , rk) of the NF source has a certain orthogonality with the noise 
subspace Un . When rk is larger, this spectral peak is higher, and when rk = ∞ , the steer-
ing vector a(θk , rk) becomes a(θk ,∞) and this spectral peak correspondingly becomes 
the FF spectral peak.

4  Simulation results
In this section, the performance of the proposed algorithm is evaluated through dif-
ferent simulations. Specifically, we compare the proposed algorithm with oblique 
projection MUSIC (OPMUSIC) algorithm [19], mixed-order MUSIC algorithm [24], 
MSA algorithm [30] and LASSO algorithm [26]. In all simulations, the inter-sensor 
spacing is d = �/4 , the signal model is ejϕt where the phase is uniformly distributed 
in [0, 2π ] , and the parameter ε in (17) is set to 10−8 . For the parameter h and β in the 
LASSO and MSA algorithm, the optimal value of 0.6 and 0.5 are adopted, separately.

In the first three simulations, the performances of the proposed algorithm under 
symmetry ULA, symmetry SLA and underdetermined conditions are simulated, 
respectively. In the last simulation, the performance of the proposed algorithm in 
classical symmetric arrays is verified. Algorithm performance is evaluated by root-
mean-square error (RMSE), with an average of γ = 500 Monte Carlo trials:

where ak represents the real θk or rk , and correspondingly, âik is the estimated θk or rk for 
the ith trail. K ′ is the number of sources, and if the RMSE of the FF sources is required, 
then K ′ is equal to K1 ; if the RMSE of the NF sources is required, K ′ is K − K1.

4.1  The ULA case

In the first simulation, assume that one narrowband FF source (−10◦∞) and one nar-
rowband NF source (10◦, 3�) impinge onto a symmetrical ULA with nine sensors. 
Figure  3 shows the performance of different algorithms in symmetry ULA with the 

(38)RMSE =

√

√

√

√

1

K′γ

γ
∑

i=1

K′
∑

k=1

(

aik − ak
)2

Fig. 3 Performance comparison in ULA case with �M = [−4,−3,−2,−1, 0, 1, 2, 3, 4] and T = 2000
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SNR varying from − 5 to 30dB, and the snapshots are set to T = 2000 . The simulation 
results show that in the case of ULA, the performance of the proposed algorithm is 
comparable to that of LASSO and mixed-order, and better than that of MSA. Because 
there are no holes in the matrix C1 generated by the ULA, the proposed algorithm has 
no obvious advantage over other excellent algorithms. But this simulation verifies that 
the proposed algorithm is also applicable to ULA. MSA algorithm has poor perfor-
mance because of its large fitting error.

From Fig.  3a, it can be seen that the OPMUSIC algorithm is very different from 
other algorithms, because the OPMUSIC algorithm is based on the second-order 
cumulant and the rest of the algorithms use the fourth-order cumulant. This also 
verifies the discussion in Sect. 2 about the Cramér–Rao bound from one aspect. The 
estimation of the fourth-order statistics itself has errors; therefore, the proposed 
algorithm performance is not superior to the conventional algorithm based on the 
second-order statistics. From Fig.  3b, the OPMUSIC algorithm has the same per-
formance as other algorithms, which is because the algorithm needs to use the anti-
diagonal elements of the covariance matrix to remove the range parameter influence 
when performing NF source DOA estimation. From Fig. 3c, the estimation of range is 
mainly affected by the array aperture and DOA estimation accuracy. Since the same 
array aperture is used and the DOA estimation accuracy is the same, the proposed 
algorithm has the same range estimation accuracy as the other algorithms.

4.2  The SLA case

In the second simulation, instead of symmetry ULA, we use symmetry SLA of nine sen-
sors with �M = [−9− 6,−3,−2, 0, 2, 3, 6, 9] , and the Fresnel region is [6�, 40�] . The sim-
ulation results are shown in Fig. 4. It can be seen that for DOA estimation of FF sources, 
the proposed algorithm outperforms other algorithms except OPMUSIC algorithm 
which uses second-order cumulants. For the DOA estimation of NF sources, the pro-
posed algorithm is the best among the five algorithms.

Compared with LASSO and other classical compressed sensing algorithms, MSA 
and the proposed algorithm adopt atomic norm minimization method, which has two 
advantages: 

Fig. 4 Performance comparison in SLA case with �M = [−9,−6,−3,−2, 0, 2, 3, 6, 9] and T = 2000
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(1) DOA estimation can be performed in a gridless manner;
(2) More unique lags can be exploited.

Therefore, the performance of the algorithm is further improved. The OPMUSIC algo-
rithm is on the basis of second-order statistics and needs to use the anti-diagonal ele-
ments of the covariance matrix for DOA estimation of the NF sources; therefore, it is 
not suitable for symmetry SLA. The MSA algorithm needs to complete more interpola-
tion sensors, so its performance is inferior to that of the proposed algorithm in the case 
of high SNR. From Fig. 4c, in the case of the same array aperture, the DOA estimation 
accuracy of the proposed algorithm is higher, so is its range estimation accuracy.

4.3  Underdetermined estimation

The most significant advantage of the sparse array is that it can perform underdeter-
mined estimation. Still, the traditional algorithm needs to use consecutive lags, which 
will lose the array aperture and reduce the estimation accuracy. In the third simula-
tion, we show the performance of the proposed algorithm in underdetermined esti-
mation. Specifically, it is assumed that ten narrowband sources, five FF sources 
from (−50◦,∞)(−40◦,∞)(−30◦,∞)(−20◦,∞)(−10◦,∞) and five NF sources from 
(10◦, 12�)(20◦, 14�)(30◦, 16�)(40◦, 18�)(50◦, 20�) , impinge on symmetry SLA with nine 
sensors, where the array location is �M = [−9− 6,−3,−2, 0, 2, 3, 6, 9] , and the Fresnel 

Fig. 5 Performance of underdetermined estimation ( �M = [−9,−6,−3,−2, 0, 2, 3, 6, 9] , T = 20000 and 
SNR=20dB)
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region is [6�, 40�] . Figure 5 shows the MUSIC spectrum of the proposed algorithm. Fig-
ure 6 shows the performance comparison of different algorithms.

Under this simulation condition, the consecutive lags applied by mixed-order algo-
rithm are [−9,−8, . . . 0, . . . 8, 9] and the number of unique lags used by the LASSO algo-
rithm is 27. After interpolation and completion, the number of unique lags used by the 
MSA and proposed algorithms is 37. From Fig. 6, the performance of the proposed algo-
rithm is significantly better than other algorithms.

Fig. 6 Underdetermined estimation performance ( �M = [−9,−6,−3,−2, 0, 2, 3, 6, 9] , T = 20000 and K = 10)
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4.4  Applied to classical symmetric linear arrays

From (34), it can be concluded that the number and distribution of zeros in matrix C I 
affect the reconstruction accuracy. To verify the applicability of the proposed algorithm, 
in the fourth simulation, we apply the proposed algorithm to several mainstream sym-
metric array configurations and compare it with the MSA algorithm, and the simulation 
results are shown in Fig. 7. Four symmetric array configurations are considered: sym-
metric nested array I (SNA I) [24], symmetric double-nested array (SDNA) [25], sym-
metric nested array II (SNA II) [34] and improved symmetric nested array (ISNA) [26]. 
Each configuration uses nine physical sensors, the Fresnel region is [5�, 30�] , and the 
number of sources is six, (−30◦,∞)(−20◦,∞)(−10◦,∞)(10◦, 10�)(20◦, 17�)(30◦, 25�).

Fig. 7 Applied to classical symmetric linear arrays ( T = 20000 , nine sensors and K = 6)
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As can be seen from Fig. 7, among the above four classical symmetric formations, the 
proposed algorithm performs better than MSA in the case of high SNR. The proposed 
algorithm is based on high-order cumulant matrix for interpolation reconstruction. 
Compared with MSA for interpolation reconstruction on physical array, fewer 0 values 
need to be recovered and the fitting error is smaller. Therefore, the reconstructed matrix 
is closer to the true value.

4.5  FF and the NF sources share the same DOAs

In the last simulation, we simulate the performance of the proposed algorithm 
when some FF and NF sources share the same DOAs. Four mixed-field sources, 
(10◦,∞)(30◦,∞)(10◦, 12�)(30◦, 14�) , impinge on symmetry SLA with nine sensors, 

Fig. 8 FF and the NF sources share the same DOAs ( T = 20000 , (10◦ ,∞)(30◦ ,∞)(10◦ , 12�)(30◦ , 14�))
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where the array location is �M = [−9− 6,−3,−2, 0, 2, 3, 6, 9] . The simulation results 
are shown in Fig. 8. It can be seen that the LASSO and MIX algorithms are unable 
to discriminate when mixed-field sources have the same angle; the MSA algorithm 
discriminates by distance, which has less impact on the DOA estimation; and the pro-
posed algorithm achieves discrimination by an additional step, which increases the 
estimation accuracy of FF sources.

5  Conclusions
In this paper, we propose a high-performance algorithm for the mixed-field locali-
zation problem. By interpolating the higher-order cumulant matrix, we get a Toe-
plitz matrix of higher dimensionality. The interpolation matrix is then restored using 
atomic norm minimization. Through the above operations, in the symmetry SLA, the 
proposed algorithm can use more unique lags, so the performance of the algorithm 
is better. The superiority of the proposed algorithm is verified by theoretical analysis 
and simulation results.

It should be pointed out that the proposed algorithm is applicable not only to linear 
array, but also to sparse planar array mixed-field sources location problem. Therefore, 
the performance of the proposed algorithm in two-dimensional (2D) localization is 
very worthy of future investigation. In addition, the resolution of gridless algorithms 
is low [35], so how to improve the resolution of the proposed algorithm is also an 
important research direction in the future.
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